一种高韧性氮化硅陶瓷及其制备方法

文档序号:1307586 发布日期:2020-08-11 浏览:34次 >En<

阅读说明:本技术 一种高韧性氮化硅陶瓷及其制备方法 (High-toughness silicon nitride ceramic and preparation method thereof ) 是由 曾宇平 梁汉琴 魏悦 左开慧 夏咏锋 姚冬旭 尹金伟 于 2020-04-26 设计创作,主要内容包括:本发明涉及一种高韧性氮化硅陶瓷及其制备方法,所述高韧性氮化硅陶瓷是以Si&lt;Sub&gt;3&lt;/Sub&gt;N&lt;Sub&gt;4&lt;/Sub&gt;作为主相,以SiC纤维、碳纤维、石墨烯、碳纳米管和YB&lt;Sub&gt;2&lt;/Sub&gt;C&lt;Sub&gt;2&lt;/Sub&gt;中的至少一种作为第二相,以及金属氧化物和稀土氧化物作为烧结助剂,经过烧结后得到。(The invention relates to a high-toughness silicon nitride ceramic and a preparation method thereof, wherein the high-toughness silicon nitride ceramic is prepared from Si 3 N 4 As a main phase, SiC fibers, carbon fibers, graphene, carbon nanotubes and YB are used 2 C 2 At least one of the metal oxide and the rare earth oxide is used as a second phase, and the metal oxide and the rare earth oxide are used as sintering aids, and the alloy is obtained after sintering.)

一种高韧性氮化硅陶瓷及其制备方法

技术领域

本发明涉及一种高韧性氮化硅陶瓷及其制备方法,具体涉及一种以Si3N4为主相、Al2O3和RE2O3(RE2O3为Lu2O3、Yb2O3、Tm2O3和Er2O3中的一种或多种)等为烧结助剂,以SiC纤维、碳纤维、碳纳米管中的至少一种作为一维增强相以及石墨烯和YB2C2中的至少一种作为二维增强相,来制备高韧性的Si3N4陶瓷的方法,属于Si3N4陶瓷的制备领域。

背景技术

氮化硅陶瓷素以具有高强度、高韧性、高硬度、耐腐蚀和耐磨损等优势著称,被广泛应用于诸多工业部门。研究表明,氮化硅陶瓷同样具有出色的生物安全性,因此逐渐受到医疗器械行业的重视,有望用作髋关节球头等骨科植入物。例如,专利(中国公开号CN103435356A)公开了一种凝胶注模成型、无压烧结制备氮化硅人工陶瓷关节的方法。该专利仅对氮化硅陶瓷的成型工艺和组分等进行了考察,但并没有对氮化硅陶瓷的性能如断裂韧性等作具体的考察,这不利于对氮化硅陶瓷的使役性能形成全面的认知。专利(中国公开号CN 108585880A)公开了一种氮化硅陶瓷髋关节球头的制备方法,该专利对成型、烧结条件等进行了一定的研究,但也没有对氮化硅陶瓷的断裂韧性等进行考察,这同样不利于我们建立氮化硅陶瓷的组分、制备方式和性能的关系。

作为一种长寿命骨科植入物,氮化硅陶瓷需要具有优异的断裂韧性以确保不在日常使用过程中产生裂纹或破坏,避免造成再次植入或修复的二次伤害。氮化硅陶瓷具有α和β两种常见的晶体结构。在烧结过程中,α-Si3N4会溶解于烧结助剂形成的液相中,然后从液相中析出β-Si3N4,β-Si3N4具有长柱状的形貌,能够在基体中形成互锁的网络结构,显著提高氮化硅陶瓷的断裂韧性。因此,为了提高氮化硅陶瓷的断裂韧性,现有技术一般选用能够有效促进α-βSi3N4相转变的烧结助剂,使相转变更为充分。

发明内容

为此,本发明提供了一种高韧性氮化硅陶瓷及其制备方法,具体来说在氮化硅陶瓷基体中掺入可以激发更多增韧机制的第二相,以有效提高氮化硅陶瓷断裂韧性。

一方面,本发明提供了一种高韧性氮化硅陶瓷,所述高韧性氮化硅陶瓷是以Si3N4作为主相,以SiC纤维、碳纤维、石墨烯、碳纳米管和YB2C2中的至少一种作为第二相,以及金属氧化物和稀土氧化物作为烧结助剂,经过烧结后得到。

本公开中,通过选用可以有效促进Si3N4晶型转变的烧结助剂,促进烧结过程中α-Si3N4到β-Si3N4的相转变,使得陶瓷中大量生成长柱状的β-Si3N4晶粒,相互交错形成空间网络结构,达到自增韧的目的。同时,掺入能够激发更多增韧机制的第二相来协同提升氮化硅陶瓷的断裂韧性。具体来讲,采用金属氧化物以及稀土氧化物作为烧结助剂来促进致密化和相转变;同时,掺入SiC纤维、碳纤维、石墨烯、碳纳米管或YB2C2中的一种或多种第二相来提高氮化硅陶瓷的断裂韧性。

较佳的,所述金属氧化物选自Al2O3、CaO、MgO中的至少一种;所述稀土氧化物为RE2O3,优选选自Lu2O3、Yb2O3、Tm2O3和Er2O3中的至少一种。

较佳的,以主相、第二相和烧结助剂的总质量计为100%,所述烧结助剂的含量为5~8wt%;优选地,所述金属氧化物和稀土氧化物的摩尔比为(3~1):1,更优选为5:3。

较佳的,以主相、第二相和烧结助剂的总质量计为100%,所述第二相的含量为3~7wt%。

较佳的,所述第二相包含SiC纤维、碳纤维、碳纳米管中的至少一种作为一维增强相以及石墨烯和YB2C2中的至少一种作为二维增强相;优选地,所述一维增强相和二维增强相的质量比为(1/6~6):1。

较佳的,所述SiC纤维的直径为5~10μm,长度为25~50μm,优选SiC纤维的长径比为5~10;

所述碳纤维的直径为5~10μm,长度为25~50μm,优选碳纤维的长径比为5~10;

所述碳纳米管的内径为1~5nm,长度为0.1~0.5μm,优选碳纳米管的长径比为20~100;

所述石墨烯的尺寸为300nm~5μm;

所述YB2C2的尺寸为300nm~5μm。

另一方面,本发明提供了一种上述高韧性氮化硅陶瓷的制备方法,包括:

(1)将α-Si3N4粉体、烧结助剂和第二相按照(85~92):(5~8):(3~7)的质量比称量并混合后压制成型,得到素坯;

(2)将所得素坯放入石墨热压模具中,并放入碳管炉中进行烧结,得到所述高韧性氮化硅陶瓷。

较佳的,所述α-Si3N4粉体的粒径为0.2~0.6μm;所述金属氧化物的粒径为0.2~0.5μm;所述稀土氧化物的粒径为0.4~1.5μm。

较佳的,所述烧结的方式为热压烧结;所述热压烧结的温度为1700~1800℃,保温时间为1~3小时,烧结压力为40~60MPa;优选地,所述热压烧结的升温速率为5~10℃/分钟。

再一方面,本发明还提供了一种由上述高韧性氮化硅陶瓷制备的骨科植入材料。

有益效果:

本发明通过采用金属氧化物(例如,Al2O3)和RE2O3(RE2O3为Lu2O3、Yb2O3、Tm2O3和Er2O3中的一种或多种)作为烧结助剂,可以在实现氮化硅陶瓷致密化的同时,有效促进α-βSi3N4的相转变,使基体中完全形成长柱状结构的β-Si3N4;另外,通过添加SiC纤维、碳纤维、石墨烯、碳纳米管或YB2C2中的一种或多种为提高韧性的第二相,在氮化硅陶瓷中激发更多的增韧机制,如裂纹偏转、裂纹分叉和晶须拔出等,从而得到高韧性的Si3N4陶瓷。

附图说明

图1为实施例1中所得Si3N4陶瓷的物相分析图;

图2为实施例2中YB2C2的形貌图。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

在本公开中,高韧性氮化硅陶瓷包含Si3N4主相、金属氧化物和稀土氧化物作为烧结助剂、以及提高韧性的第二相,通过烧结制备得到。

在可选的实施方式中,金属氧化物可为CaO、MgO、Al2O3等。稀土氧化物可为Lu2O3、Yb2O3、Tm2O3和Er2O3中的一种或多种。氮化硅陶瓷的烧结以及α-Si3N4向β-Si3N4的相转变与所用稀土氧化物种类密切相关。稀土阳离子半径越小,阳离子场强越大,因而形成的液相粘度更高,在液相中的传质时间就更长,β-Si3N4晶粒有更充分的时间生长为高长径比的晶粒,晶粒交错所形成的空间网络结构就更坚固。

在可选的实施方式中,第二相按照维度进行分类可为一维增强相和二维增强相。其中,一维增强相的长径比可为5~10,例如碳纤维、碳纳米管、SiC纤维等。二维增强相的粒径分布可为300nm~5μm之间,例如石墨烯、YB2C2等。提高韧性的第二相含量可为3-7wt%。若是加入量过多,将显著影响氮化硅陶瓷的致密化。若是加入量少,韧性提升不明显。

以下示例性地说明高韧性氮化硅陶瓷的制备方法。

将α-Si3N4粉体、烧结助剂(Al2O3粉体和RE2O3粉体)和第二相混合,得到原料粉体。优选Al2O3和RE2O3的摩尔比固定为5:3。作为一个示例,按照α-Si3N4粉体:烧结助剂:第二相=(85-92):(5-8):(3-7)的质量比例称量,添加酒精配置成一定固含量的浆料,再经进行球磨处理。最后将球磨处理后的得到的浆料经过烘干和过筛,得到原料粉体。其中,浆料的固含量可为45-55wt%。球磨处理的转数可为250-350rpm,球磨时间可为3~5小时。烘干的温度可为110℃~130℃,时间可为2~6小时。其中,过筛可为过100目~400目的筛。

在可选的实施方式中,α-Si3N4粉体的粒径可为0.2~0.6μm。Al2O3粉体的粒径可为0.2~0.5μm。RE2O3粉体的粒径可为0.4~1.5μm。应注意,其他金属氧化物的粒径也可为0.2~0.5μm。

将原料粉体压制成型,得到素坯。干压预成型的压力可为10~30MPa。

将素坯放入石墨热压模具中,并放入碳管炉中、在氮气气氛中进行烧结,得到高韧性氮化硅陶瓷。其中烧结的方式可为热压烧结等。作为一个示例,热压烧结温度为1700~1800℃,升温速率为5~10℃/min,保温时间为1~3h,烧结压力为40~60MPa。

在本发明中,采用阿基米德排水法测试得到Si3N4陶瓷的密度为97.5~99.6g/cm3

在本发明中,采用单边开口梁法测试得到Si3N4陶瓷的断裂韧性为7.9~13.6MPa·m1/2

在本发明中,利用上述制备方法制备的Si3N4陶瓷具有高韧性等优点,可用于制作髋关节球头,可具有更长的使用寿命。

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。若无特殊说明,下述实施例和对比例中所用Si3N4粉体为α-Si3N4粉体。

实施例1

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体91g,与1.50g Al2O3粉体、3.50g Lu2O3粉体、3克SiC纤维和1克石墨烯混合,配制成固含量为45wt%的浆料,在300rpm下球磨4h,然后放入110℃恒温箱中烘干,研磨并过筛;将所得粉体在10MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以5℃/min的速率升温至1700℃,在40MPa压力下烧结1h,即得致密度为97.9%,断裂韧性为8.3MPa·m1/2的Si3N4陶瓷。

实施例2

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体88g,与1.81g Al2O3粉体、4.19g Yb2O3粉体、4克碳纤维和2克YB2C2混合,配制成固含量为50wt%的浆料,在300rpm下球磨4h,然后放入120℃恒温箱中烘干,研磨并过筛;将所得粉体在20MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以5℃/min的速率升温至1800℃,在60MPa压力下烧结2h,即得致密度为99.6%,断裂韧性为13.6MPa·m1/2的Si3N4陶瓷。

实施例3

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体87g,与2.14g Al2O3粉体、4.86g Tm2O3粉体、1克碳纳米管和5克石墨烯混合,配制成固含量为55wt%的浆料,在250rpm下球磨4h,然后放入130℃恒温箱中烘干,研磨并过筛;将所得粉体在20MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以7.5℃/min的速率升温至1800℃,在60MPa压力下烧结2h,即得致密度为99.4%,断裂韧性为12.4MPa·m1/2的Si3N4陶瓷。

实施例4

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体85g,与2.46g Al2O3粉体、5.54g Er2O3粉体、6克碳纤维和1克YB2C2混合,配制成固含量为55wt%的浆料,在350rpm下球磨5h,然后放入130℃恒温箱中烘干,研磨并过筛;将所得粉体在30MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以10℃/min的速率升温至1800℃,在40MPa压力下烧结3h,即得致密度为99.1%,断裂韧性为11.1MPa·m1/2的Si3N4陶瓷。

实施例5

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体88g,与2.10g Al2O3粉体、4.90g Lu2O3粉体、5克碳纳米管和2克石墨烯混合,配制成固含量为50wt%的浆料,在350rpm下球磨3h,然后放入120℃恒温箱中烘干,研磨并过筛;将所得粉体在30MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以10℃/min的速率升温至1800℃,在50MPa压力下烧结3h,即得致密度为99.2%,断裂韧性为11.6MPa·m1/2的Si3N4陶瓷。

实施例6

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体88g,与2.45g Al2O3粉体、5.50g Tm2O3粉体、3克碳纤维和4克YB2C2混合,配制成固含量为45wt%的浆料,在250rpm下球磨5h,然后放入120℃恒温箱中烘干,研磨并过筛;将所得粉体在10MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以7.5℃/min的速率升温至1750℃,在40MPa压力下烧结1h,即得致密度为98.7%,断裂韧性为10.7MPa·m1/2的Si3N4陶瓷。

实施例7

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体88g,与1.80g Al2O3粉体、1.27g Lu2O3粉体、2.93g Yb2O3粉体、5克碳纳米管和1克石墨烯混合,配制成固含量为50wt%的浆料,在300rpm下球磨3h,然后放入110℃恒温箱中烘干,研磨并过筛;将所得粉体在30MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以5℃/min的速率升温至1750℃,在50MPa压力下烧结1h,即得致密度为99.0%,断裂韧性为11.2MPa·m1/2的Si3N4陶瓷。

实施例8

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体87g,与2.12g Al2O3粉体、1.96g Lu2O3粉体、2.92g Tm2O3粉体、1克碳纤维和5克石墨烯混合,配制成固含量为55wt%的浆料,在350rpm下球磨3h,然后放入110℃恒温箱中烘干,研磨并过筛;将所得粉体在30MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以7.5℃/min的速率升温至1700℃,在50MPa压力下烧结1h,即得致密度为98.2%,断裂韧性为8.9MPa·m1/2的Si3N4陶瓷。

实施例9

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体86g,与2.13g Al2O3粉体、2.45g Yb2O3粉体、2.42g Er2O3粉体、6克碳纳米管和1克YB2C2混合,配制成固含量为50wt%的浆料,在300rpm下球磨5h,然后放入120℃恒温箱中烘干,研磨并过筛;将所得粉体在10MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以10℃/min的速率升温至1800℃,在60MPa压力下烧结3h,即得致密度为99.1%,断裂韧性为11.2MPa·m1/2的Si3N4陶瓷。

实施例10

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体88g,与2.15g Al2O3粉体、2.92g Tm2O3粉体、1.93g Er2O3粉体、1克SiC纤维和4克石墨烯混合,配制成固含量为55wt%的浆料,在250rpm下球磨5h,然后放入120℃恒温箱中烘干,研磨并过筛;将所得粉体在20MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以7.5℃/min的速率升温至1750℃,在40MPa压力下烧结3h,即得致密度为98.8%,断裂韧性为10.6MPa·m1/2的Si3N4陶瓷。

实施例11

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体87g,与2.41g Al2O3粉体、4.48g Lu2O3粉体、1.11g Er2O3粉体、3克碳纤维和2克YB2C2混合,配制成固含量为45wt%的浆料,在250rpm下球磨4h,然后放入130℃恒温箱中烘干,研磨并过筛;将所得粉体在20MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以5℃/min的速率升温至1800℃,在50MPa压力下烧结2h,即得致密度为99.2%,断裂韧性为11.7MPa·m1/2的Si3N4陶瓷。

实施例12

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体89g,与1.82g Al2O3粉体、0.84g Lu2O3粉体、1.68g Yb2O3粉体、1.66gTm2O3粉体、3克SiC纤维和2克石墨烯混合,配制成固含量为50wt%的浆料,在300rpm下球磨5h,然后放入130℃恒温箱中烘干,研磨并过筛;将所得粉体在20MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以5℃/min的速率升温至1750℃,在60MPa压力下烧结3h,即得致密度为98.9%,断裂韧性为10.8MPa·m1/2的Si3N4陶瓷。

实施例13

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体88g,与1.82g Al2O3粉体、1.26g Lu2O3粉体、1.26g Yb2O3粉体、1.66gEr2O3粉体、2克碳纤维和4克YB2C2混合,配制成固含量为55wt%的浆料,在350rpm下球磨3h,然后放入130℃恒温箱中烘干,研磨并过筛;将所得粉体在30MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以10℃/min的速率升温至1800℃,在60MPa压力下烧结2h,即得致密度为99.1%,断裂韧性为11.5MPa·m1/2的Si3N4陶瓷。

实施例14

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体89g,与1.82g Al2O3粉体、2.1g Lu2O3粉体、1.25g Tm2O3粉体、0.83gEr2O3粉体、2克SiC纤维和3克石墨烯混合,配制成固含量为55wt%的浆料,在350rpm下球磨4h,然后放入130℃恒温箱中烘干,研磨并过筛;将所得粉体在30MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以7.5℃/min的速率升温至1700℃,在50MPa压力下烧结2h,即得致密度为97.5%,断裂韧性为7.9MPa·m1/2的Si3N4陶瓷。

实施例15

一种高韧性氮化硅陶瓷及其制备方法,包括以下步骤:

称取Si3N4粉体89g,与1.82g Al2O3粉体、1.26g Lu2O3粉体、1.26g Yb2O3粉体、1.24gTm2O3粉体、0.42g Er2O3粉体、2克碳纳米管和3克YB2C2混合,配制成固含量为45wt%的浆料,在300rpm下球磨5h,然后放入120℃恒温箱中烘干,研磨并过筛;将所得粉体在30MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以7.5℃/min的速率升温至1800℃,在40MPa压力下烧结1h,即得致密度为99.3%,断裂韧性为12.1MPa·m1/2的Si3N4陶瓷。

实施例16

本实施例16中氮化硅陶瓷的制备过程参见实施例2,区别仅在于:氮化硅粉质量为88g;6g碳纤维。所得Si3N4陶瓷的致密度为99.2%,断裂韧性为10.9MPa·m1/2

实施例17

本实施例17中氮化硅陶瓷的制备过程参见实施例2,区别仅在于:氮化硅粉质量为88g;1g碳纤维,5g YB2C2。所得Si3N4陶瓷的致密度为98.7%,断裂韧性为10.4MPa·m1/2

实施例18

本实施例18中氮化硅陶瓷的制备过程参见实施例2,区别仅在于:氮化硅粉质量为88g;5g碳纤维,1g YB2C2。所得Si3N4陶瓷的致密度为99.2%,断裂韧性为11.6MPa·m1/2

实施例19

本实施例19中氮化硅陶瓷的制备过程参见实施例2,区别仅在于:氮化硅粉质量为88g;2g碳纤维,4g YB2C2。所得Si3N4陶瓷的致密度为98.9%,断裂韧性为10.8MPa·m1/2

实施例20

本实施例20中氮化硅陶瓷的制备过程参见实施例2,区别仅在于:氮化硅粉质量为88g;3g碳纤维,3g YB2C2。所得Si3N4陶瓷的致密度为99.1%,断裂韧性为11.2MPa·m1/2

实施例21

本实施例21中氮化硅陶瓷的制备过程参见实施例2,区别仅在于:氮化硅粉质量为88g;6gYB2C2。所得Si3N4陶瓷的致密度为98.5%,断裂韧性为10.1MPa·m1/2

对比例1

称取Si3N4粉体90g,与1.81g Al2O3粉体和4.19g Yb2O3粉体混合,配制成固含量为50wt%的浆料,在300rpm下球磨4h,然后放入120℃恒温箱中烘干,研磨并过筛;将所得粉体在20MPa压力下干压预成型后装入石墨热压模具中,将样品放置到碳管炉中,充入N2作为保护气,以5℃/min的速率升温至1750℃,在60MPa压力下烧结2h,得到的Si3N4陶瓷,其致密度为99.5%,断裂韧性为7.3MPa·m1/2

对比例2

本对比例2中氮化硅陶瓷的制备过程参见实施例2,区别仅在于:氮化硅粉质量为86g;5g碳纤维,3克YB2C2。所得Si3N4陶瓷的致密度为95.2%,断裂韧性为7.2MPa·m1/2

对比例3

本对比例3中氮化硅陶瓷的制备过程参见实施例2,区别仅在于:稀土氧化物为La2O3。所得Si3N4陶瓷的致密度为99.5%,断裂韧性为11.6MPa·m1/2

表1:

从上述实施案例可以看出,本发明选用金属氧化物和RE2O3(RE2O3为Lu2O3、Yb2O3、Tm2O3和Er2O3中的一种或多种)为烧结助剂,以SiC纤维、碳纤维、碳纳米管中的至少一种作为一维增强相以及石墨烯和YB2C2中的至少一种作为二维增强相,采用热压烧结的方式,可以获得高韧性的Si3N4陶瓷,并实现其可调节性。

图1为实施例1中所得Si3N4陶瓷的物相分析图,从图中可知Si3N4陶瓷中只能探测到β-Si3N4的衍射峰,说明α-Si3N4已完全转化为β-Si3N4,有利于Si3N4陶瓷断裂韧性的提高。图2为实施例2中YB2C2的形貌图,从图中可知YB2C2呈现出多片层的结构,能够对裂纹的扩展起到较好的偏转作用,有效提高Si3N4陶瓷的断裂韧性。

最后有必要说明的是:以上实施例只用于对本发明的技术方案作进一步详细说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:高压电性能铋层状结构压电陶瓷及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!