一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法

文档序号:1307577 发布日期:2020-08-11 浏览:42次 >En<

阅读说明:本技术 一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法 (Low-temperature normal-pressure sintering preparation method of high-purity SiC ceramic coating capable of realizing mass production ) 是由 梅辉 赵钰 常鹏 成来飞 于 2020-04-23 设计创作,主要内容包括:本发明涉及一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法,以涂层的形式应用于需要耐高温、抗氧化及耐腐蚀等防护性能的领域。其技术特征在于步骤为调配高纯SiC料浆、刷涂和低温无压烧结。本发明所提供的技术方案通过调控高纯SiC料浆配方来控制SiC涂层的纯度和烧结温度,实现高纯SiC涂层在1750~1800℃的常压烧结和工业化制备生产。本发明中高纯SiC的料浆配方及刷涂和烧结过程灵活可控,涂层与基体结合良好,无明显剥落和裂纹,工艺过程操作简单,耗时短,大幅度降低了成本。(The invention relates to a low-temperature normal-pressure sintering preparation method of a high-purity SiC ceramic coating capable of being produced in large quantity, which is applied to the field needing high-temperature resistance, oxidation resistance, corrosion resistance and other protective properties in the form of a coating. The method is technically characterized by comprising the steps of preparing high-purity SiC slurry, brushing and sintering at low temperature and no pressure. According to the technical scheme provided by the invention, the purity and sintering temperature of the SiC coating are controlled by regulating and controlling the formula of the high-purity SiC slurry, and normal-pressure sintering and industrial preparation production of the high-purity SiC coating at 1750-1800 ℃ are realized. The formula of the slurry of the high-purity SiC and the brushing and sintering processes are flexible and controllable, the coating is well combined with the matrix, obvious peeling and cracks do not exist, the technological process is simple to operate, the consumed time is short, and the cost is greatly reduced.)

一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法

技术领域

本发明属于碳化硅(SiC)陶瓷材料领域,涉及一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法。

背景技术

SiC陶瓷因其高硬度、高耐磨损性、高抗弯强度和优良的抗氧化性、耐酸碱腐蚀性及高温力学性能被广泛应用于航天、航空、微电子、汽车、激光、矿业及原子能等领域。而高纯SiC涂层在这些领域起着高温防护、抗氧化及耐腐蚀的重要作用,SiC涂层的纯度越高,在极端严苛工况下,由杂质引起的污染越小,防护性能越优异。目前,国内对低成本产业化高纯SiC陶瓷涂层的制备与使用还处于探索阶段,主要存在制备工艺复杂、设备昂贵,SiC涂层烧结温度高、纯度不易控制,成本耗费大的问题。

SiC作为防护涂层,常见的制备方法有固渗法(包埋法)、溅射法、化学气相沉积法和涂刷法。如中国专利CN 105948822A提供了一种SiC基复合材料表面SiC涂层的制备方法,将硅粉包埋于碳化硅基复合材料表面,在过量的碳源中高温热处理得到SiC涂层;中国专利CN 102373417A提供了一种在石墨材料表面制备抗氧化SiC涂层的方法,采用超高真空多功能磁控溅射镀膜设备,在石墨材料表面制备硅(Si)涂层,经真空热处理得到抗氧化SiC涂层;中国专利CN 105503270A提供了通过化学气相沉积和先驱体浸渍裂解的方法制备SiC涂层;中国专利CN 107082651B提供了一种涂刷法制备的SiC涂层,分为内覆层和外覆层,内覆层以SiC粉、Si粉为主,涂覆于含碳材料表面,外覆层以硅化浆料为主涂覆于内覆层表面,真空烧结得到SiC涂层。采用固渗法制备的SiC涂层与基体没有明显的界面,可以缓解基体与涂层热膨胀系数不匹配的问题,但存在涂层不致密、纯度不高、含杂质较多,制备工艺复杂的问题,从而影响了SiC涂层的使用;溅射法和化学气相沉积法制备的SiC涂层与基体结合度好,有良好的工艺可重复性,可在大面积的基体材料表面制备厚度均匀的涂层,但设备昂贵、生产成本高,工艺复杂;涂刷法借助表面粘结的方法先形成预涂层,然后烧结成功能涂层,工艺简便、生产成本低,不需要专门的设备,可操作性高,适用于大型复杂构件表面涂层的工业化生产,相比较其他方法在工业化应用上具有很大的优势。

由于SiC是基本晶体结构单元为Si-C四面体的强共价键化合物,共价键约占88%,离子键占12%,这种强共价键性使得SiC在烧结时自扩散速率低,烧结驱动力很小,不易获得足够的能量形成晶界,而且不添加烧结助剂时,SiC的烧结温度约为2100~2200℃,对设备及使用环境要求极高,限制了其在工业上的应用。目前,国内外对SiC陶瓷材料的烧结进行了多方面的研究,主要有常压烧结、热压烧结和反应烧结。常压烧结可分为固相烧结和液相烧结,固相烧结一般以碳(C)或硼(B)作为烧结助剂促进SiC在常压下的烧结致密化,所需温度超过2000℃,液相烧结则是引入金属或金属氧化物等在高温时形成液相促进烧结,所需温度约为1800~1950℃。热压烧结即在烧结的同时进行加压,一般引入与常压烧结类似的烧结助剂,是目前常用的SiC陶瓷的快速烧结制备方法。反应烧结是将有反应活性的熔融硅在毛细管力作用下,向含有C的陶瓷素坯内的孔隙浸渗,通过C和Si发生反应生成SiC,常存在体积分数为5~30%的游离Si。但对于高纯SiC的烧结来说,液相烧结会引入较多的金属杂质,反应烧结会有5%及以上游离Si的存在,均无法保证SiC陶瓷材料的纯度,热压烧结温度大于1750℃,所需压力不等,通常对设备要求高,制备条件苛刻,工业化生产成本高。因此,综合考虑产业化高纯SiC涂层的制备,优先选择常压烧结,烧结过程不需要加压,工艺相对简单,适用范围广,可有效节约成本。

发明内容

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法,针对高纯SiC陶瓷涂层纯度不易控制、烧结温度高,制备工艺复杂,生产成本大的应用局限性。

技术方案

一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法,其特征在于步骤如下:

步骤1.调配高纯SiC料浆:将纯度≥99%的高纯SiC粉溶于乙醇和丁酮中,加入质量分数2%的磷酸三乙酯,然后转移到球磨罐,用玛瑙球球磨8~12小时后,继续加入质量分数3%的聚乙烯醇缩丁醛、质量分数3%、混合比1:1的丙三醇和邻苯二甲酸二辛酯、质量分数5%的高纯Si粉和质量分数2%的碳化硼粉,接着球磨8~12小时形成的高纯SiC料浆;

步骤2.刷涂:将高纯SiC料浆刷涂于基体表面,室温干燥形成预涂层;

步骤3.低温无压烧结:将得到的预涂层在惰性气氛下进行烧结,升温速率2.5℃/min,烧结温度1750℃~1800℃,保温2~3小时后,自然降温完成高纯SiC陶瓷涂层的低温常压烧结。

所述乙醇和丁酮混合比为1:1。

所述高纯SiC粉的粒度为3~5μm、500nm。

有益效果

本发明提出的一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法,目的是有效控制SiC涂层的纯度,在常压烧结的条件下降低SiC陶瓷涂层的烧结温度,制备出高纯SiC涂层,简化工艺,有效降低生产成本。本发明的思想在于通过调控高纯SiC料浆配方来控制SiC涂层的纯度和烧结温度,从料浆的制备、刷涂到烧结过程不引入任何其他金属杂质等,实现高纯SiC陶瓷涂层的常压低温烧结和批量制备。

本发明的有益效果有以下几点:

(1)相比较其他常用的SiC涂层的制备方法,本发明通过调控高纯SiC料浆的配方来控制SiC涂层的纯度,料浆以≥99%的高纯SiC粉为原料,溶剂均为有机溶剂且易挥发,不引入其他金属杂质等,从刷涂到烧结过程由惰性气氛保护,有效实现了SiC涂层纯度的可控性。

(2)通过在高纯SiC料浆配方里加入一定比例的高纯Si粉和碳化硼粉实现了该涂层在1750~1800℃的烧结。

(3)采用涂刷和常压烧结法制备的高纯SiC涂层与基体结合良好,无明显的剥落和裂纹,层厚约为100μm,与磁控溅射法和化学气相沉积法对比,本发明使用的方法可灵活控制高纯SiC涂层厚度,且操作简便,详见表1。

(4)每平方米刷涂料浆成本低,从制备料浆到烧结仅需2~3天,工艺过程操作简单,耗时短,相比较溅射法和沉积法,采用该方法大幅降低了设备及制备成本,可以实现高纯SiC涂层的量产,详见表1。

(5)本发明使用的高纯SiC涂层的制备方法适用于需要具有耐高温、抗氧化及抗腐蚀等防护性能的基体及复杂构件,相比较磁控溅射法适用范围广,详见表1。

附图说明

图1.是本发明可量产的高纯SiC涂层低温常压烧结制备方法图。

图2.是本发明实施例1、实施例2和实施例3的高纯SiC涂层。

(a)实施例1中的高纯SiC涂层;(b)实施例2中的高纯SiC涂层;(c)实施例3中的高纯SiC涂层

图3.是本发明实施例1、实施例2和实施例3的高纯SiC涂层扫描电镜(SEM)图。

(a)实施例1中的高纯SiC涂层;(b)实施例2中的高纯SiC涂层;(c)实施例3中的高纯SiC涂层

图4.是本发明实施例1、实施例2和实施例3的高纯SiC涂层X射线衍射(XRD)图。

(a)实施例1中的高纯SiC涂层;(b)实施例2中的高纯SiC涂层;(c)实施例3中的高纯SiC涂层

图5.是实用构件上刷涂法低温常压烧结制备的高纯SiC涂层。

具体实施方式

现结合实施例、附图对本发明作进一步描述:

实施例1.

步骤一:以纯度≥99%,粒度500nm的高纯SiC粉为原料,溶于混合比1:1的乙醇与丁酮中,加入质量分数2%的磷酸三乙酯,然后转移到球磨罐,用玛瑙球球磨8~12小时后,继续加入质量分数3%的聚乙烯醇缩丁醛,质量分数3%、混合比1:1的丙三醇和邻苯二甲酸二辛酯,质量分数5%的高纯Si粉,质量分数2%的碳化硼粉,继续球磨8~12小时。

步骤二:将步骤1形成的高纯SiC料浆均匀的刷涂于反应烧结SiC基体表面,室温干燥形成预涂层。

步骤三:将步骤2得到的预涂层在惰性气氛下进行烧结,升温速率2.5℃/min,烧结温度1750℃~1800℃,保温2~3小时后,自然降温。

实施例2.

步骤一:以纯度≥99%,粒度3~5μm的高纯SiC粉为原料,溶于混合比1:1的乙醇与丁酮中,加入质量分数2%的磷酸三乙酯,然后转移到球磨罐,用玛瑙球球磨8~12小时后,继续加入质量分数3%的聚乙烯醇缩丁醛,质量分数3%、混合比1:1的丙三醇和邻苯二甲酸二辛酯,质量分数5%的高纯Si粉,质量分数2%的碳化硼粉,接着球磨8~12小时。

步骤二:将步骤1形成的高纯SiC料浆均匀的刷涂于反应烧结SiC基体表面,室温干燥形成预涂层。

步骤三:将步骤2得到的预涂层在惰性气氛下进行烧结,升温速率2.5℃/min,烧结温度1750℃~1800℃,保温2~3小时后,自然降温。

实施例3.

步骤一:以纯度≥99%,粒度500nm的高纯SiC粉为原料,加入5%的高纯SiC晶须,溶于混合比1:1的乙醇与丁酮中,加入质量分数2%的磷酸三乙酯,然后转移到球磨罐,用玛瑙球球磨8~12小时后,继续加入质量分数3%的聚乙烯醇缩丁醛,质量分数3%、混合比1:1的丙三醇和邻苯二甲酸二辛酯,质量分数5%的高纯Si粉,质量分数2%的碳化硼粉,接着球磨8~12小时。

步骤二:将步骤1形成的高纯SiC料浆均匀的刷涂于反应烧结SiC基体表面,室温干燥形成预涂层。

步骤三:将步骤2得到的预涂层在惰性气氛下进行烧结,升温速率2.5℃/min,烧结温度1750℃~1800℃,保温2~3小时后,自然降温。

表1本发明使用的涂刷+低温常压烧结高纯SiC涂层法与其他几种SiC涂层制备方法对比

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种碳化物基陶瓷材料、制备方法及其应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!