具有断裂感应机电灵敏度的纤维基复合材料

文档序号:1367025 发布日期:2020-08-11 浏览:14次 >En<

阅读说明:本技术 具有断裂感应机电灵敏度的纤维基复合材料 (Fiber-based composite material with fracture-sensing electromechanical sensitivity ) 是由 丁在炫 张金元 高大勇 梁珍圭 于 2018-12-03 设计创作,主要内容包括:公开了断裂感应的复合材料传感器及其制造方法。该传感器可用作应变传感器、压电电阻传感器、压电电容传感器、和非接触式位移可穿戴传感器。(Fracture-sensing composite sensors and methods of making the same are disclosed. The sensor may be used as a strain sensor, a piezoresistance sensor, a piezocapacitance sensor, and a non-contact displacement wearable sensor.)

具有断裂感应机电灵敏度的纤维基复合材料

相关申请的交叉引用

本申请要求2017年12月1日提交的申请号为62/593,774的美国临时申请的权益,其公开内容的全文通过引用明确地并入本文。

背景技术

可穿戴式传感器具有诊断应用程序和监测应用程序。材料、电子和制造技术方面的最新发展推动了新的高保真感测平台的发展及其在生物医学领域中的应用。例如,眼睛运动跟踪传感器可以用于诊断和治疗神经系统疾病,例如智力低下、癫痫、自闭症和痴呆。但是,当前的可穿戴传感器在可用性、可及性和成本方面受到限制。庞大的设备和高昂的操作成本极大地限制了该技术的可及性和临床应用。

使用纤维素纤维模板的纳米结构复合材料已显示出有望开发为轻质且廉价的传感设备的前景。从木浆中提取的纤维素纤维提供大的表面面积,从而促进能源、传感和电子应用。由于纤维素纤维的多孔和亲水性质增强了粘附性,因此已经使用各种纳米材料来改变纤维素纤维的表面特性以用于多功能性。碳纳米管(CNT)是通用的填充材料,以产生导电性和导热性。制造CNT-纸复合材料(CPC)时,它有望带来新颖的应用,例如柔性电子器件、能源设备和传感器。然而,由于基质中的许多电流路径,纤维素纤维基质中的CNT的无规网络限制了机电灵敏度。

因此,仍然需要低成本、优选一次性的、易于可触及的传感器,该传感器可以容易地适应于人体以进行行为监测。

发明内容

一方面,本文提供一种传感器,包括:

复合材料基底,其包括含有多根绝缘纤维的模板材料和结合到该绝缘纤维的多个碳纳米管,该多个碳纳米管在绝缘纤维上形成纳米管涂层,该复合材料基底具有通过向复合材料基底施加单向拉力而引起的断裂,其中所述多根绝缘纤维在所述断裂部位处形成多个交叉接合部;和

第一电极和第二电极,第一电极在断裂的一侧上联接到纳米管涂层,第二电极在断裂的相反侧上联接到纳米管涂层,使得在第一电极和第二电极之间施加的电信号在断裂部位处穿过多个交叉接合部。

在另一方面,本文提供一种制造传感器的方法,该方法包括向前体复合材料基底施加单向拉力,从而引起断裂以形成断裂的复合材料基底,其中前体复合材料基底包括:

包含多根绝缘纤维的模板材料;

结合到绝缘纤维的多个碳纳米管,其在绝缘纤维上形成纳米管涂层;

第一电极,其在断裂的一侧上联接到纳米管涂层;和

第二电极,其在断裂的相反侧上联接到纳米管涂层;并且

其中,所述多根绝缘纤维在所述断裂部位处形成多个交叉接合部。

在一些实施例中,碳纳米管是多壁碳纳米管。在一些实施例中,绝缘纤维是从木浆提取的纤维、棉纤维、合成纤维或其组合。

在另一方面,提供了如本文所示和所述的使用传感器的方法。在一些实施例中,本文公开的传感器可以用作平面内应变传感器、平面外压电电阻传感器或电容传感器。

附图说明

图1A-图1D示出了拉伸断裂感应传感器的制造过程和机制。图1是制造过程的示意图。图1B是根据机械和电气特性灵敏度产生的概念图。图1C示出了空白纸和具有3x、10x和20x碳纳米管沉积的复合材料的应力-应变特性(左)和相对电阻变化(右);其中拉伸垂直于主纤维方向。图1D显示了根据所施加的应变,复合材料的微米和纳米结构重新取向、SEM图像以及取向统计的示意图。

图2A-图2C示出了阶段II中示例性应变传感器的评估。图2A示出了应变传感器设计和校准的示意图。图2B示出了根据通过弯曲施加的应变的归一化电阻变化(预应变:0.04mm/mm;3x多壁碳纳米管(MWCNT)沉积)。图2C示出了根据针对碳纳米管-纸复合材料(CPC)施加的预应变的应变系数。

图3A-图3F示出了在阶段III中示例性压电电阻力传感器的评估。图3A是压电电阻力传感器校准的示意图。当用PDMS手指按压传感器的破裂区域时,记录力和电压。插图是测试装置的图片。图3B是针对各种施加的预应变的灵敏度变化。图3C是破裂传感器上不同位置的灵敏度变化。在插图中,'d'表示裂纹尖端与测量位置之间的距离。图3D是针对3x、10x和20x MWCNT沉积的灵敏度变化。图3E示出了对3.5N阶跃力输入的电阻响应。插图示出了响应时间的特写。图3F是周期性载荷(0.3Hz)的电阻变化。插图:500-520秒的电气响应的特写。

图4A-图4F示出了在阶段IV中对示例性电容传感器的评估。图4A示出了压电电容力传感器校准的示意图。当按压传感器破裂的表面时,记录力和电容。图4B示出了针对3xMWCNT沉积的CPC的导电和非导电物体的归一化电容变化。图4C示出了对8N的阶跃力输入的电容响应。插图:响应时间的特写。图4D示出了非接触式位移的电容变化随传感器导电物体之间的距离的变化。图4E示出了非接触式位移传感器对压电致动器的周期性位移(8μm)的电容响应。图4F示出了导电PDMS手指针对周期性力的电容变化。插图:在500-520秒之间的电容变化的特写。

图5A-图5F展示了使用示例传感器进行的人类行为监测。图5A示出了手腕上的电阻式心跳传感器。图5B示出了手腕上的电容式心跳传感器。图5C示出了附接在手套上的触觉力传感器。图5D示出了使用附接在手套上的传感器监测手指的弯曲。图5E示出了用于眼球和眼睑运动的非接触式电容传感器,以及针对睁开/闭合眼睑和上/下眼球运动的电容响应。图5F示出了用于嘴唇运动的非接触式电容传感器,以及对说“一”和“二”的电容响应。

图6示出了针对0°和90°方向的MWCNT沉积次数的复合材料的薄层电阻。

图7示出了空白纸和通过沉积3、10和20次纳米管产生的CPC的应力-应变关系。

图8示出了复合材料的皱褶的光学显微镜图像(3次涂覆的纸和空白纸)。

图9是空白纸和通过沉积3、10和20次纳米管产生的CPC的杨氏模量。

图10A-图10C是空白纸(10A)和通过沉积3次(10B)和20次(10C)纳米管产生的CPC的纤维素纤维的SEM图像。

图11示出了电阻变化率相对于使用具有3次MWCNT沉积的CPC的拉伸测试的施加应变的关系。

图12A-图12D示出了在不同应变阶段涂覆有3次MWCNT的CPC的纳米结构的SEM图像。MWCNT在阶段I0(12A)跨越并涂覆纤维素纤维。随着应变增加,跨越的MWCNT被破坏,然后涂覆有MWCNT的纤维素纤维断裂并分离:阶段II(12B),阶段III(12C)和阶段IV(12D)。

图13示出了根据应变的纤维素纤维的取向和交叉接合部的形成。

图14A-图14D是断裂的涂覆有3次MWCNT的CPC(预应变:0.12)的交叉结合部结构的SEM图像。

图15示出了压缩力的归一化电阻变化。

图16示出了压电电阻传感器的归一化电阻变化相对于具有0.06、0.08、0.10和0.12的预应变的传感器的施加力的关系。

图17示出了针对在传感器上施加周期性手指力的电阻变化。

具体实施方式

本文公开了断裂感应复合材料传感器及其形成方法。当将应变施加到包括含有多根绝缘纤维(例如纤维素纤维)的模板基底和结合到模板基底的碳纳米管的复合材料时,碳纳米管涂覆的纤维素纤维对齐,以由模板基底纤维在拉伸方向上的断裂形成交叉接合部。根据所施加的应变,所形成的断裂的复合材料可用作压电电阻传感器、压电电容传感器或非接触式位移传感器。使用这种制造方法,可以廉价地生产薄且柔性的新型可穿戴传感器。该传感器的代表性用途包括人体运动跟踪。

因此,一方面,本文提供了一种断裂感应的复合碳纳米管传感器。在一些实施例中,传感器包括:(a)复合材料基底,该复合材料基底包括含有多根绝缘纤维的模板材料和结合到该绝缘纤维的多个碳纳米管,碳纳米管在该绝缘纤维上形成纳米管涂层,该复合材料基底具有通过向复合材料基底施加单向拉力而引起的断裂,其中多根绝缘纤维在断裂部位形成多个交叉接合部;以及(b)在断裂的一侧上联接至纳米管涂层的第一电极以及在断裂的相反侧上联接至纳米管涂层第二电极,使得施加在第一电极和第二电极之间的电信号穿过断裂部位处的多个交叉接合部。

在一些实施例中,传感器包括包含绝缘纤维的模板材料。如本文所用,术语“绝缘”是指具有大于约1GΩ(109Ω)的电阻的材料。示例性模板材料包括编织纤维垫,例如纤维素垫、薄页纸或多孔纸。模板材料中可以使用任何合适的绝缘纤维。例如,在一些实施例中,绝缘纤维是从木浆提取的纤维、棉纤维、合成纤维或其组合。碳水化合物纤维,例如纤维素纤维,特别适合包含在本文公开的传感器中。在一些实施方案中,模板材料是纤维素纤维基质。在其他实施例中,模板材料可以包括由绝缘合成聚合物制备的纤维。在一些实施例中,模板材料包括可拉伸定向纤维,其可被拉伸以引起材料中的裂纹或断裂。

在一些实施例中,模板材料的厚度在约0.1微米至约10000微米、约0.1微米至约1000微米、约0.1微米至约500微米或约0.1微米至约100微米的范围内。在整个公开内容中,任何近似术语,例如“约”、“大致”和“基本上”,表示主词可以被正负5%修改并且落入所述实施例之内。

在一些实施例中,模板材料的绝缘纤维的直径在约10nm至约100μm之间,在约10nm至约75μm之间或在约10nm至约50μm之间。在一些实施例中,绝缘纤维的曲率半径大于10μm。

在某些实施例中,传感器包括沉积在模板材料的绝缘纤维上的多个碳纳米管。在一些实施例中,碳纳米管是多壁碳纳米管。在一些实施例中,碳纳米管的直径在约0.5nm至约200nm、约0.8nm至约200nm、约1nm至约100nm或约0.8nm至约10nm的范围内。在一些实施例中,碳纳米管的长度在约0.1μm与约100μm之间、在约0.1μm与约50μm之间、在约1μm与约50μm之间、在约10μm与约100μm之间。

在一些实施例中,碳纳米管、例如多壁碳纳米管(MWCNT),通过氢键、离子键、共价键、非特异性键或它们的组合而结合到绝缘纤维。在一些实施例中,当通过毛细作用力将碳纳米管的悬浮液吸入到模板材料中时,碳纳米管沉积在绝缘纤维上。在一些实施例中,在绝缘纤维上一次或多次沉积碳纳米管可用于制备本文公开的传感器,例如1、3、5、10或20次沉积。在一些实施方案中,碳纳米管从多壁碳纳米管的水性悬浮液沉积在纤维上,该水性悬浮液可以任选地包含表面活性剂。任何合适的表面活性剂均可用于制备碳纳米管悬浮液,其可用于制备本文公开的传感器。

在一些实施例中,传感器包括在断裂的一侧上联接到纳米管涂层的第一电极和在断裂的相反侧上联接到纳米管涂层的第二电极,使得施加在第一电极和第二电极之间的电信号穿过断裂部位处的多个交叉接合部。在一些实施例中,电极包括导电材料。可以通过将导电环氧树脂施加到复合材料基底来将电极施加到纳米管涂层上。在一些实施例中,电极是银。

在一些实施例中,传感器可以可选地附接到支撑件或基底材料。任何合适的材料都可用作本文公开的传感器的支撑材料。支撑材料的实例包括纸、聚合物材料或其组合。传感器附接至支撑材料可以以任何合适的方式实现,例如,可以使用胶带、胶水、渗透性聚合物、填充材料或它们的组合来附接基底材料。

在一些实施例中,传感器包括通过向复合材料基底施加单向拉力而引起的断裂。在一些实施例中,多根绝缘纤维在断裂部位处形成多个交叉接合部(也称为“十字接合部”)。如本文所用,术语“交叉接合部”是指由涂覆有碳纳米管的多个交叉绝缘纤维制成的接合部。在一些实施例中,复合材料基底包括平行于、垂直于且倾斜于施加力取向的纤维。如图1D所示,当应变施加到复合材料基底时,平行纤维开始在施加力的方向上变直和变硬。由于跨越相邻纤维的碳纳米管桥的破裂,复合材料基底的电阻增加。随着应变的增加,大多数平行纤维在极限强度处断裂,并且结合到纤维的纳米管也断裂。垂直和倾斜的纤维开始重组并形成许多十字形的接合部,如图13和图14A-图14D所示。随着断裂纤维的碳纳米管网络被破坏,基底的电阻呈指数增长。

在一些实施例中,传感器是应变传感器、压电电阻传感器或电容传感器。在一些实施例中,传感器类型由所施加的应变确定。在一些实施例中,传感器被制造成通过施加的预应变的大小而利用不同的感测机制。为了引起断裂,在一些实施例中,复合材料基底样品(例如,碳纳米管-纸复合物)是固定的,并施加拉伸应力。在拉伸过程中记录复合材料基底的力和电阻(或电压)。通常,如图1B所示,应力-应变关系显示出在本文所公开的复合材料基底的机械和电气性能方面的三个不同的阶段。在初始阶段(I0)的电阻通过单向应变在弹性区域(图1B中的阶段II)线性增加。随着施加更大的应变,裂纹开始产生并正交于所施加的拉力扩展,这大大降低了复合材料基底的机械硬度(图1B中的阶段III)。电阻基本上由于碳纳米管涂覆的绝缘纤维的断裂而增加。在裂纹附近,未缠结的碳纳米管涂覆的绝缘纤维形成了交叉接合部,在此处碳纳米管表现出平面外压电电阻率。因此,在该阶段的复合材料基底可以用于平面外压电电阻传感器中。随着更大的应变,裂纹尖端附近增加的应力终止复合材料的电气性(电阻>500MΩ)(图1B中的阶段IV),而复合材料仍通过未缠结的纤维连接。因此,在该阶段的复合材料基底可以用于平面外压电电容传感器中。

在一些实施例中,复合材料基底的应力-应变曲线的斜率和电阻可以指示本文公开的传感器的类型。在一些实施例中,包括但不限于平面内应变传感器、平面外压电电阻传感器和电容传感器的感测机构由施加的预应变的大小和电阻来定义。在一些实施例中,当应力-应变曲线的斜率为正时,传感器是应变传感器。在一些实施例中,当应力-应变曲线的斜率为负时,传感器是压电电阻传感器。在一些实施例中,当复合材料基底的电阻大于大约100M或无限大时,传感器是电容传感器。

本文公开的传感器可以被配置用于监测人类行为。在一些实施例中,传感器是心跳传感器、抓握运动传感器、手指运动传感器、眼睛运动传感器、嘴巴运动传感器或腹部运动传感器。在一些实施例中,传感器是可穿戴传感器。本文公开的传感器可以是一次性的和/或包括可生物降解的材料。

在一个实施例中,提供了一种心跳传感器,其包括如本文公开的传感器。在一个实施例中,提供了一种手部运动传感器,其包括如本文公开的传感器。在一个实施例中,提供了一种眼部跟踪传感器,其包括如本文公开的传感器。在一个实施例中,提供了一种唇部运动传感器,其包括如本文公开的传感器。唇部运动传感器可以是语音传感器或无声传感器。

在某些实施例中,传感器连接到电源和监测系统,例如电容或电阻表。电源和监测系统可以容纳在同一单元中,或可以分开设置。在另外的实施例中,提供了一种分析部件,该分析部件被编程以解释由监测系统提供的测量值并转换测量值,从而确定产生测量值的运动的性质(例如,手指或眼睛在特定方向上的运动)。可以训练分析部件以通过将已知动作与由那些动作生成(和测量)的响应进行映射来解释测量值。

在第二方面,本文提供了一种本文所公开的断裂感应传感器的制造方法。在一些实施例中,该方法包括向前体物复合材料基底施加单向拉力,从而引起断裂以形成断裂的复合物基底,其中,前体复合材料基底包括:

包含多根绝缘纤维的模板材料;

结合到绝缘纤维的多个碳纳米管,其在绝缘纤维上形成纳米管涂层;

第一电极,其在所述断裂的一侧上联接到纳米管涂层;和

第二电极,其在所述断裂的相对侧上联接到纳米管涂层;并且

其中,所述多根绝缘纤维在所述断裂部位处形成多个交叉接合部。

在一些实施例中,该方法进一步包括将断裂的复合材料基底附接到基底材料。任何合适的基底材料和附接方法可用于本文公开的方法中,例如,断裂的复合材料基底可通过胶水、胶带、渗透性聚合物、填料或它们的组合来附接到基底材料。

在一些实施例中,该方法还包括例如折叠、卷起或包裹断裂的复合材料基底,以减小传感器尺寸。

在一些实施例中,在将包含碳纳米管的组合物施加到模板材料后施加第一电极和第二电极。可以使用任何合适的材料将电极施加到基底。

可以以任何合适的方式形成前体复合材料基底,例如,通过以毛细管作用将包含碳纳米管和任选的表面活性剂的组合物施加到模板材料,通过将模板材料浸入包含碳纳米管的组合物中。可替代地,前体复合材料基底可以通过以下方式形成:将碳纳米管结合到绝缘纤维以形成涂覆有碳纳米管的绝缘纤维并且然后由涂覆有碳纳米管的绝缘纤维形成复合材料基底。

在本文公开的方法的一些实施例中,碳纳米管是多壁碳纳米管。在一些实施例中,包含碳纳米管的组合物是碳纳米管的水性悬浮液。在本文公开的方法中使用的水性悬浮液可以进一步包含一种或多种表面活性剂、缓冲剂、盐或类似组分。在一些实施例中,碳纳米管可以包含一个或多个反应性基团,并且可以通过形成共价键而共价结合至模板材料。用于共价偶联的化学物质是本领域已知的。

在一些实施例中,可以通过将包含碳纳米管的组合物重复地施加到模板材料来涂覆模板材料。在一些实施例中,该施加可以重复至少3次、至少10次或至少20次。

在另一方面,提供了如本文所示和所述的使用传感器的方法。

包括以下示例是为了示例的目的,而非限制所描述的实施例。

示例

示例性复合材料的制造

通过在去离子水中使用1%的十二烷基硫酸钠(SDS)来制备MWCNTNanostructured&Amorphous Materials,Inc)的水溶液(。超声处理2小时后,使用移液器将溶液沉积在悬浮纸上。将CPC切成小块(10×30mm2)。对于电极,将银环氧树脂(MG chemical#8330s-21G)粘贴到复合材料的两端,面积为10x10 mm2。65℃下在烘箱中将样品固化。

机械和电气测试

通过使用定制的单轴拉伸试验台测试纳米复合材料,该单轴拉伸试验台通过LabView界面进行控制。记录力和位移以用于应力-应变关系。实时高分辨率视频用于观察纳米复合材料的行为以及其在机械载荷下的形态和失效。力传感器和位移传感器的分辨率分别为3mN和1μm。通过使用如图3A所示的参考电阻器来测量电阻。

用于传感器制造的预应变

复合材料在单轴拉伸阶段被拉伸,直到达到所需的应变值或电阻。在受控值处,该阶段停止1分钟以用于复合材料的结构稳定性。预应变后,将复合材料小心地从装置中卸载,并将其用于测量。

讨论结果

通过精确控制在单轴载荷下施加到CNT-纸复合材料(CPC)的应变,使涂覆有CNT的拉伸定向纤维断裂,并且使倾斜或正交于拉力的纤维素纤维重新取向,以在裂纹附近形成交叉接合部。这些接合部产生高度灵敏的电阻和电容响应,以用于测量应变、力和非接触位移。这种新颖的制造过程允许将柔性传感器集成到低成本薄页纸中,这种薄页纸很容易适应人体以进行行为监测。

图1A示出了示例性CPC传感器的制造方法。使用厚度为100μm的多孔纸作为模板。悬浮在表面活性剂(十二烷基硫酸钠;SDS;1%)中的多壁碳纳米管(MWCNT)的水溶液(5mg/mL;Nano structured&Amorphous Materials,Inc,德克萨斯州休斯敦市)被沉积在多孔纸上。当将MWCNT溶液引入到纤维素纤维基质中时,MWCNT通过毛细作用结合在纤维上并跨越在纤维之间。将银浆施加至纸带的两端,并使其固化以制作电极。复合材料被拉伸以包括由于拉伸定向纤维的断裂而引起的裂纹。将断裂的复合材料附接在双面胶带上,并通过粘胶带密封以制造原型传感器。

如图1B所示,传感器可被设计和制造成通过施加的预应变的大小利用不同的传感机制,包括但不限于以下应用:分别在第II、III和IV阶段中的平面内应变传感器、平面外压电电阻传感器和电容传感器。应力-应变关系示出在机械和电气行为方面的三个不同的阶段。初始阶段(I0)的电阻通过单向应变在弹性区域(图1B中的阶段II)处线性增加。随着施加更大的应变,裂纹产生并沿着与拉力正交的方向扩展,这大大降低了复合材料的机械硬度(图1B中的阶段III)。由于涂覆有MWCNT的纤维素纤维的断裂,电阻急剧增加。在裂纹附近,未缠结的纤维素纤维形成交叉接合部,在该处涂覆的MWCNT表现出平面外的压电电阻率。随着更大的应变,裂纹尖端附近的增加的应力终止复合材料的电性(电阻>500MΩ)(图1b中的IV阶段),尽管复合材料仍通过未缠结的纤维连接。沿着裂纹边缘的纤维素纤维的应力集中使局部应变增加,并且沿着该边缘沉积的MWCNT断开连接。多个接合部形成平面外压电电容传感器。

在机电特性中,制备以0、3、10和20次的MWCNT沉积的复合材料来改变电气路径。沉积次数限制为20,此时纤维素纤维基质完全充满MWCNT。CPC的薄层电阻随着MWCNT沉积次数的增加而降低(图6)。拉伸方向的复合材料电阻略低于正交方向的复合材料电阻。在这项研究中,拉伸方向被定义为0°(“平行”),正交于拉伸的方向为90°(“垂直”)。

根据沉积次数表征CPC在单轴载荷下的机械强度和电阻变化(图1C)。该纸由如图1D的直方图所示的随机取向的纤维素纤维构成。在阶段I0,拉伸方向垂直于主纤维取向。在我们的另一测试中未考虑平行于主纤维取向的拉伸,因为应力-应变关系不一致(图7)。在薄页纸的制造过程中产生的垂直皱褶在平行拉伸的极限强度下导致了不可预测的应变(图8)。

在图1c(左)中,无论沉积次数如何,极限强度及其应变分别在1.47±0.12MPa和0.053±0.0056mm/mm的范围内。硬度随着沉积次数的增加而变大(图9)。根据扫描电子显微镜(SEM),用沉积的MWCNT桥接并涂覆纤维素纤维(图10A-图10C),这增加了复合材料的硬度。当在拉力下测量电阻时,随着沉积次数从3增加到20,电阻变化的拐点明显滞后于0.06到0.08mm/mm的应变(图1C,右)。拐点是电阻变化偏离了初始线性斜率5%的地方。随着更多的纤维素纤维与更多沉积的MWCNT被束缚在一起,电阻的明显增加点被延迟了。

电阻以幂次定律增加,这与渗透理论一致。复合材料网络的有效电阻率可以表示为ρc=ρf(f-f*)-t,其中ρf是纤维的电阻率,f是导体体积分数,f*是临界导体体积分数,并且t是指数。由于我们的复合材料中的纤维网络随着拉伸而退化,因此电阻变化率(R/R0)可以用应变(ε)表示为其中R0为初始电阻,ΔR是电阻变化(R-R0),并且a和b为由MWCNT沉积确定的参数。针对3次、10次和20次沉积所估计a和b分别为1.82×1042、4.49×104、1.67×104和39.0、4.0、4.0。沉积的MWCNT越多,a和b越小,因为束缚的MWCNT使电阻变化的拐点滞后。

图1D基于光学和SEM研究示出了纤维素纤维和MWCNT在拉力下的结构变化。这项研究使用了具有3次MWCNT沉积的CPC。3次MWCNT沉积的CPC在拉伸测试期间的电阻变化相对均匀,如图11所示。压电灵敏度的产生源自拉伸载荷下CPC网络的重新排列和断裂。图1D的底部图形示出了I0、II、III和IV阶段中纤维取向的百分比直方图。根据SEM观察,将在1×1mm2的面积中的纤维取向被分成0-±30°、±30-±60°和±60-±90°三个范围。在原始纸模板(I0阶段)中,26%的纤维处于0-±30°,23%的纤维处于±30-±60°,且51%的纤维处于±60-±90°。因此,初始复合材料的主取向为±60-±90°。在这里0°和90°表示平行于载荷的方向和垂直于载荷的方向。

在阶段II(0<ε≤0.06)中,平行纤维通过拉伸而被拉直和变硬。电阻增加是由于跨越相邻纤维素纤维的MWCNT桥的破坏所致的。虽然CPC在弹性范围内拉伸,但由于破坏的MWCNT桥,电阻并未恢复到原始值(图12A-图12D)。

在0.06-0.16(阶段III)应变中,大多数平行纤维在极限强度下断裂。倾斜和垂直的纤维都沿拉伸方向取向,这将纤维的主方向改变成±0-±30°(如图1D和图13中的直方图所示)。纤维上的跨越和涂覆的MWCNT均被破坏。重组的纤维(图1D)形成了多个十字形接合部(图14A-14D)。因为断裂的纤维间的MWCNT网络被破坏,电阻显著增加。

尽管纤维素纤维在该阶段变形、弯曲和断裂,但是MWCNT并未与纤维中脱层或分离。根据我们的SEM研究,纤维素纤维的直径在10到30μm的范围内,并且纤维素纤维的曲率半径大于100微米。MWCNT的直径和长度分别为8-15nm和0.5-2μm。与MWCNT尺寸相比,纤维尺寸明显大于纤维素纤维。在CPC中,通过氢键、离子键和非特异性键,结合沉积过程中的毛细管作用,MWCNT被紧密结合在纤维素纤维上。

在应变大于0.16的阶段(阶段IV),所有的电气连接都因极度拉伸而被破坏。复合材料沿裂纹边缘电气终止,这可以从SEM图像中的明暗对比度中清楚地观察到(图1D)。高对比度表明电子不能流过裂纹边缘。在取向图中,平行纤维和倾斜纤维(0-±30°和±30-±60°)的比例变为80%,形成交叉接合部。由于电阻变得无限大,因此可以通过空气和纤维的介电介质来测量MWCNT的纯电容。

通过控制对CPC施加的应变,可以在阶段II、III和IV中设计至少以下不同的传感器:应变传感器、压电电阻传感器和压电电容传感器,针对在那些阶段中的那些传感器分别预期最强结果。为了证明这一点,在阶段II~IV中制造了一系列原型。通过施加0、0.02、0.04和0.06的应变而在阶段II中预应变的CPC被制备并且并到附接到聚二甲基硅氧烷(PDMS)悬臂梁以进行传感器评估(图2A)。随着悬臂的弯曲,梁的顶表面被拉伸,这线性增加了传感器的电阻(图2B)。随着预应变从0增加到0.06,应变系数从2增加到13(图2C)。应变传感器的操作范围低于0.01。如果施加的应变超过0.01,则可以根据测试更改应变系数。四个样品在0、0.02、0.04和0.06应变下的初始电阻分别为83、87、93和100kΩ。弹性区域中应变系数的增加是由完整的纤维素纤维之间MWCNT桥的破坏所致的。因此,预应变可以部分去除跨越纤维素纤维的电子路径,这提高了灵敏度。

在阶段III中,裂纹中重新取向的纤维素纤维产生了对平面外方向力的灵敏度。通过记录相对于所施加的力的电阻变化来评估感测性能。使用PDMS模仿人类手指来制作弹性体手指(图3A)。为了校准施加的力,将力传感器(LCFD1KG,Omega Engineering,康涅狄格州诺瓦克市)附接在传感器基底下方。当将力施加到复合材料的破裂区域时,在断裂中产生的未缠结的交叉纤维将被压缩以增加接触面积,这与力成比例地降低阻力(图S10,支持信息)。

压电电阻灵敏度被定义为:其中ΔR是传感器的电阻变化,R0是传感器的初始电阻,且ΔF是所施加的力的变化。可通过较大的预应变来提高灵敏度(图3B)。随着预应变从0.06增加到0.13,灵敏度迅速从0.002增加到0.023N-1。对于0.06、0.08、0.10和0.12的预应变,显示了3次MWCNT沉积的CPC的电阻变化对所施加的力的响应(图S11,支持信息)。在没有预应变的情况下,压电灵敏度接近于0,因为纤维素纤维与多个MWCNT网络牢固地结合。为了验证灵敏度是否是由裂纹产生的,沿纵向方向将力点从裂纹尖端(0mm)以2mm的步长移至8mm。随着距裂纹尖端的距离(图3C中的d)增加,灵敏度从0.022连续降低到0.001N-1(图3C)。当距裂纹的距离大于8mm时,复合材料对平面外力不灵敏。为了测试可再现性和MWCNT沉积效果,通过0.12mm/mm的预应变拉伸以3、10和20次沉积的复合材料。随着沉积次数的增加,灵敏度降低了,因为更多的被MWCNT束缚的纤维限制了拉力下的结构变化(图3D)。随着越多的沉积,产生越少的接合部,以滞后电阻的增加,由此导致灵敏度下降。

当将阶跃力输入施加到具有0.12预应变的复合材料时,响应时间小于50毫秒,这明显小于其他聚合物传感器(图3E)。但是,电阻偏移持续降低了100秒。在该力的作用下,纤维素纤维连续滑动和蠕变,这导致电阻的连续降低。当在0到5.5N之间施加周期性载荷(频率:0.3Hz)时,电阻周期性地变化,并且电阻偏移在300s后达到稳态(图3F)。通过人类手指按压传感器的响应在500个周期内相对可靠(图17)。

在阶段IV中,形成了电容传感器。由于无法预测复合材料的最终断裂,因此当电阻变得大于500MΩ时,停止施加预应变。与压电电阻传感器相似,接合部是由纤维素纤维的交叉结构形成的。由于纤维素纤维和MWCNT的大的表面积,因此没有寄生电容的本征电容高达0.5±0.04pF(N=6)。电容传感器可以使用图4A中的装置通过接触模式和非接触模式检测导电物体,并通过接触模式检测非导电物体。请注意,沉积有10次和20次MWCNT的复合材料不能用于形成电容传感器,因为被MWCNT束缚的纤维使CPC导电直至完全断裂。

当将导电手指(涂有铝的PDMS手指)压在裂纹上时,电容以0.036N-1的灵敏度增加(图4B)。压电电容传感器的灵敏度为:其中ΔC为传感器的电阻变化,C0为传感器的初始电阻。使用不导电手指进行的同一测试的灵敏度降低到0.004N-1。当施加阶跃输入时,时间常数小于50ms(图4C)。对于非接触式感应模式,当从电容传感器的裂纹表面撤出导电物体时,首先通过减小并联电容(灵敏度:-0.068mm-1)来迅速减小电容,然后通过减少电荷耗散(灵敏度:0.0048mm-1)来增加电容(图4D)。在此,非接触式距离传感器的灵敏度为其中ΔD是传感器与物体表面之间的距离变化。对于电容增加,传感器和导体之间的特征长度变得大于电容传感器的特征长度,这通过减小到导体的电流耗散而增加了电容。在-0.068mm-1灵敏度区域,可以测量压电致动器的8μm位移(图4E)。考虑到噪声水平,检测极限为1μm。请注意,当将导电物体靠近未破裂的区域时,无法测量电容变化。在0.3Hz处的0-5.7N的周期性压缩载荷中,使用导电弹性体手指稳定地测量传感器响应(图4F)。电容在0.5和1.5pF之间变化,这由于线束的寄生电容而大于本征电容。在该设置中,寄生电容为0.2pF。

使用电阻传感器和电容传感器,可以监测人类行为。两个传感器均可用于测量手腕上的心跳(图5A和图5B)。心跳信号的偏移变化可能是由心跳期间的心脏搏动产生的。与其他结果相比,偏移波动在可接受的范围内。在测量中,将双面胶带上的CPC传感器附接在手腕上。

当将压电电阻传感器附接在手套的手指上时,可以检测周期性的抓握运动(图5C)。当将传感器附接在手指关节上时,电阻变化可被测量用于0至135度之间的角度变化(图5D)。

在眼镜上安装非接触式电容传感器,以检测眼球运动(图5E)。由于从传感器到眼睛表面的距离变化,因此可以检测眼睛的上/下运动和睁开/闭合运动。

将非接触式电容传感器放置在受试者嘴的前面,以跟踪嘴唇运动,并展示对说“一”和“二”的电容响应(图5F)。

迄今为止,已经针对可穿戴应用研究了各种机制和材料,以监测物理、化学和生物活动。在这些方法中,已经开发出断裂感应的方法来制造可穿戴传感器。将由聚合物涂覆的石墨烯制成的复合材料拉伸以引起裂纹,这产生灵敏度。将铂膜弯曲以产生裂纹,该裂纹显示出高灵敏度。压缩引起的内部裂纹产生压阻灵敏度。在这项研究中,MWCNT和薄页纸的复合材料断裂以在裂纹中形成交叉接合部,这可产生压电电阻传感器和压电电容传感器。

在这里,通过控制对CPC施加的预应变,展示了三种不同类型的传感器。通过预应变值制造的传感器的预期局限性在于它只能在设计的感应模式下起作用,而不能在感应过程中将感应模式转换为另一种感应模式。由断裂的CPC制成的传感器可能易碎。在一些实施例中,使用胶带将传感器固定在纸表面上。在其他几个实施例中,传感器可以通过其他装置(包括渗透聚合物或其他填充材料)固定在纸表面上。

总之,我们提出了一种低成本、柔性且高度灵敏的传感器,其灵敏度是由MWCNT-纸复合材料上的受控的断裂而感应到的。通过预应变,三种不同的传感器被展示为电阻应变传感器、电阻力传感器以及电容力和位移传感器。压电电阻传感器和压电电容传感器也可以通过MWCNT涂覆的纤维素纤维的重组的交叉接合部来制造。每个传感器的校准都显示出可靠性和可重复性。传感器附接在诸如人类皮肤的柔性表面上,并且足够灵敏以检测生物功能,包括但不限于:心跳、抓握力、手指运动和眼睛运动。这些廉价且一次性的传感器可用于以可靠的性能监测人类行为。

尽管已经示出和描述了示例性实施例,但是应当理解,可以在不脱离本发明的精神和范围的情况下进行各种改变。

45页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:碳纤维

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!