纺制微原纤化纤维素

文档序号:1367024 发布日期:2020-08-11 浏览:26次 >En<

阅读说明:本技术 纺制微原纤化纤维素 (Spun microfibrillated cellulose ) 是由 G.库尼亚 H.萨克赛尔 于 2018-12-20 设计创作,主要内容包括:提供制备交联的微原纤化纤维素的纤维材料(优选毡或长丝)的方法。磷酸化的微原纤化纤维素被纺制成纤维材料;并且然后所述纤维材料被后处理(例如通过热处理)以提供磷酸化的微原纤化纤维素之间的交联。还描述了纤维材料(比如长丝或毡)以及包含这样的材料的卫生产品。(A process for preparing a fibrous material, preferably a felt or filament, of crosslinked microfibrillated cellulose is provided. Phosphorylated microfibrillated cellulose is spun into a fibrous material; and then the fiber material is post-treated (e.g. by heat treatment) to provide cross-linking between the phosphorylated microfibrillated cellulose. Fibrous materials (such as filaments or felts) and hygiene products comprising such materials are also described.)

纺制微原纤化纤维素

提供了提供交联的微原纤化纤维素的纤维材料的方法,以及交联的磷酸化的微原纤化纤维素的纺制纤维材料。还描述了包含所述纤维材料的产品。这样的纤维材料呈现出期望的性质,例如强度(特别是湿强度)、吸水性和弹性/柔性。

背景技术

微原纤化纤维素(MFC)包括部分或完全原纤化的纤维素或木质纤维素纤维。释放的原纤维的直径小于100nm,而实际的原纤维直径或粒度分布和/或纵横比(长度/宽度)取决于来源和制造方法。最小的原纤维被称为基础原纤维(初级原纤维)并且直径约为2-4nm(参见例如Chinga-Carrasco,G.,Nanoscale research letters 2011,6:417),而常见的是聚集形式的基础原纤维(其也被定义为微原纤维)是在制造MFC时获得的主要产品,例如通过使用延长的精磨过程或压降分解过程制造(参见Fengel,D.,,Tappi J.,March 1970,Vol53,No.3.)。取决于来源和制造方法,原纤维的长度可在约1至大于10微米内变化。粗MFC级可含有相当大部分的原纤化纤维,即来自管胞(纤维素纤维)的突出原纤维,以及一定量的从管胞(纤维素纤维)释放的原纤维。

MFC有不同的首字母缩略词,例如纤维素微原纤维、原纤化纤维素、纳米原纤化纤维素、原纤维聚集体、纳米级纤维素原纤维、纤维素纳米纤维、纤维素纳米原纤维、纤维素微纤维、纤维素原纤维、微原纤状纤维素、微原纤维聚集体和纤维素微原纤维聚集体。MFC的特征还可在于各种物理或物理化学性质,例如大的表面积或其在分散在水中时在低固体(1-5重量%)下形成凝胶状材料的能力。

MFC呈现出有用的化学和机械性质。MFC的化学表面改性具有改进MFC自身性质的潜力,以及改进从MFC纺制的长丝的性质的潜力,例如机械强度、吸水性和弹性/柔性。

在近期的综述文章中,Lundahl等Ind.Eng.Chem.Res.,2017,56(1),pp 8–19提供了对将MFC纺制成长丝的方法的概述。除其他事项外,从纺制TEMPO-氧化的MFC而获得的长丝显示比从未经处理的MFC纺制的长丝更弱。

化学改性的MFC的额外的问题在于在与未改性的MFC相比时,由于其化学品用量(chemical charge,化学载荷),其吸水性得到提高,并且可在与水接触时开始失去完整性。因此可能难以取得机械强度和吸水性的平衡。

该技术领域中的其他文献包括US4,256,111和US6,027,536。

因此需要改进从MFC纺制的毡或长丝的性质;特别是,(湿)强度、吸水性和弹性/柔性性质。适宜地,在不使用外部改性剂比如交联剂的情况下,可以直接的方式实现改进。

发明内容

本发明人已发现可从包含磷酸化的微原纤化纤维素(P-MFC)的纤维素组合物形成具有期望的弹性和吸水性的纤维材料(例如毡或长丝)。

因此提供了制备交联的微原纤化纤维素的纤维材料(例如长丝或毡)的方法,所述方法包括以下步骤:

i.将包含磷酸化的微原纤化纤维素(P-MFC)或由磷酸化的微原纤化纤维素(P-MFC)组成的纤维素组合物成型为纤维材料;

ii.热处理所述纤维材料以提供磷酸化的微原纤化纤维素的交联。

还提供了通过本文中描述的方法获得的纺制的纤维材料,所述纤维材料为例如纺制的毡或纺制的长丝。另外,提供了交联的磷酸化的微原纤化纤维素的纺制的纤维材料,其为纺制的毡或纺制的长丝。还提供了含有这样的纺制的长丝的幅材,如包含该纺制的纤维材料的吸水材料。在另一方面,提供了包含该纺制的纤维材料和/或吸水材料的卫生产品。

本发明的进一步的方面在下文中和从属权利要求中提供。

具体实施方式

在第一方面中,本发明提供了制备交联的微原纤化纤维素(MFC)的纤维材料的方法。术语“纤维材料”在本文中用于包括毡和长丝,优选长丝。

在本专利申请的上下文中,微原纤化纤维素(MFC)或所谓的纤维素微原纤维(CMF)应意指至少一个维度小于100nm的纳米尺度的纤维素颗粒纤维或原纤维。MFC包括部分或完全原纤化的纤维素或木质纤维素纤维。纤维素纤维优选原纤化至这样的程度,即,在用BET方法对冷冻干燥的材料进行测定时,使得所形成的MFC的最终比表面积为约1至约300m2/g,比如1至200m2/g或更优选50-200m2/g。

存在制造MFC的各种方法,例如单次或多次精磨,预水解然后是精磨或高剪切分解或原纤维的释放。通常需要一个或若干个预处理步骤,以使MFC制造既节能又可持续。因此,待供应的纸浆的纤维素纤维可进行酶法或化学预处理,例如以降低半纤维素或木质素的量。纤维素纤维可在原纤化之前进行化学改性,其中纤维素分子含有除了在原始纤维素中所发现的之外(或更多)的官能团。这些基团尤其包括羧甲基(CMC)、醛和/或羧基(通过N-氧基介导的氧化获得的纤维素,例如“TEMPO”)或季铵(阳离子纤维素)。在以上述方法之一中进行改性或氧化后,更容易将纤维分解成MFC或NFC。

纳米原纤状纤维素可含有一些半纤维素;量取决于植物来源。经预处理的纤维例如水解的、预溶胀的或氧化的纤维素原料的机械分解用合适的设备进行,例如精磨机,研磨机,均化器,胶体排出装置(colloider),摩擦研磨机,超声波超声仪,单螺杆或双螺杆挤出机,流化器如微流化器、宏观流化器或流化剂型均化器。取决于MFC制造方法,产品还可含有细粒或纳米结晶纤维素或例如在木质纤维或造纸过程中存在的其他化学品。该产品还可含有各种量的未被有效地原纤化的微米尺寸的纤维颗粒。

MFC可由木质纤维素纤维制备,包括硬木或软木纤维两者。其还可由微生物来源、农业纤维如麦草浆、竹子、甘蔗渣或其他非木质纤维来源制成。其优选由纸浆制成,包括来自原始纤维的纸浆,例如,机械、化学和/或热机械纸浆。其还可由损纸或再生纸制成。

上述MFC的定义包括但不限于在纤维素纳米或微原纤维(CMF)上提出的TAPPI标准W13021,其定义了含有多个基础原纤维的纤维素纳米纤维材料,其具有结晶和无定形区域两者,具有高纵横比,宽度为5-30nm并且纵横比通常大于50。

磷酸化的微原纤化纤维素(P-MFC)典型地通过以下获得:使纤维素纸浆纤维与磷酸化试剂(比如磷酸)反应,并且随后将纤维原纤化成P-MFC。一种特别的方法涉及提供在水中的纤维素纸浆纤维的悬浮体,和用磷酸化试剂使所述水悬浮体中的纤维素纸浆纤维磷酸化,接着用本领域中常见的方法进行原纤化。适宜的磷酸化试剂包括磷酸、五氧化二磷、磷酰氯、磷酸氢二铵和磷酸二氢钠。

在形成P-MFC的反应中,纤维素中的醇官能团(-OH)被转化成磷酸根基团(-OPO3 2-)。在此方式中,可交联的官能团(磷酸根基团)被引入到纸浆纤维或微原纤化纤维素中。

在该方法的第一一般步骤中,将包含磷酸化的微原纤化纤维素(P-MFC)或由磷酸化的微原纤化纤维素(P-MFC)组成的纤维素组合物纺制成纤维材料。

在纤维素组合物由P-MFC组成的情况中,该组合物中不存在除了P-MFC之外的组分。在纤维素组合物包含P-MFC的情况中,该组合物中可存在除了P-MFC之外的组分。然而,纤维素组合物适宜地包含大于25重量%、优选大于50重量%、比如例如大于75重量%的P-MFC。在一个优选的方面,包含P-MFC的纤维素组合物可额外包含未改性的(天然)MFC。“未改性的”或“天然”MFC意指为天然纤维素纤维的原纤化的直接产物(结果)的微原纤化纤维素,即在原纤化之前或之后不存在化学处理。

适宜地,纤维素组合物因此由P-MFC和MFC组成。替代地或另外地,包含P-MFC的纤维素组合物可额外包含化学改性的微原纤化纤维素,比如例如二醛-MFC或TEMPO-MFC(即用2,2,6,6-四甲基哌啶-1-基)氧基(oxidanyl)氧化的MFC)。纤维素组合物的额外的组分可包括天然或合成长丝或天然或合成的短纤维。

在该方法的第二一般步骤中,来自第一步骤的纤维材料被热处理从而提供磷酸化的微原纤化纤维素的交联。交联适宜地在没有使用任何额外的交联剂的情况下进行;即交联在磷酸根部分(moieties)和纤维素组合物的其他组分之间直接形成。

该方法的第二一般步骤中的热处理适宜地在60至200℃之间的温度,例如在70至120℃之间的温度下进行。这样的温度不仅足以获得交联,而且还限制了MFC的潜在的降解。已经确定的是热处理适宜地以10至180分钟之间的时间进行,这取决于所使用的温度和待热处理的材料的初始固含量。热处理可在烘箱中进行,但也可使用其他热处理方法。

纤维材料优选为长丝,并且成型方法为纺制。用于从MFC纺制长丝的一般方法描述在例如Lundahl等,Ind.Eng.Chem.Res.,2017,56(1),pp 8–19中。适宜的纺制方法可选自湿纺丝、静电纺丝和干纺丝。用于磷酸化的微原纤化纤维素的优选的纺制方法为干纺丝,因为此技术避免了对额外的凝结浴的需要并且使得可更易于处理长丝以及产生图案(例如网格)。

纤维材料还可为毡。如果纤维材料是毡,则该组合物是被纺制的(就是纺制的毡)。“纺制的毡”是指——与纺制单根的长丝不同——可直接纺制由长丝制得的互联的结构(体)。

该方法的一般步骤(纺制,接着是热处理)可在不存在任何中间(intervening)方法步骤的情况下进行。替代地,可在纺制步骤和热处理步骤之间进行一个或多个中间方法步骤。在一个特别的方面,可在热处理步骤之前或期间将纤维材料干燥。干燥可适宜地在环境条件下(例如25℃)进行。已发现交联可在先前已在环境条件下干燥过的纤维材料中触发,例如通过将根据本发明的经干燥的纤维材料放置在烘箱中进行。这意味着原则上可在环境条件下将该材料干燥(没有交联)并且然后在后续阶段在期望的时候通过热处理触发交联。

替代地,干燥纤维材料(毡或长丝)的步骤可在热处理步骤期间进行。在此替代方式中,获得了干燥的、交联的纤维材料,其可在干燥和湿润条件下都具有有利的吸水性质和强度性质。

如果需要水合的纤维材料,则可在热处理步骤之后进行进一步的用水来水合所述纤维材料的步骤。

据信在室温下不足以从样品除去水(即在RT下干燥);交联需要热处理。另外,认为令人惊奇的是在将经热处理的材料浸泡在水中之后可获得一定的拉伸性/弹性行为。

本发明的一般方法可用于提供交联的磷酸化的微原纤化纤维素的纺制的长丝。纺制的长丝可进而用于制备纺制的长丝的幅材,通过铺置所述纺制的长丝以提供幅材。因此本发明提供了包含纺制的长丝的幅材,其中所述纺制的长丝如本文中所述。

该幅材可包括额外的长丝或纤维,比如例如合成的长丝、木纤维或未改性MFC或其他类型的改性MFC的纺制长丝。该幅材可为织造的或非织造的。该幅材可为空气铺置、熔喷或纺制铺置的非织造幅材。

本发明还提供了纺制的毡或纺制的长丝,优选纺制的长丝,其通过本文中所描述的方法获得。额外提供的是交联的磷酸化的微原纤化纤维素的纺制的毡或纺制的长丝。MFC原纤维之间存在的磷酸根的交联可通过光谱方法确定,例如31P NMR。

由于强度(特别是湿强度)和吸水性的特别的组合,本文中所描述的纺制的毡或长丝可用作吸水材料。因此提供了卫生产品,其包括本发明的纺制的毡或长丝和/或包含所述纺制的毡或长丝的吸水材料。该卫生产品可选自一次性尿布、卫生巾(sanitary napkin,卫生餐巾)、抹布(wipe)、卫生棉塞、吸收敷料和一次性纸巾。还提供了提供卫生产品的方法,所述方法包括:制备根据本发明的交联的磷酸化的微原纤化纤维素的毡或长丝,和;将所述毡或长丝引入到卫生产品中。本领域技术人员知道构建卫生产品和将毡或长丝引入到这样的产品中的标准方法。

实施例

1.磷酸化的微原纤化纤维素(P-MFC)的干纺丝

材料:

1.P-MFC 1:DS=0.63毫摩尔/克;pH=9.5;~1.5wt%

2.P-MFC 2;DS=0.86毫摩尔/克;pH=9.3;~1.5wt%

实验部分:

使用20mL的无针头塑料注射器直接将P-MFC纺制至铝箔上。产生了单根长丝、网格和无规的毡的图案。将纺制的材料放置在105℃的烘箱中40分钟以进行干燥。

具有经干纺丝的P-MFC样品的铝箔被浸泡在去离子水中约2小时。在浸泡之后,纺制的材料溶胀并且变得更易于与铝箔分离。

观察:

在手动评估时,重新润湿的材料表现出相当的柔性特性,和一些拉伸性/弹性。测量了在不同温度下热处理时,两种等级的P-MFC的溶胀能力和随后在水中的浸泡:

P-MFC 1(70℃)=19.18±1.76克水/克

P-MFC 1(105℃)=10.80±0.26克水/克

P-MFC 2(70℃)=20.40±1.32克水/克

P-MFC 2(105℃)=14.19±2.36克水/克

从这些结果来看,具有更高改性程度的P-MFC(意味着更多的负电荷(P-MFC 2))可更多地溶胀。还有,热处理的温度影响溶胀能力(温度越高=溶胀越少),意味着,原则上,其还影响交联程度(温度越高交联越多)。

2.P-MFC和其他带电的以及天然的MFC等级的干纺丝

不同MFC等级和干燥条件的影响(对比例)

材料:

1.P-MFC 2:DS=0.86毫摩尔/克;pH=9.3;~1.5wt%

2.天然MFC:pH=6.5;~4.5wt%

3.TEMPO-MFC:DS=1.25毫摩尔/克;pH=10.5;~1.94wt%

4.阳离子MFC:DS=1.0毫摩尔/克;pH=10.6;~1.5wt%

(注:天然MFC具有比带电等级低得多的粘度,因此使用更高固含量用于纺制)

实验部分:

使用20mL的无针头塑料注射器直接将各种MFC纺制至铝箔上。产生了单根长丝、网格和无规的毡的图案。

将纺制的材料放在105℃的烘箱中40分钟以进行干燥,除了纺制的P-MFC样品,其被留下在环境条件(约25℃)下干燥。

具有干的纺制的材料的铝箔被浸泡在去离子水中约2小时。

观察:

-在挤出时TEMPO-MFC形成粗的线状物。

-P-MFC是最易挤出的等级。

-阳离子MFC是第二容易挤出的等级。

-在将天然MFC干燥之后,获得了非常脆的材料,并且大部分网格图案在干燥期间破损。当浸没在水中时,样品从铝箔脱离,但是样品非常脆弱并且难以处理。没有观察到拉伸性或柔性行为。

-TEMPO-MFC形成非常平的样品并且在水中浸泡后没有显著地溶胀。没有观察到拉伸性。

-阳离子MFC在水中浸泡时溶胀地非常厉害,但是“凝胶化的”

样品非常脆弱且难以处理以及难以从铝箔分离。没有观察到拉伸性。

-在环境条件下干燥的P-MFC在浸泡在水中时非常地溶胀,但是样品非常脆弱并且难以处理。也没有注意到拉伸性。

主要结论:

·需要热处理以获得拉伸/弹性行为。

·拉伸/弹性行为是磷酸化的MFC特有的。

·弹性行为表明交联。

3.将P-MFC与天然(未改性的)MFC一起纺制的影响

配制不同重量比的P-MFC和天然MFC的混合物,即P-MFC/MFC比为25:75、50:50和75:25。

观察到所有混合物都可形成长丝和纺制的毡。没有观察到典型的天然MFC的极度收缩性和脆性。还有,仅具有25%的P-MFC的样品在水中溶胀非常小并且没有显示出湿态中的弹性迹象。具有50%的P-MFC的样品溶胀超过了仅具有25%的P-MFC的样品,但已经表现出一些湿态中的弹性迹象。具有75%的P-MFC的样品提供了最高的溶胀能力和湿态中的弹性。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有断裂感应机电灵敏度的纤维基复合材料

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!