一种废弃物熔融炉用高磷铝铬砖及其制备方法

文档序号:1373323 发布日期:2020-08-14 浏览:23次 >En<

阅读说明:本技术 一种废弃物熔融炉用高磷铝铬砖及其制备方法 (High-phosphorus aluminum chromium brick for waste melting furnace and preparation method thereof ) 是由 范沐旭 王晗 冯志源 张涛 李坚强 孙红刚 李坤鹏 武刚 赵志龙 于 2020-05-22 设计创作,主要内容包括:本发明公开了一种废弃物熔融炉用高磷铝铬砖及其制备方法。一种废弃物熔融炉用高磷铝铬砖的原料组成重量百分比为:颗粒50-70%;细粉20-30%;微粉10-20%;整体SiO&lt;Sub&gt;2&lt;/Sub&gt;有效含量1-3%;外加磷引入物2-8%。该种废弃物熔融炉用高磷铝铬砖具有一次烧成(免浸渍)、气孔率小、体积密度高、抗渣渗透性好等优点,能够大大提高废弃物熔融炉的炉衬使用寿命。(The invention discloses a high-phosphorus aluminum chrome brick for a waste melting furnace and a preparation method thereof. The high-phosphorus aluminum chromium brick for the waste melting furnace comprises the following raw materials in percentage by weight: 50-70% of particles; 20-30% of fine powder; 10-20% of micro powder; bulk SiO 2 Effective content is 1-3%; 2-8% of phosphorus introduction substance is added. The high-phosphorus aluminum chromium brick for the waste melting furnace has the advantages of one-time firing (no impregnation), small porosity, high volume density, good slag penetration resistance and the like, and can be greatly improvedThe service life of the furnace lining of the high waste melting furnace is prolonged.)

一种废弃物熔融炉用高磷铝铬砖及其制备方法

技术领域

本发明涉及一种废弃物熔融炉用高磷铝铬砖及其制备方法,属于耐火材料领域。

背景技术

随着世界人口的不断增加和经济的高速发展,城市生活垃圾和工业废弃物的数量急剧增多。垃圾的存在不仅占用大量的空间,而且对地球环境造成严重污染,危害人类和动植物的生存环境。因此,城市生活垃圾和工业废弃物的处理是一个亟待解决的问题。

废弃物熔融炉通过高温,使废弃物熔融,从而实现废弃物的无害化和减量化。含Cr2O3的耐火材料具有优良的抗侵蚀性,适用于条件苛刻的废弃物熔融炉等。对于回转窑式废弃物熔融炉来说,熔渣的渗透侵蚀、窑体的机械应力等工况条件要求材料具有良好的抗侵蚀性和抗渗透能力。由于含Cr2O3本身具有优良的抗侵蚀性,往往通过提高材料中的Cr2O3含量来提高其抗侵蚀能力。而实际使用中,材料的损毁往往是由渗透引起的热应力和机械应力剥落。对于固定Cr2O3含量的铝铬砖,提高材料抗渗透能力是提高材料使用寿命的关键。

自1950年Kingery研究含磷结合剂以来,含磷结合耐火材料在钢铁、水泥、玻璃、化工以及其它工业中均获得了广泛的应用。P2O5由于是玻璃形成体,在熔渣渗入材料中时能够极大增加熔渣的粘度,抑制熔渣进一步渗透。 由于P2O5的挥发性(4AlPO4 (s) → 2Al2O3(s) + 2O2 (g) + (P2O3) (g) ),经过烧成热处理后的铝铬砖残留磷的含量极低(<0.3%),为了提高其抗渗透能力,往往通过真空浸渍的方法,将热处理后的铝铬砖放入真空浸渍设备中,使含磷溶液进入砖的气孔中,再经过低温热处理使磷残留在砖气孔中,起到堵塞气孔,降低气孔率,提高抗渗透能力的作用。

专利201611161565.3“一种低气孔铬刚玉砖及其制备方法”是将烧成后的砖置于压力容器中,抽真空至真空度为1000~1500Pa,然后加入制备的纳米氧化物悬浮液至完全淹没产品,接着进行加压,加压至0.4~0.5MPa,在此压力条件下浸渍处理10~60分钟。再进行微波干燥干燥温度为50~150℃,干燥时间为0.5~4h。这种方法的缺点是工艺复杂、生产效率低,能耗高。

专利CN201310713973.5“一种Al2O3-Cr2O3耐火制品的磷熏蒸制备方法”所述的Al2O3-Cr2O3耐火制品,P2O5成分的加入方式为坯体烧成中采用磷熏蒸的工艺,P2O5成分在制品中存在梯度分布,由制品表面向内部P2O5成分递减。这种方法工艺要求复杂。

专利CN201310713974.X“一种Al2O3-Cr2O3耐火制品及制备方法”中采用红磷的加入,控制烧成气氛为非常规的氧化气氛,为了减少五氧化二磷从砖的逸出,要求磷的氧化过程升温要快(200℃~1000℃升温阶段要求升温速率为5℃/s~15℃/s)尽量减少五氧化二磷单独存留的时间,即200℃~1000℃升温时间为160s~53.3s。这种工艺复杂,而且生成的P2O5会大量逸出,留存在砖中的有效磷含量不高。

上述方法制备的含磷铝铬砖由于工艺复杂、成本较高,且热处理后由于大量磷逸出,在材料表面形成鼓泡和硬皮,影响砌筑尺寸。本发明按照权利要求书所述方案及工艺,通过引入一定量的液相,使大部分磷进入砖中的玻璃相中,避免了P2O5的挥发,可降低材料气孔率,提高材料抗渗透能力,大大提高了铝铬砖在废弃物熔融炉中的使用寿命。

发明内容

本发明的目的是提出一种废弃物熔融炉用高磷铝铬砖及其制备方法,使其能通过一次烧结,制备含磷量高的铬刚玉砖,其具有优良的抗渗透性能,同时能够克服以往工艺复杂和成本高的不足。

本发明的目的是通过以下技术方案实现的:

一种废弃物熔融炉用高磷铝铬砖,其特征在于用于制备此材料的原料组成重量百分比为:

颗粒 50-70%;

细粉 20-30%;

微粉 10-20%;

整体SiO2有效含量 1-3%;

外加磷引入物 2-8%。

所述的颗粒为氧化铬颗粒、铝铬渣颗粒、白刚玉颗粒、板状刚玉颗粒中的一种或多种。

所述的氧化铬颗粒为电熔料或烧结料。

所述的细粉为氧化铬细粉、铝铬渣细粉、白刚玉细粉、板状刚玉细粉中的一种或几种。

所述的氧化铬细粉为电熔料或烧结料。

所述的微粉为氧化铬绿微粉、煅烧氧化铝微粉中的一种或两种。

用以引入SiO2的硅质原料为锆英石粉、红柱石粉、硅线石粉、蓝晶石粉、二氧化硅微粉、石英粉、粘土粉中的一种或多种。引入过多的SiO2,降低材料抗侵蚀能力;引入过少SiO2,保留磷的能力有限。所以SiO2有效含量既不可过多,也不可过少,整体SiO2有效含量占原料总重量的1~3%。

所述的颗粒、细粉和微粉组合中既有铝质原料,也有铬质原料。

所述的磷引入物为液体磷酸、液体磷酸二氢铝、固体磷酸、固体磷酸二氢铝、固体磷酸铝中的一种或几种。

一种废弃物熔融炉用高磷铝铬砖的制备方法为:采用摩擦压砖机或振动加压或液压或等静压成型,坯体经干燥后,在高温窑炉内按照常规铬刚玉砖升温曲线进行烧成,烧成温度为1350℃~1700℃;烧成时,由于SiO2能够生成少量液相,磷可有效保存在液相中,从而得到高磷含量的铝铬砖。烧成时,常规铝铬砖不能使磷有效的留在砖中,P2O5会大量挥发,即使加入再多的磷引入物,测得以P2O5计算的磷有效残余量仍小于砖重量的0.3%,而通过此方法制备的废弃物熔融炉用高磷铝铬砖,磷能够保留在引入的少量液相中,以P2O5计算的磷残留量大于砖重量的2%。

与现有技术相比,本发明的有益效果是无需浸渍工艺或其他难以实现的复杂工艺,直接一步烧成高磷含量铝铬砖,所用技术原理为:高温烧成过程中,利用磷和SiO2生成的少量液相的亲和性,避免磷大量挥发,使铝铬材料抗渗透能力大大提高。

附图说明

图1为实施例六中废弃物熔融炉用高磷铝铬砖20倍放大整体结构图;

图2为实施例六中整体面成分能谱图;

图3为实施例六中废弃物熔融炉用高磷铝铬砖200倍放大基质结构图;

图4为实施例六中的基质元素面分布图。

具体实施方式

为了充分说明本发明的特点,现对本发明举例加以说明,但本发明的具体实施方式不局限于以下实例,可以在允许范围内根据实际情况进行适当的方案调整:

结合具体实施例对本发明进行说明:

实施例一:

各组份配比为(质量百分数):白刚玉颗粒45%,板状刚玉颗粒10%,铝铬渣颗粒10%,铝铬渣细粉15%,白刚玉细粉9%,氧化铬绿微粉2%,煅烧氧化铝微粉7%,石英粉2%。

先将2.5%的固体磷酸铝加入颗粒部分,加入3%的液体磷酸,无需加水,用轮碾机混合均匀。再将混合好的细粉、微粉部分加入轮碾机,搅拌5~10分钟后出料,摩擦压砖机成型,经过110℃干燥,1600℃保温8h烧成,制品体密为3.25g/cm3,气孔率为15.8%,测得以P2O5计算的磷残留量达到2.65%。

实施例二:

各组份配比为(质量百分数):板状刚玉颗粒30%,铝铬渣颗粒33%,铝铬渣细粉10%,白刚玉细粉15%,氧化铬绿微粉4%,煅烧氧化铝微粉5%,红柱石粉3%。

先将3%的固体磷酸加入颗粒料,再加入2%的液体磷酸二氢铝,无需加水,用轮碾机混合均匀。将混合好的细粉、微粉部分加入轮碾机,搅拌5~10分钟后出料,使用液压成型,经过110℃干燥,1550℃保温8h烧成,制品体密为3.38g/cm3,气孔率为14.1%,测得以P2O5计算的磷残留量达到2.42%。

实施例三:

各组份配比为(质量百分数):电熔氧化铬颗粒17%,白刚玉颗粒48%,电熔氧化铬细粉8%,白刚玉细粉11%,氧化铬绿微粉5%,煅烧氧化铝微粉6%,粘土粉5%。

先将5%的固体磷酸铝加入颗粒部分,加入2%的液体磷酸二氢铝,无需加水,用轮碾机混合均匀。再将混合好的细粉、微粉部分加入轮碾机,搅拌5~10分钟后出料,使用振动加压成型,经过110℃干燥,1550℃保温8h烧成,制品体密为3.60g/cm3,气孔率为12.5%,测得以P2O5计算的磷残留量达到3.81%。

实施例四:

各组份配比为(质量百分数):板状刚玉颗粒28%,铝铬渣颗粒40%,铝铬渣细粉10%,白刚玉细粉11%,氧化铬绿微粉3%,煅烧氧化铝微粉6%,二氧化硅微粉1%,粘土粉1%。

先将2%的固体磷酸铝加入颗粒部分,加入2.5%的液体磷酸二氢铝,无需加水,用轮碾机混合均匀。再将混合好的细粉、微粉部分加入轮碾机,搅拌5~10分钟后出料,使用振动加压成型,经过110℃干燥,1400℃保温8h烧成,制品体密为3.32g/cm3,气孔率为15.1%,测得以P2O5计算的磷残留量达到2.18%。

实施例五:

各组份配比为(质量百分数):白刚玉颗粒18%,铝铬渣颗粒35%,电熔氧化铬细粉5%,白刚玉细粉21%,氧化铬绿微粉6%,煅烧氧化铝微粉10%,锆英石粉5%。

先将4%的固体磷酸加入颗粒部分,加入0.5%的水调整泥料干湿,用轮碾机混合均匀。再将混合好的细粉、微粉料加入轮碾机,搅拌5~10分钟后出料,使用等静压成型,经过110℃干燥,1350℃保温8h烧成,制品体密为3.52g/cm3,气孔率为13.6%,测得以P2O5计算的磷残留量达到2.56%。

实施例六:

各组份配比为(质量百分数):白刚玉颗粒28%,铝铬渣颗粒40%,铝铬渣细粉10%,白刚玉细粉6%,氧化铬绿微粉6%,煅烧氧化铝微粉5%,锆英石粉5%。

先将4.5%的固体磷酸二氢铝加入颗粒部分,加入2.8%的液体磷酸,无需加水,用轮碾机混合均匀。再将混合好的细粉、微粉部分加入轮碾机,搅拌5~10分钟后出料,摩擦压砖机成型,经过110℃干燥,1600℃保温8h烧成,制品体密为3.50g/cm3,气孔率为11.3%,测得以P2O5计算的磷残留量达到3.96%。

利用本发明生产的产品与氧化铬相同含量的常规铝铬砖产品进行体积密度、显气孔率、抗废弃物熔融炉灰渣侵蚀和渗透性试验(静态坩埚法1500℃×24h)、综合抗渣性能评价,对比结果如下表所示。

从图1给出的整体结构图可以看到,实施例六中的废弃物熔融炉用高磷铝铬砖烧结情况很好,气孔较少;图2可以看到实施例六中的P2O5的峰较高,以P2O5计算的磷含量达到3.96%,常规铝铬砖面成分能谱图中显示不出P2O5的峰,表明量太少,测不出;从图3可以看到实施例六中的基质多封闭气孔,仅有少量液相存在,能够大大提高材料抗渗透性能;图4为图3元素面分布图,图中亮色部分代表此处有某种元素的存在,颜色越亮,存在的越多,可以看到有Si元素(液相)存在的地方含有较多的P元素,P2O5为玻璃形成体,能够有效的参与到液相网络结构中,证明液相可有效地将磷保存在材料当中。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种低温快烧的瓷质砖胚体及该瓷质砖的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!