低温快烧釉面砖的烧成方法及低温快烧釉面砖

文档序号:1387918 发布日期:2020-08-18 浏览:20次 >En<

阅读说明:本技术 低温快烧釉面砖的烧成方法及低温快烧釉面砖 (Firing method of low-temperature fast-firing glazed tile and low-temperature fast-firing glazed tile ) 是由 母军 梁广波 赖振煌 魏麟凯 姜文炜 金杰 于 2020-04-27 设计创作,主要内容包括:本发明公开了一种低温快烧釉面砖的烧成方法,其包括:(1)将各种原料混合均匀,然后经球磨制浆、喷雾制粉、压制、干燥、施釉后得到生坯;(2)将所述生坯按照预设烧成曲线烧成,即得到低温快烧釉面砖成品;其中,预设烧成曲线包括先升温至1150℃,然后降温至900~1100℃,再升温至烧成温度,保温预设时间后降温至80~300℃。相应的,本发明还公开了一种低温快烧釉面砖,其采用上述烧成方法烧制而得。本发明采用先升温、后降温、再升温、保温、降温的烧成方法,使得主矿相-莫来石的生长时间变长;从而提升了产品强度,缩短了烧成时间。同时,本发明的烧成方法还可有效降低返变现象发生的概率。(The invention discloses a firing method of a low-temperature fast-fired glazed tile, which comprises the following steps: (1) uniformly mixing various raw materials, and then performing ball milling pulping, spray milling, pressing, drying and glazing to obtain a green body; (2) firing the green body according to a preset firing curve to obtain a finished product of the low-temperature fast-fired glazed tile; wherein the preset firing curve comprises the steps of firstly heating to 1150 ℃, then cooling to 900-1100 ℃, then heating to the firing temperature, preserving heat for a preset time, and then cooling to 80-300 ℃. Correspondingly, the invention also discloses a low-temperature fast-fired glazed tile which is fired by adopting the firing method. The invention adopts a sintering method of firstly heating, then cooling, then heating, heat preservation and cooling, so that the growth time of the main mineral phase-mullite is prolonged; thereby improving the strength of the product and shortening the sintering time. Meanwhile, the sintering method of the invention can also effectively reduce the probability of occurrence of the return phenomenon.)

低温快烧釉面砖的烧成方法及低温快烧釉面砖

技术领域

本发明涉及陶瓷砖技术领域,尤其涉及一种低温快烧釉面砖的烧成方法及低温快烧釉面砖。

背景技术

一方面,在现有的陶瓷砖烧成领域,均采用梯度烧成曲线,即逐渐升温、保温、逐渐降温的工艺;这种工艺耗时长。

另一方面,在传统瓷质釉面砖,如仿古砖、全抛釉等的生产过程中,为了确保产品不变形、强度(断裂模数)高以及达到一定的合格率,往往需要将坯体中的Al2O3含量控制到19~22%之间。在成品低温快烧釉面砖中,Al2O3以莫来石和玻璃相的形式存在;其中,莫来石相能提升强度;而维持玻璃相与莫来石相的平衡则可有效消除应力,控制烧成瓷砖的变形。

在传统的陶瓷原料中,Al2O3的来源有三类:第一类是粘土类原料,如高岭土、膨润土、黑泥、白泥,水洗土等;第二类是熔剂类原料,如钾长石、钠长石以及各类砂料;第三类是一些高铝类的原料,如铝矾土、莫来石、氧化铝等。为了维持低温快烧釉面砖坯体中的Al2O3含量在19~22%之间,往往需要添加铝矾土或者采用大量的粘土类原料(占比25~40%);然而,铝矾土会大幅提升烧成温度,延长烧成时间;此外,由于我国优质高岭土原料的逐步枯竭和生态环保政策的逐步落实,高岭土黑泥等优质高氧化铝含量原料,越来越稀缺。粘土类原料在国家环保政策背景下,供应量也越来越少。因此,急需考虑降低低温快烧釉面砖中的Al2O3含量。

然而,当降低Al2O3含量后,坯体中莫来石含量相应降低,导致烧成过程中应力积累较大,容易出现变形;尤其是在烧成后放置15天以后,极易出现变形(返变现象)。同时,降低Al2O3含量后,烧成产物强度降低;此外,也会导致坯釉适配性下降,导致边裂。

发明内容

本发明所要解决的技术问题在于,提供一种低温快烧釉面砖的烧成方法,其烧成周期短,烧成能耗低。

本发明还要解决的技术问题在于,提供一种低温快烧釉面砖,其强度高,变形量小。

为了解决上述问题,本发明提供了一种低温快烧釉面砖的烧成方法,其包括:

(1)将各种原料混合均匀,然后经球磨制浆、喷雾制粉、压制、干燥、施釉后得到生坯;

(2)将所述生坯按照预设烧成曲线烧成,即得到低温快烧釉面砖成品;

其中,所述预设的烧成曲线为:

从室温升温至1150℃,升温速率为160~200℃/min;

从1150℃降温至T1,降温速率为6~10℃/min;

从T1升温至烧成温度,升温速率为40~80℃/min;

在烧成温度保温5~15min;

从烧成温度降温至T2,降温速率为90~150℃/min;

其中,所述T1为900~1100℃,所述烧成温度为1150~1170℃,所述T2为80~300℃。

作为上述技术方案的改进,所述预设烧成曲线为:

从室温升温至1150℃,升温速率为160~180℃/min;

从1150℃降温至T1,降温速率为8~10℃/min;

从T1升温至烧成温度,升温速率为50~70℃/min;

在烧成温度保温8~12min;

从烧成温度降温至T2,降温速率为100~130℃/min;

其中,所述T1为1000~1100℃,所述烧成温度为1160~1170℃,所述T2为100~250℃。

作为上述技术方案的改进,步骤(1)中,将各种原料按照配方混合均匀;所述配方按照重量份计主要包括以下原料:

钠石粉8~12份、钾钠石粉35~42份、高温砂2~5份、中温砂10~15份、添加剂0.1~5份、黑坭3~8份、高岭土7~12份、水洗坭12~17份、滑石2~4份;上述原料重量份之和为100份。

作为上述技术方案的改进,所述配方按照重量份计主要包括以下原料:

钠石粉9~10份、钾钠石粉36~40份、高温砂3~5份、中温砂13~15份、添加剂2~5份、黑坭4~6份、高岭土8~10份、水洗坭12~15份、滑石2.5~4份;上述原料重量份之和为100份。

作为上述技术方案的改进,所述配方还包括增强剂0.1~1份,解胶剂0.1~1份。

作为上述技术方案的改进,所述添加剂按照重量百分数计的化学成分为:

SiO2 73~76%,Al2O3 17~20%,Fe2O3 0.05~0.15%,TiO2 0.1~0.2%,CaO 0.1~0.2%,MgO 0.1~0.2%,K2O 1.5~2.0%,Na2O 0.3~0.5%,LOI 3.5~4.0%。

作为上述技术方案的改进,所述添加剂按照重量百分数计的化学成分为:

SiO2 74~76%,Al2O3 18~20%,Fe2O3 0.05~0.1%,TiO2 0.1~0.2%,CaO 0.1~0.2%,MgO 0.1~0.2%,K2O 1.8~2.0%,Na2O 0.3~0.5%,LOI 3.5~4.0%。

作为上述技术方案的改进,所述生坯中Al2O3含量为15~18wt%,烧失量为2~4wt%。

作为上述技术方案的改进,所述解胶剂选用三聚磷酸钠,所述增强剂选用PVA。

相应的,本发明还公开了一种低温快烧釉面砖,其采用上述的低温快烧釉面砖的烧成方法烧制而得。

实施本发明,具有如下有益效果:

1.本发明采用先升温、后降温、再升温、保温、降温的烧成方法,使得主矿相-莫来石的生长时间变长;从而提升了产品强度,缩短了烧成时间。本发明中,烧成周期为30~40分钟,常规低温快烧釉面砖的烧成周期为50~80分钟。

2.本发明在配方之中引入了较高量的滑石,将传统的Na-K-Al-Si系相图转换为Na-K-Al-Si-Mg系相图;同时本发明还引入了添加剂,此两者可有效与烧成曲线配合,促进莫来石相的析出,降低烧成过程中的热应力积累,进而解决因Al2O3含量降低带来的强度下降、返变上升的问题。

3.本发明的配方中,稀缺的坭类原料(黑坭、水洗坭)的含量为10~20份;低于现有低温快烧釉面砖中的25~40%;降低了原料成本。

4.本发明配方中,烧失量为3.5~4%,其可适应于快速烧成,大幅度缩短了烧成周期,提升了产量。本发明低铝高硅高强度不变形釉面砖的整体烧成周期为30~40min。并且,本发明中氧化铝含量低,适应于低温烧成,降低了烧成耗能。具体的,本发明中的烧成温度从传统的1225℃降低到1150~1170℃,节约烧成耗能10~20%。具体的,本发明中的烧成温度从传统的1225℃降低到1150~1170℃,节约烧成耗能10~20%。

附图说明

图1是本发明一种低温快烧釉面砖的烧成方法流程图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面对本发明作进一步地详细描述。

参见图1,本发明提供了一种低温快烧釉面砖的烧成方法,其包括以下步骤:

S1:将各种原料混合均匀,然后经球磨制浆、喷雾制粉、压制、干燥、施釉后得到生坯;

S2:将生坯按照预设烧成曲线烧成,即得到低温快烧釉面砖成品;

其中,预设的烧成曲线为:

从室温升温至1150℃,升温速率为160~200℃/min;

从1150℃降温至T1,降温速率为6~10℃/min;

从T1升温至烧成温度,升温速率为40~80℃/min;

在烧成温度保温5~15min;

从烧成温度降温至T2,降温速率为90~150℃/min;

其中,所述T1为900~1100℃,所述烧成温度为1150~1170℃,所述T2为80~300℃。

基于上述实施例的烧成方法,采用了先升温、后降温、再升温、保温、最后降温的烧制方法,其可有效延长生坯在900~1150℃之内的停留时间,使得莫来石晶粒充分析出。特别地是,在1150~900℃内采用了降温地方法,有效控制了莫来石晶粒的尺寸,使得其相对较小。进而有效提升了强度,减小了热应力积累,降低了后期返变率。

此外,采用上述烧成方法时,可有效提升升温速率和降温速率,使得烧成周期整体缩短;在本发明中,烧成周期为30~40分钟;而普通的低温快烧釉面砖,烧成周期需达到50~80分钟。

在一种可选的实施方式中,所述步骤S1包括:

S11:将各种原料按照配方混合均匀,得到混合料;

S12:将混合料经球磨制浆、喷雾制粉得到粉料;

在一个可选的实施方式中,S11中的配方以重量份计主要包括以下原料:

钠石粉9~10份、钾钠石粉36~40份、高温砂3~5份、中温砂13~15份、添加剂2~5份、黑坭4~6份、高岭土8~10份、水洗坭12~15份、滑石2.5~4份;上述原料重量份之和为100份。

基于上述配方,生坯中Al2O3含量为15~19wt%,MgO含量为2.5~4%,烧失量为3~4%。一方面,将传统的Na-K-Al-Si系相图转换为Na-K-Al-Si-Mg系相图,改变了高温固熔体的成分,使得坯体中的氧化铝快速溶解到高温固溶体中,从而在氧化铝与熔融液的接触面上,游离二氧化硅与氧化铝结合,反应形成莫来石,促进了莫来石的析出;此外,这种反应所形成的莫来石多是二次莫来石,其莫来石柱长度较大,进而解决了因Al2O3含量降低带来的强度下降、变形上升、返变上升的问题,提升了合格率。另一方面,上述相图的转变,使得配方可与烧成曲线良好配合。

此外,在相图体系转变后,坯体的膨胀系数也发生了较大范围的变化;因此,本发明还引入了添加剂,其可与滑石以及其他原料综合作用,调节生坯膨胀系数,减少烧成过程中的应力积累,防止返变。此外,添加剂也可与滑石协同作用,促进Na-K-Al-Si系相图中二次莫来石的析出。

进一步的,上述配方中,坭类原料的含量(水洗坭、黑坭)低,降低了低温快烧釉面砖的原料成本。

具体的,在上述配方中,钠石粉的主要矿相为钠长石,也常常掺杂少量的石英、钾长石、斜长石等(自然界中难以寻求纯矿石)。本发明中钠石粉中,Na2O含量为6~10wt%。本发明配方中,钠石粉的用量为8~12份,示例地可为8份、9份、10份、11份、12份;优选的,钠石粉的用量为9~10份。

具体的,在上述配方中,钾钠石粉的主要矿相为微斜长石、钾长石,也常常掺杂一些石英、钠长石等矿相。本发明的钾钠石粉中,K2O的含量为4~10wt%,Na2O的含量为2~5wt%。本发明配方中,钾钠石粉的用量为35~42份,示例地可为35份、36份、38份、11份、12份;优选的,钾钠石粉的用量为36~40份。

高温砂的主要矿相是石英、高岭石、云母,也会掺杂一些钾长石、钠长石、斜长石等。其主要起到骨料的作用中,也能析出少量莫来石,提升强度。在本发明中,高温砂中Al2O3含量为19~22%,K2O和Na2O的含量之和为0.1~3wt%,此成分范围的高温砂在烧成时,可提供氧化铝和游离的二氧化硅,氧化铝可熔于熔融液,进而使得游离二氧化硅与熔于熔融液的氧化铝反应形成二次莫来石。

中温砂的主要矿相是与高温砂基本相同,但其各个矿相的含量不同,导致其化学成分与高温砂不同;中温砂中Al2O3含量为17~20wt%,K2O和Na2O的含量之和为2~6wt%;其在烧成过程中更多的起到调节高温熔融相的作用,同时也可析出少量莫来石。

黑坭是主要的粘土类矿物,更具体的,其属于球土类粘土;其主要的矿相为高岭土、石英、云母,以及一些有机质。本发明将黑坭的含量降低至3~8份,有效降低了原料成本。

水洗坭是另一种主要的粘土矿物,其是由原矿坭(黑坭或白泥等)除去砂、有机物后压滤而成。水洗坭是主要莫来石来源之一。

高岭土也是一种主要的粘土矿物,在自然界中,高岭土矿物通常与石英、云母伴生。高岭土是Al2O3、莫来石来源之一。具体的,在本发明中,高岭土中Al2O3含量为25~35wt%。

具体的,在本发明低温快烧釉面砖中配方中,滑石的含量为2.5~4份;在传统的配方中,滑石的含量一般在1.5%以下,本发明增加了滑石含量,其可使得本发明中的相图由传统的Na-K-Al-Si系相图转换为Na-K-Al-Si-Mg系相图,改变了高温固熔体的成分,使得坯体中的氧化铝快速溶解到高温固溶体中,从而在氧化铝与熔融液的接触面上,游离二氧化硅与氧化铝结合,反应形成莫来石,促进了莫来石的析出;此外,这种反应所形成的莫来石多是二次莫来石,其莫来石柱长度较大,进而解决了因Al2O3含量降低带来的强度下降、变形上升、返变上升的问题,提升了合格率。同时,滑石可有效调节高温熔融相成分,降低应力积累。

此外,本发明的配方之中还引入了添加剂,其化学成分为SiO2 73~76%,Al2O3 17~20%,Fe2O3 0.05~0.15%,TiO2 0.1~0.2%,CaO 0.1~0.2%,MgO 0.1~0.2%,K2O1.5~2.0%,Na2O 0.3~0.5%,LOI 3.5~4.0%。本发明中的添加剂可与配方、烧成曲线共同作用,改善坯体的膨胀系数,提升坯体和釉料的适配性,减少烧成过程中的应力积累,有效防止了返变。此外,本发明的添加剂可代替普通高铝材料。优选的,添加剂的化学成分为:SiO2 74~76%,Al2O3 18~20%,Fe2O3 0.05~0.1%,TiO2 0.1~0.2%,CaO 0.1~0.2%,MgO 0.1~0.2%,K2O 1.8~2.0%,Na2O 0.3~0.5%,LOI 3.5~4.0%。

此外,需要说明的是,由于本发明通过降低坭类原料的含量(水洗坭、黑坭)达到降低Al2O3含量的目的。为了弥补降低坭类原料后生坯强度降低的问题,本发明的配方中还引入了增强剂0.1~1份,解胶剂0.1~1份,其可提升生坯强度,防止干燥裂。具体的,所述解胶剂选用三聚磷酸钠,所述增强剂选用PVA。

S13:将粉料二次布料、压制、干燥、施釉后得到生坯;

本发明将传统的一次布料改为二次布料,将传统的单层坯体结构改变为双层坯体结构,在挥发物排出方面非常有利,在后期提高方面,也从结构上给予提升。

在一种可选的实施方式中,所述步骤S2中的烧成曲线为:

(1)从室温升温至1150℃,升温速率为160~200℃/min;

由于本发明的配方的烧失(LOI)为4%以下,使得本发明在前序氧化段可采用很高的升温速率。具体的,升温速率为160、170、185、190、200℃/min;优选的,升温速率为160~180℃/min;

(2)从1150℃降温至T1,降温速率为6~10℃/min;

具体的,T1为900~1100℃,优选的为1000~1100℃。在此温度范围内采取降温操作可延长在900~1150℃范围内停留时间,提升莫来石相的含量。

具体的,降温速率为6~10℃/min;具体的,降温速率可为6、7、8、9、10℃/min;优选的为8~10℃/min;在此降温速率下进行降温,可促进莫来石晶粒的细化,粒径较小的莫来石晶粒更有利于促进提升强度和降低热应力积累,减少返变。

(3)从T1升温至烧成温度,升温速率为40~80℃/min;

具体的,烧成温度为1150~1170℃;优选的为1160~1170℃;本发明的低温快烧釉面砖配方,其烧成温度更低,节省能量。

具体的,升温速率可为40、45、55、60、75、80℃/min;优选的,升温速率为50~70℃/min。

(4)在烧成温度保温5~15min;

(5)从烧成温度降温至T2,降温速率为90~150℃/min;

其中,T2为80~300℃。优选的为100~250℃。

下面结合具体实施例说明本发明。

实施例1~3

本实施例提供一种低温快烧釉面砖,其配方为:

钠石粉10份、钾钠石粉36份、高温砂3份、中温砂12份、黑坭8份、水洗坭17份、铝矾土4.5份、高岭土6份、滑石3.5份;水玻璃0.5份、三聚磷酸钠0.6份。

其烧成方法为:

(1)将各种原料混合均匀,然后经球磨制浆、喷雾制粉、压制、干燥、施釉后得到生坯;

(2)将生坯按照预设烧成曲线烧成,即得到低温快烧釉面砖成品;

其烧成曲线如表1所示:

表1实施例1~3烧成曲线表

实施例4~6

本实施例提供一种低温快烧釉面砖,其坯体配方如表2所示:

表2实施例4~6烧成曲线表

其中,实施例4的配方中还包括三聚磷酸钠0.6份,水玻璃0.5份;实施例5、6的配方中还包括三聚磷酸钠0.5份,水玻璃0.6份;

其中,添加剂的化学成分为:

SiO2 75.8%,Al2O3 18.5%,Fe2O3 0.1%,TiO2 0.15%,CaO 0.1%,MgO 0.15%,K2O 1.6%,Na2O 0.4%,LOI 3.2%。

其烧成方法与实施例2相同。

实施例7

本实施例提供一种低温快烧釉面砖,其配方与实施例5相同,烧成方法与实施例2相同。不同处在于添加剂的化学成分。

具体的,添加剂的化学成分为:

SiO2 74.6%,Al2O3 19.1%,Fe2O3 0.1%,TiO2 0.1%,CaO 0.1%,MgO 0.1%,K2O1.85%,Na2O 0.36%,LOI 3.62%。

对比例1

本对比例提供一种低温快烧釉面砖,其配方与实施例2相同;

其烧成曲线如下:

从室温到900℃,升温速率为55℃/min;

从900℃到1165℃,升温速率为20℃/min;

在1165℃保温14min;

从1165到200℃,降温速率为90℃/min。

对比例2

本对比例提供一种低温快烧釉面砖,其配方与实施例2相同;

其烧成曲线与实施例2基本相同;不同处在于:在1150降温到1050℃时,降温速率为20℃/min。

对比例3

本对比例提供一种低温快烧釉面砖,其坯体配方如下:

钠石粉9份、钾钠石粉42份、高温砂3.5份、中温砂14份、添加剂4.5份、黑坭5份、高岭土8份、水洗坭12.5份、滑石1.5份、解胶剂0.5份、增强剂0.8份。

其与实施例5的区别在于:滑石含量较少,为1.5份;钾钠石粉含量较多为42份。其余均与实施例5相同。

对比例4

本对比例提供一种低温快烧釉面砖,其坯体配方如下:

钠石粉9份、钾钠石粉40份、高温砂3.5份、中温砂14份、铝矾土4.5份、黑坭5份、高岭土8份、水洗坭12.5份、滑石3.5份、解胶剂0.5份、增强剂0.8份。

其与实施例5的区别在于:采用铝矾土取代添加剂,其余均与实施例5相同。

对比例5

本对比例提供一种低温快烧釉面砖,其坯体配方与实施例5相同;

其烧成方法与对比例1相同。

对比例6

本对比例提供一种低温快烧釉面砖,其坯体配方、烧成方法与实施例5相同。不同之处在于添加剂的化学成分。具体的,添加剂的化学成分如下:

SiO2 82.5%,Al2O3 10.3%,Fe2O3 0.2%,TiO2 0.1%,CaO 0.1%,MgO 0.1%,K2O2.2%,Na2O 3%,LOI 1.5%。

将实施例1~7,对比例1~6的低温快烧釉面砖进行测试;其中,断裂模数、边弯曲度按照标准GB/T 3810-2016中的方法做检测:

返变率的测试方法如下:将100片边弯曲度<0.3%的低温快烧釉面砖,存贮到仓库;15日后取出,进行边弯曲度测定;若前后边弯曲变化率【(放置后边弯曲度-放置前边弯曲度)/放置前边弯曲度】超过20%,则视为返变。计算返变的低温快烧釉面砖个数,进而计算返变率=返变砖个数/100

具体数据如表3所示:

表3测试结果表

断裂模数/MPa 返变率
实施例1 47.4 4%
实施例2 46.3 4%
实施例3 48.8 3%
实施例4 54.2 2%
实施例5 56.8 1%
实施例6 53.4 2%
实施例7 52.6 2%
对比例1 36.2 10%
对比例2 33.4 12%
对比例3 35.6 10%
对比例4 39.5 8%
对比例5 40.7 14%
对比例6 42.4 4%

通过表3可以看出,本发明实施例1-7的低温快烧釉面砖,其断裂模数和返变率均明显优于对比例1-6。由此说明,由本发明烧成方法烧成得到的低温快烧釉面砖,其力学性能优良,且返变率明显降低。

通过实施例2和对比例1、对比例2的对比可以看出,实施例2的断裂模数明显大于对比例1、对比例2,实施例2发生返变的概率明显小于对比例1和2.

通过对比例1~2和实施例2的对比分析可知,改变本发明中的烧成曲线,使其升降温形式、升降温速率不在本发明保护的范围内,均不能实现本发明的效果。

通过对比例3~4与实施例5的对比分析可知,本发明中的滑石、添加剂与其他原料具有良好的协同作用;改变任意一者的添加量,或者改变配方中其他原料的添加量,都会使得本发明中提升强度、降低返变概率的技术效果减弱。

通过对比例5与实施例5的对比分析可知,本发明中的烧成曲线与配方有着良好的配合作用,改变其中的任意一者,都会使得本发明中提升强度、降低返变概率的技术效果减弱。

通过对比例6与实施例5的对比分析可知,本发明中的添加剂化学成分对于实现本发明的技术效果也具有促进性的作用,如果改变其组分,也会使得本发明中提升强度、降低返变概率的技术效果减弱。

以上所述是发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种具有高抗裂性复合日用陶瓷制品及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!