电压检测电路

文档序号:1315999 发布日期:2020-07-10 浏览:11次 >En<

阅读说明:本技术 电压检测电路 (Voltage detection circuit ) 是由 羽谷尚久 后藤阳介 犬饲文人 森悟朗 于 2018-08-28 设计创作,主要内容包括:电压检测电路测定将多个单体串联连接而构成的电池组的多个单体电压。电压检测电路具备:多个输入端子,将经由多个电压检测线分别与多个单体的各电极连接;多路转换器,将多个串联单体作为群,周期性地选择并输出群内的多个单体的电压;AD转换器,进行来自多路转换器的输出电压的AD转换而输出输出电压的数字数据;以及控制电路,控制多路转换器的选择定时以及AD转换的定时,控制电路通过切换多路转换器选择各单体的时间间隔来使AD转换的周期变化。(The voltage detection circuit measures a plurality of cell voltages of a battery pack configured by connecting a plurality of cells in series. The voltage detection circuit includes: a plurality of input terminals connected to the respective electrodes of the plurality of cells via the plurality of voltage detection lines; a multiplexer that periodically selects and outputs voltages of the plurality of cells in the group, using the plurality of cells connected in series as the group; an AD converter for performing AD conversion of the output voltage from the multiplexer to output digital data of the output voltage; and a control circuit for controlling the selection timing of the multiplexer and the timing of the AD conversion, wherein the control circuit changes the period of the AD conversion by switching the time interval at which the multiplexer selects each cell.)

电压检测电路

技术领域

本发明涉及电压检测电路、电压测定装置、电池组系统以及电压测定方法。

背景技术

图1是表示现有例的电池组系统100的结构的框图。另外,图2是表示图1的电压检测电路10A的结构的框图,图3是表示由图2的电压检测电路10A执行的AD转换序列的图。

在图1中,电压检测电路10A是搭载于电池组系统100并测定构成电池组101的多个电池单体(以下称为单体)1~5的多个单体电压的电路。电池组101通过将多个单体1~5串联连接而构成。多个单体1~5的各电极的单体电压经由电压检测线LG、L0~L5以及滤波器电路102输入到电压检测电路10A。由电压检测电路10A转换为数字数据的各单体电压被传送到作为装置控制器的MCU(Micro Control Unit:微控制单体)103。在此,滤波器电路102具备多个电阻R0和电容器C10~C15,例如由6个RC型低通滤波器构成。CG、C0~C5、CS0~CS5是用于连接各电路的端子。

在图2中,电压检测电路10A具备多路转换器(以下,也称为MUX)11、AD转换器(ADC)12、解码器13、寄存器14、接口(I/F)15、以及具有序列发生器21的控制电路20。这里,MUX11具备开关SW1~SW52而构成。

如图3所示,现有例的电压检测电路10A通过以固定周期使MUX11从群内的最下位单体依次选择性地动作,依次对单体电压进行AD转换。在图3的序列的例子中,示出了在将MUX11的输出电压初始化至最下位单体的电位之后,MUX11以单体1→2→3→4→5的顺序进行选择并进行AD转换的动作。“复位”是指在开始单体测定前将MUX11的输出初始化为规定的电位(接地电位GND等)的动作。单体n的电压测定是测定CSn-CSn-1端子间的电压。例如,在单体1的电压的情况下,测定CS1-CS0端子间电压。

现有技术文献

专利文献

专利文献1:日本专利第5492044号公报

发明内容

发明所要解决的课题

如现有例那样,在以固定周期进行动作的结构中,在与固定周期相当的频率的1/2以上的频率的干扰噪声重叠于单体输入端子的情况下,干扰噪声在AD转换时在低频折返(称为混叠),电压测定精度恶化。

图6A表示现有例中固定周期为2kHz的情况下的输入噪声的衰减频率特性。由图6A可知,在1kHz以上时衰减特性恶化。

本发明的目的在于,在将多个单体串联连接而构成的电池组中,通过使单体的MUX的选择顺序变化来消除AD转换的周期性,从而降低混叠。

用于解决课题的手段

本发明的1个方式的电压检测电路,

测定将多个单体串联连接而构成的电池组的多个单体电压,其特征在于,具备:

多个输入端子,经由多个电压检测线分别与所述多个单体的各电极连接;

多路转换器,将多个串联单体作为群,周期性地选择并输出群内的多个单体的电压;

AD转换器,对来自所述多路转换器的输出电压进行AD转换,输出所述输出电压的数字数据;以及

控制电路,控制所述多路转换器的选择定时以及AD转换的定时,

所述控制电路通过切换所述多路转换器选择各单体的时间间隔,使AD转换的周期变化。

发明效果

根据本发明的电压检测电路,在将多个单体串联连接而构成的电池组中,通过使单体的MUX的选择顺序变化来消除AD转换的周期性,能够降低混叠。

附图说明

图1是表示现有例的电池组系统100的结构的框图。

图2是表示图1的电压检测电路10A的结构的框图。

图3是表示由图2的电压检测电路执行的AD转换序列的图。

图4A是表示实施方式1的电池组系统100P的结构例的框图。

图4B是表示图4A的电压检测电路10B的结构例的框图。

图5是表示由图4B的电压检测电路10B执行的AD转换序列的一例的图。

图6A是表示现有例的输入噪声的衰减特性的谱图。

图6B是表示实施方式的输入噪声的衰减特性的谱图。

图7A是表示实施方式2的电压检测电路10B中的多路转换器11的输出电压的响应特性、且电位差为1个单体量的情况下的第1次循环的时隙2、3处的响应特性的曲线图。

图7B是表示实施方式2的电压检测电路10B中的多路转换器11的输出电压的响应特性、且电位差为5个单体量的情况下的第3次循环的时隙1、2处的响应特性的曲线图。

图8是用于说明实施方式2的电压检测电路10B中的输入电流的多路转换器11等的框图。

图9是表示实施方式2-1的AD转换序列的一例的图。

图10是表示实施方式2-2的AD转换序列的一例的图。

图11是表示实施方式2-3的AD转换序列的一例的图。

图12是表示实施方式2-4的AD转换序列的一例的图。

图13是表示实施方式2-5的AD转换序列的一例的图。

图14是表示实施方式2-6的AD转换序列的一例的图。

图15是表示实施方式3-1的AD转换序列的一例的图。

图16是表示实施方式3-2的AD转换序列的一例的图。

图17是表示实施方式3-3的AD转换序列的一例的图。

图18是表示实施方式3-4的AD转换序列的一例的图。

图19是表示实施方式4的电池组系统100C的结构例的框图。

图20是表示实施方式4的AD转换序列的一例的图。

图21是表示现有例的电压检测电路10D的结构例的框图。

图22是表示现有例的AD转换序列的图。

图23是表示实施方式5的电压检测电路10E的结构例的框图。

图24A是表示实施方式5-1的AD转换序列的一例的图,是表示进行监控电压测定的情况下的实施方式5-1-1的情况的图。

图24B是表示实施方式5-1的AD转换序列的一例的图,是表示进行监控电压测定的情况下的实施方式5-1-2的情况的图。

图24C是表示实施方式5-1的AD转换序列的一例的图,是表示进行监控电压测定的情况下的实施方式5-1-3的情况的图。

图25是表示实施方式5-2的AD转换序列的一例的图。

图26是表示变形例1的转换开始单体决定电路22A的结构例的框图。

图27是表示图26的余数运算器202的余数值与开始单体编号的关系的表。

图28A是表示变形例2的数字滤波器的搭载例的框图,是将数字滤波器搭载于电压检测电路时的框图。

图28B是表示变形例2的数字滤波器的搭载例的框图,是将数字滤波器搭载于MCU时的框图。

图29是表示变形例3的电池组系统100G的结构例的框图。

图30是表示变形例4的电池组系统100H的结构例的框图。

图31A是表示作为变形例5的电压检测电路间的通信线的方式例的直接连接方式的结构例的框图。

图31B是表示作为变形例5的电压检测电路间的通信线的方式例的变压器方式的结构例的框图。

图31C是表示作为变形例5的电压检测电路间的通信线的方式例的电容方式的结构例的框图。

具体实施方式

以下,对本发明的实施方式进行说明。在附图中,对相同或同样的构成要素标注相同的附图标记并省略详细说明。

实施方式1

图4A是表示实施方式1的电池组系统100P的结构例的框图,图4B是表示图4A的电压检测电路10B的结构例的框图。另外,图5是表示由图4B的电压检测电路10B执行的AD转换序列的一例的图。图4A的电池组系统100P具备电池组101和电压测定装置110P而构成,电压测定装置110P与图1的电压测定装置110相比,具备电压检测电路10B来代替电压检测电路10A。另外,图4B的电压检测电路10B的特征在于,与图2的电压检测电路10A相比,控制电路20还包括转换开始单体决定电路22。

在图4A中,电压检测电路10B是搭载于电池组系统100P并测定构成电池组101的多个单体1~5的多个单体电压的电路。电池组101串联连接多个单体1~5而构成。多个单体1~5的各电极的单体电压经由电压检测线LG、L0~L5以及滤波器电路102被输入到电压检测电路10B。由电压检测电路10B转换为数字数据的各单体电压被传送到作为装置控制器的MCU103,MCU103接收并存储各单体电压。在此,滤波器电路102具备多个电阻R0和电容器C10~C15,例如由6个RC型低通滤波器构成。CG、C0~C5、CS0~CS5是用于连接各电路的端子。

在图4B中,电压检测电路10B具备MUX11、AD转换器(ADC)12、解码器13、寄存器14、接口(I/F)15、以及具有序列发生器21和转换开始单体决定电路22的控制电路20。在此,多路转换器11具备开关SW1~SW52而构成,基于来自控制电路20的序列发生器21的单体选择信号,将连接于多路转换器11的多个串联单体作为群,周期性地选择并输出群内的多个单体的电压。另外,来自控制电路20的序列发生器21的单体选择信号也被输入到AD转换器12以及解码器13,作为用于单体选择的定时信号使用。

本实施方式的电压检测电路10B的特征在于,在控制电路20中,还具备转换开始单体决定电路22,该转换开始单体决定电路22按照图3的每个循环周期决定转换开始单体并输出到序列发生器21。控制电路20的序列发生器21基于由转换开始单体决定电路22决定的转换开始单体,产生单体选择信号并输出到MUX11以及解码器13。

MUX11使用开关SW1~SW52,基于单体选择信号,从多个单体电压中选择规定的2个单体电压,分别作为正的输出电压(MUX_P输出)以及负的输出电压(MUX_N输出)的差动电压输出到AD转换器12。AD转换器12在单体选择信号的定时进行所输入的输出差动电压的AD转换,并将该输出差动电压的数字数据输出到解码器13。解码器13在单体选择信号的定时通过规定的编码方法对来自AD转换器12的数字数据进行编码,并将编码后的数字数据存储于寄存器14。存储于寄存器14的各单体电压的数字数据经由接口(I/F)15传送到MCU103并存储。

在本发明的实施方式1中,如图5所示,通过以按照每个循环周期来切换转换开始单体的方式控制MUX11的选择顺序,使各单体的AD转换时间间隔变化。在图5的序列例中,示出了MUX11以如下顺序选择并进行AD转换的动作:

第1次循环:单体1→2→3→4→5;

第2次循环:单体3→4→5→1→2;

第3次循环:单体5→1→2→3→4。

在此,“复位”是指在单体测定开始前将MUX11的输出初始化为规定的电位(CS0电位、GND电位等)的动作,但不是必须的。

如以上说明的那样,根据本发明的实施方式1,通过使各单体的MUX11的选择顺序变化来消除AD转换的周期性,能够降低混叠。

图6B表示本实施方式中的固定周期为2kHz的情况下的输入噪声的衰减频率特性。在转换开始单体决定电路中,设置有后述的线性反馈移位寄存器。可知1kHz以上的衰减特性相对于现有例的结构的特性(图6A)大幅改善。

实施方式2

图7A及图7B是实施方式2的电压检测电路10B中的多路转换器11的输出电压的响应特性,图7A是电位差为1个单体量的情况下的图5中的第1次循环的时隙2、3中的响应特性,图7B是电位差为5个单体量的情况下的第3次循环的时隙1、2中的响应特性。

在使转换开始单体变化的情况下,时隙之间的电位差成为1个单体以上。例如,在图3的现有例的序列的情况下,每次复位后从单体1进行动作,因此,时隙之间的电位差必须是1个单体量。然而,在图5的实施方式的序列中,复位状态和转换开始单体选择时的电位差,第1次循环为1个单体量,第2次循环为3个单体量,3次循环为5个单体量。其结果,需要考虑以下2个课题。

(1)MUX11对响应时间的影响

MUX11的开关接通、断开时的输出响应时间由构成MUX11的开关的接通时的电阻和输出负载电容等决定。因此,开关刚接通后的MUX输入输出电位差越大,MUX11的输出电压越稳定,因此需要较多的响应时间。因此,在使转换开始单体变化的情况下,MUX11所需的响应时间也依赖于转换开始单体而变化。如图7A及图7B所示,例如,在时隙之间的电位差为1个单体量和5个单体量的情况下,例如所需的转变时间也约为5倍。其结果,转换开始单体有时在规定的转换时间内MUX11的输出电压不稳定,电压测定精度恶化。

(2)对输入电流的影响

图8是用于说明实施方式2的电压检测电路10B中的输入电流的多路转换器11等的框图。

当MUX11的开关接通而MUX11的输出进行响应时,为了对AD转换器12的输入电容的电容器C21、C22等的电荷进行充放电,从输入端子引入电流(输入电流),MUX11的输入输出电位差越大,输入电流也越多。若输入电流变多,则由于与输入端子连接的滤波器电路102的电阻R0~R5而产生电压下降,从而导致电压测定精度恶化。另外,在图8中,SW61和C31以及SW62和C32分别是用于AD转换器12的反馈电路的开关和电容器。

图9是表示实施方式2-1的AD转换序列的一例的图,也可以对与紧前的单体相当的电压进行预充电,以使向复位后测定的单体的转变电压为1个单体以下。图10是表示实施方式2-2的AD转换序列的一例的图,预充电不需要以相当于1个单体的电压进行转变,例如也可以是相当于2个单体的电压。图11是表示实施方式2-3的AD转换序列的一例的图,预充电时的转变电压也可以混合相当于1个单体的电压和相当于2个单体的电压的情况。图12是表示实施方式2-4的AD转换序列的一例的图,预充电电压也可以是转换开始单体自身的电压。图13是表示实施方式2-5的AD转换序列的一例的图,也可以在即将进行各单体测定前预充电至与单体相当的电压后,经过对各单体自身的预充电而开始测定。图14是表示实施方式2-6的AD转换序列的一例的图,每1次循环的时隙数也可以不固定,即,也可以没有单体1开始时的“-”(空白)。

在本发明的实施方式2中,MUX11在AD转换开始单体不是MUX11的群内的最下位单体的情况下,

(A)先以经由至少1个中间单体的方式选择了该中间单体后,选择转换对象单体,或者

(B)不经由所述中间单体而选择转换开始单体,

在预充电动作后,选择转换对象单体。如果是图4B的结构例,则意味着最下位单体=单体1、中间单体=单体2~4、最上位单体=单体5。例如,在AD转换开始为单体5的情况下,作为预充电控制,MUX11在先选择了单体1~5的任一单体或多个单体后,进行单体5的AD转换。

如以上说明的那样,根据实施方式2,通过进行在先以经由至少1个中间单体的方式选择了该中间单体后选择转换开始单体的控制,能够降低转换开始时的MUX11的输出电位的转变时间以及输入电流,因此能够进行准确的单体电压测定。

另外,通过将在预充电控制时最后选择的单体设为在预充电动作后进行AD转换的单体的1个下位单体,能够与单体测定顺序无关地使规定的时间内的MUX11的输出电压的变动量统一为1个单体量,因此能够在规定的转换时间内使MUX11的输出电压稳定,能够进行高精度的单体电压测定。

实施方式3

图15是表示实施方式3-1的AD转换序列的一例的图,是在第1次循环的预充电中,前周期的最终转换单体为单体5的情况下的例子,是以1单体单位进行预充电的情况下的例子。图16是表示实施方式3-2的AD转换序列的一例的图,是在第1次循环的预充电中,前周期的最终转换单体为单体5的情况下的例子,是以2单体单位进行预充电的情况下的例子。图17是表示实施方式3-3的AD转换序列的一例的图,是1单体单位和2单体单位的预充电混载的情况下的例子。图18是表示实施方式3-4的AD转换序列的一例的图,是在第1次循环的预充电中,前周期的最终转换单体是单体5的情况下的例子,是选择下一个转换单体自身并进行预充电的情况下的例子。在图18中,预充电的最后的单体是下一个转换单体的1个下位的单体,在单体1的测定前被复位为0V。

如本发明的实施方式2所记载的那样,在进行了复位后的预充电动作的情况下,越是选择下位单体,MUX11的开关的频度越高,因此,越是下位单体,输入电流越增加。其结果,由于与输入端子连接的滤波器电路102的电阻R0~R5引起的电压下降的影响,越是下位单体,越难以进行高精度的电压测定。

在本发明的实施方式3中,MUX11在进行AD转换的单体相距2个单体以上的情况下,

(A)先以经由不是下一个转换对象单体的至少1个中间单体的方式选择了该中间单体后,选择下一个转换单体,或者,

(B)不经由上述中间单体而选择下一个转换单体,

在预充电动作后,选择转换对象单体。例如,如果是图15所示的例子,则成为在第1次循环和第2次循环之间对单体5进行了转换后选择单体3的序列,所以MUX11在先选择了单体4后选择单体3,进行AD转换。

在此,经由并选择的中间单体可以是1单体单位,也可以是多单体单位。例如,可以如图15所示那样为1单体单位,也可以如图16所示那样为2单体单位。另外,如图17所示,单位单体数也可以不是固定的。可以在相距2单体以上的情况下切换为1单体单位、在相距3单体以上的情况下切换为2单体单位等,单位单体数不固定。

如图18所示,在单体1的AD转换前,优选通过复位动作将MUX11的输出初始化为CS0电位或GND电位。

如以上说明的那样,根据实施方式3,由于各单体的MUX11的开关选择频度变得均匀,能够降低输入电流的偏倚。

另外,通过将在预充电控制时最后选择的单体设为在预充电控制后进行AD转换的单体的1个下位单体,能够与单体测定顺序无关地使规定的时间内的MUX11的输出电压的变动量统一为1个单体量,因此能够在规定的转换时间内使MUX11的输出电压稳定,能够进行高精度的单体电压测定。在此,在对单体1进行AD转换时,通过复位动作将MUX的输出初始化为CS0电位或GND电位,能够将单体1测定时的MUX输出电压固定为1个单体量。

实施方式4

图19是表示实施方式4的电池组系统100C的结构例的框图。图20是表示实施方式4的AD转换序列的一例的图,是在第1次循环的预充电中,前周期的最终转换单体为单体5的情况下的例子。

如前所述,为了能够进行高精度的电压测定,优选将规定的时间内的MUX11的输出电压的变动量统一为1个单体量,但在实施2单体单位的预充电的情况下,在存在未使用单体的情况下,需要想办法。

图19表示在单体2和单体4是不存在的未使用单体的情况下的电池组系统100C的框图。在图19中,电池组系统100C具备电池组101C和电压测定装置110C。在此,电压测定装置110C具备滤波器电路102、电压检测电路10C以及MCU103。

在图19的结构中,考虑在图10所示的AD转换序列中动作的情况。此时,由于未使用单体是未连接电池单体,因此从测定的对象中排除,但如果将未使用的端子与相同电位的节点连接而不设为预充电控制的对象,则在第3次循环的复位后,由于实质上不进行预充电动作而测定单体5,因此MUX11的输出电压的变动量成为5个单体量,因此难以进行高精度的电压测定。

本发明的实施方式4的特征在于,在与多个单体连接的MUX11的群内的输入端子中存在未使用的端子的情况下,也将该未使用的端子设为所述预充电的经由选择的对象(将与该端子连接的单体电压设为对象)。图20表示对于图16的序列单体2和单体4是未使用的情况的例子。

如以上说明的那样,根据实施方式4,即使在存在未使用单体的情况下,也能够使MUX11的输出电压的变动量恒定,因此能够进行高精度的电压测定。

实施方式5-1

图21是表示现有例的电压检测电路10D的结构例的框图。图22是表示现有例的AD转换序列的图。图23是表示实施方式5的电压检测电路10E的结构例的框图。图24A~图24C是表示实施方式5-1的AD转换序列的一例的图,图24A是表示进行监控电压测定的情况下的实施方式5-1-1的情况的图,图24B是表示进行监控电压测定的情况下的实施方式5-1-2的情况的图,图24C是表示进行监控电压测定的情况下的实施方式5-1-3的情况的图。

如图21所示,AD转换器12有时进行单体电压以外的监控电压(热敏电阻电压、调节器电压等)的测定。图21表示监控热敏电阻电压的例子。

如图22所示,现有例的电压检测电路10D以固定周期进行监控电压的AD转换,因此在相当于固定周期的频率的1/2以上的频率的干扰噪声重叠于监控电压端子的情况下发生混叠,电压测定精度恶化。在图21的例子中,在对单体5进行了AD转换后,进行监控电压的AD转换。

在本发明的实施方式5-1中,如图24A~图24C所示,通过将监控电压包含于单体电压测定的循环群而进行所述实施方式1~4的测定动作,使AD转换时间间隔变化。即,使进行监控电压的AD转换的时隙也与转换开始单体联动地变化。在图24A~图24C的例子中,在对单体5进行了AD转换后,进行监控电压的AD转换,使转换时隙也与转换开始单体联动地变化为时隙8→5→3。

如以上说明的那样,根据实施方式5-1,通过使包含监控电压的各单体的MUX11的选择顺序变化来消除AD转换的周期性,能够降低监控电压的混叠。

实施方式5-2

图25是表示实施方式5-2的AD转换序列的一例的图。

为了进行预充电控制,仅使图23所示的单体电压类的MUX11动作即可。因此,通过独立于监控电压类的开关,如图25所示,能够在预充电动作中进行监控电压类的AD转换。

如以上说明的那样,根据实施方式5-2,通过在预充电动作中进行监控电压类的AD转换,能够减少1循环的转换时隙数,因此能够缩短循环周期。其结果,能够提高单体电压的测定频度,因此能够进行电池组系统的更详细的状态检测。

变形例1

图26是表示变形例1的转换开始单体决定电路22A的结构例的框图。图27是表示图26的余数运算器202的余数值与开始单体编号的关系的表。在图26中,转换开始单体决定电路22A具备随机数产生器201和余数运算单体202。这里,随机数产生器201具备多个延迟型触发器FF0~FF10和异或门EXOR1而构成。

转换开始单体决定电路22A将在群内从哪个单体开始转换(开始单体编号)输出到序列发生器。在此,开始单体编号使用自然随机数、伪随机数、循环数列等生成,按每个群的测定周期选择不同的值。

图26表示使用随机数产生器201的转换开始单体决定电路22A的结构例,通过余数运算器202对随机数产生器201生成的随机数进行处理,选择开始单体编号。

随机数产生器201例如是线性反馈移位寄存器(LFSR:LinerFeedback ShiftRegister)生成11bit的伪随机数。然后,基于所述生成的伪随机数来决定开始单体编号。具体而言,随机地输出1~2047为止的值,在2047次循环一次而再次以相同的顺序输出。在该1个循环期间,仅出现1次1~2047的值。

余数运算器202通过对随机数产生器201的输出值进行余数运算,决定并输出开始单体编号。例如,在图1所示的5单体结构的情况下,通过将随机数产生器201的输出值(1~2047)除以5来求出余数值:0~4,从而决定开始单体编号:1~5(参照图27)。

变形例2

图28A及图28B是表示变形例2的数字滤波器的搭载例的框图,图28A是将数字滤波器301搭载于电压检测电路10F时的框图,图28B是将数字滤波器302搭载于MCU30A时的框图。在图28A中,MCU30具备接口(I/F)31和寄存器32而构成。接口(I/F)31与电压检测电路10F的接口(I/F)15连接,在接收到来自接口(I/F)15的单体电压的数据后,进行了规定的信号转换之后,将信号转换后的数据存储于寄存器32。

如前所述,通过使AD转换开始单体变化,干扰噪声的频率成分被分散到宽频带,因此能够降低混叠。进而,通过按每个单体用单独的低通型数字滤波器301、302对每个循环周期的各单体的AD转换数据进行处理,能够除去干扰噪声的高频成分,因此能够进行更高精度的电压测定。

作为数字滤波器301、302的搭载位置,如图28A及图28B所示,考虑电压检测电路10F和MCU30A。通过搭载于电压检测电路,能够确保AD转换与数字滤波器的同步,因此具有能够防止在数字滤波器内取入数据时的混叠的优点。在将数字滤波器302搭载于MCU30A的情况下,通过SPI(Serial Peripheral Interface:串行外设接口)模式等数据通信读出存储于电压检测电路10的寄存器14的按单体的AD转换数据后,进行数字滤波处理。

此外,作为除去高频成分的办法,也可以不是数字滤波器301、302,而是将每个循环周期的各单体的AD转换数据平均化。

变形例3

图29是表示变形例3的电池组系统100G的结构例的框图。图29表示具有另一结构例的电压检测电路10G,电池组系统100G具备电池组101G和电压测定装置110G而构成。这里,电压测定装置110G具备滤波器电路102G、电压检测电路10G以及MCU30。此外,LG、L0~L10是电压检测线。

如图29所示,电压检测电路10G也可以搭载多个MUX11-1、11-2、AD转换器12-1、12-2、数字滤波器300-1、300-2、接口15-1、15-2、控制电路20-1、20-2。在该情况下,循环群由各MUX11-1、11-2单位决定,在图29的情况下,由单体1~5和单体6~10这2群构成,在各个群内进行多路转换器的循环。

变形例4

图30是表示变形例4的电池组系统100H的结构例的框图。图30表示具有另一结构例的电压测定装置110H,电池组系统100H具备电池组101H和电压测定装置110H而构成。

如图30所示,电池组系统100H有时通过在多个电池单体(1-1~n-1;1-2~n-2;1-3~n-3)的每一个上搭载多个以滤波器电路102-1、102-2、102-3和电压检测电路10A-1、10A-2、10A-3为单位的单元(电池监视IC等)来实现。各单元的数据通过通信线连接,输出到MCU103。在图30的例子中,循环群由单体1-1~单体n-1、单体1-2~单体n-2、单体1-3~单体n-3这3群构成,在各个群内进行多路转换器的循环。

变形例5

图31A~图31C是表示变形例5的电压检测电路间的通信线的方式例的框图。在图31中表示各电压检测电路间的通信方式(菊花链连接)的结构例。

(1)图31A:在直接连结方式中,通过通信电缆直接连结来通信信号。

(2)图31B:在变压器(transformer)方式中,进行通过变压器TR1、TR2传递信号的绝缘通信。

(3)图31C:在电容方式中,进行通过使用作为电容元件的电容器C1、C2传递信号的绝缘通信。

变形例6

以上的实施方式的电压检测电路以及电压测定装置也可以分别构成为使用了下述的电压测定方法的电压检测电路以及电压测定装置。具体如下所述。

变形例6的方式1的电压测定方法是在利用多路转换器选择多个电池单体的电压后进行AD转换的电压测定方法,其特征在于,通过切换所述多路转换器选择各单体的时间间隔来使AD转换的周期变化。

变形例6的方式2的电压测定方法的特征在于,在变形例6的方式1的电压测定方法中,所述电压测定方法在所述群内以规定的顺序反复进行单体的AD转换,通过切换群内的转换开始单体来使选择时间间隔变化。

变形例6的方式3的电压测定方法的特征在于,在变形例6的方式2的电压测定方法中,使用随机数产生器来选择所述转换开始单体。

变形例6的方式4的电压测定方法的特征在于,在变形例6的方式2或3的电压测定方法中,在所述转换开始单体不是多路转换器的群内的最下位单体的情况下,先经由中间单体选择或者选择转换开始单体自身,在预充电动作后,选择所述转换开始单体。

变形例6的方式5的电压测定方法的特征在于,在变形例6的方式1~4中任一个的电压测定方法中,在进行AD转换的单体相距2个单体以上的情况下,先经由不是下一个转换对象单体的单体进行选择或者选择下一个转换单体自身,在预充电动作后,选择所述转换对象单体。

变形例6的方式6的电压测定方法的特征在于,在变形例6的方式4或5的电压测定方法中,所述预充电动作也经由多路转换器的未使用的输入端子并将其作为选择的对象。

变形例6的方式7的电压测定方法的特征在于,在变形例6的方式1~6中任一个的电压测定方法中,具备对单体电压以外的监控电压进行AD转换的功能,通过切换所述多路转换器选择监控电压的时间间隔来使AD转换的周期变化。

变形例6的方式8的电压测定方法的特征在于,在变形例6的方式7的电压测定方法中,所述监控电压的AD转换在所述预充电动作中执行。

附图标记说明

1~10单体,

10A~10G、10A-1~10A-3电压检测电路,

11、16多路转换器(MUX),

12AD转换器(ADC),

13解码器,

14寄存器,

15接口(I/F),

20控制电路,

21序列发生器,

22、22A转换开始单体决定电路,

30,30AMCU,

100、100A~100H、100P电池组系统,

101、101C、101G、101H电池组,

102、102G、102-1~102-3滤波器电路,

103MCU,

110、110A~110H、110P电压测定装置,

201随机数产生器,

202余数运算器,

301、302数字滤波器,

C0~C5、CG、CS0~CS5端子,

C10~C102电容器,

EXOR1异或门,

FF0~FF10延迟型触发器,

L0~L10、LG电压检测线,

R0~R12电阻,

TR1、TR2变压器,

SW1~SW62开关。

50页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:建立功率半导体装置中的电连接的劣化状态的诊断装置和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!