作为有机发光元件的含喹喔啉二聚体电子传输材料

文档序号:1397067 发布日期:2020-03-03 浏览:25次 >En<

阅读说明:本技术 作为有机发光元件的含喹喔啉二聚体电子传输材料 (Quinoxaline dimer-containing electron transport materials as organic light emitting elements ) 是由 杜啟仁 萧清文 王仁宗 许朝胜 曾靖雯 于 2019-04-16 设计创作,主要内容包括:一种作为有机发光元件的含喹喔啉二聚体电子传输材料,分子结构上具有富含电子特性,其应用于有机发光二极管元件的制造时,可作为电子传输层,并且能促使此元件具有降低操作电压与增进发光效率的效果。(The quinoxaline dimer-containing electron transport material used as an organic light emitting element has a molecular structure with electron-rich characteristics, and can be used as an electron transport layer when being applied to the manufacturing of an organic light emitting diode element, and can promote the element to have the effects of reducing the operating voltage and improving the luminous efficiency.)

作为有机发光元件的含喹喔啉二聚体电子传输材料

技术领域

本发明与有机发光元件的电子传输材料有关,尤指一种含喹喔啉二聚体电子传输材料。

背景技术

美商柯达公司在1980年代中期,利用真空蒸镀法发表了多层式的有机发光二极管元件,将电洞与电子局限在电子传输层与电洞传输层之间,进行再结合而发光,成功地发表了具有高效率与低驱动电压的有机发光二极管元件。此后,各种理论与材料不断推陈出新,造就了有机发光二极管元件的快速发展。

有机发光二极管元件中,各层结构各司其职,具有不同的功能性,其中电子传输层的主要功能为帮助电子传输至发光层;相对地电洞传输层则是帮助电洞传输至发光层。通过电洞传输层与电子传输层增进电洞与电子的流动性,并视其载子传输效率进行调整修正再结合的区域,可降低驱动电压并提高元件的发光效率。

良好的电子传输材料通常具有以下特性:(1)LUMO能阶适合搭配发光层的LUMO能阶,以利电子传递。(2)HOMO能阶低于发光层的HOMO能阶,兼具电洞阻挡能力。(3)足够高的三重态能阶,避免发光被淬熄。(4)可形成非晶相的薄膜,避免光散射。(5)良好的热稳定性以及高玻璃转化温度。

目前电子传输材料大致可分为金属错合物类与含氮及含氧的杂环类,分子结构上通常是具有共轭平面的芳香族化合物,可以容易地接受电子并传输电子。富含电子的分子结构一般具有良好的电子传输功能。例如恶二唑(oxadiazole)、***(triazole),苯并咪唑(benzimidazole)、吡啶(pyridine)、三嗪(triazine)、二苯基膦氧化物(diphenylphosphineoxide)、喹啉(quinoline)、喹喔啉(quinoxaline)与安他唑啉(antazoline)等衍生物。在喹喔啉的相关研究中,Kanbara等人(Macromolecules,Vol.26,p3464,1993)以各种取代基合成喹喔啉衍生物,提升分子量并改善热稳定性,其中spiro-quinoxaline具有适当的能阶,LUMO为-2.8eV,容易与发光材料搭配。接着,Jandke等人(Macromolecules,Vol.31,p6434,1998)将分子结构设计成含有两个或三个喹喔啉官能基,例如二酚喹喔啉(BPQ,bis(phenylquinoxaline))与三酚喹喔啉(TPQ,tris(phenylquinoxaline)),其玻璃转化温度在130℃以上,且证实其薄膜属于非晶相薄膜。Redecker等人(Appl.Phys.Lett.,Vol.17,p109,1999)则研究BPQ与TPQ的电子传输效率,是恶二唑的100倍(约10-4cm2/[email protected]6V/cm),并尝试以TPQ制作高分子发光二极管,其EQE约0.1%。

连接数个喹喔啉可有效提升电子传输效率,不过也容易造成分子结构过大,蒸镀温度过高,合成步骤变得复杂困难等缺点,因此需要提出改良。

发明内容

本发明的主要目的在于提供一种作为有机发光元件的含喹喔啉二聚体电子传输材料,主要为将喹喔啉的衍生物对接形成二聚体,以缩合反应方式大幅简化合成步骤,串连两个以上的喹喔啉官能基,并适当调整取代基,除了具有优异的电子传输效率外,亦与Liq(8-Quinolinolato lithium)有良好的相容性。以共镀方式制作有机发光二极管元件,单一镀层可同时包含电子注入层、电子传输层以及电洞阻档层等功能。

本发明作为有机发光元件的含喹喔啉二聚体电子传输材料,其化学结构为:

Figure BDA0002029143000000021

R1、R2、R3、R4各自独立为经取代或未经取代的C1至C4烷基、经取代或未经取代的C6至C18芳香环基、经取代或未经取代的C2至C18杂芳香环基架构。

m,n各自独立表示为化学键连结,m或n=0表示未连结,m或n=1表示连结。

上述化学结构依照不同的分子架构片段与取代基位置,可能为下列化合物结构:

Figure BDA0002029143000000022

Figure BDA0002029143000000031

本发明的有益效果在于:

本发明提供一种作为有机发光元件的含喹喔啉二聚体电子传输材料,主要为将喹喔啉的衍生物对接形成二聚体,以缩合反应方式大幅简化合成步骤,串连两个以上的喹喔啉官能基,并适当调整取代基,除了具有优异的电子传输效率外,亦与Liq(8-Quinolinolato lithium)有良好的相容性。以共镀方式制作有机发光二极管元件,单一镀层可同时包含电子注入层、电子传输层以及电洞阻档层等功能。

附图说明

图1为本发明有机发光元件的结构图。

图2为本发明显示实验例与比较例中使用的有机发光二极管材料,包含具有电洞注入功能的材料HT-1、具有电洞传输功能的材料HT-2、具有发光功能的客体材料RD-1、具有发光功能主体材料RH-1、具有电子传输功能的材料ET-1与ET-2。

图3为本发明显示实验例与比较例中有机发光元件的电压-电流密度曲线图,调整不同电压并量测电压变化的结果。

图4为本发明显示实验例与比较例中有机发光元件的电压-亮度曲线图,调整不同电压并量测亮度变化的结果。

图5为本发明显示实验例与比较例中有机发光元件的亮度-效率曲线图,调整不同电压并量测亮度与电流密度变化的结果,再经数据分析整理成亮度与效率的相关曲线。

图6为本发明显示实验例与比较例中有机发光元件的电流密度-亮度曲线图,调整不同电压并量测电流密度及亮度变化的结果。

图7为本发明显示实验例与比较例中有机发光元件的光谱图,在亮度2000cd/m2时量测的光谱图。

具体实施方式

而本发明的上述目的与优点,不难从下述所选用实施例的详细说明与附图中获得深入了解。

本发明的实验方式大致分成三个部份,首先是电子传输材料的合成与纯化,接着是有机发光元件制作,最后是数据分析与效能评估。

一、电子传输层材料合成例:

I-1合成例

将2,3-二甲基喹喔啉-6-硼酸(20.2g,0.1mol)、6-溴-2,3-二苯基喹喔啉(39.7g,0.11mol)、四(三苯基磷)钯(3.47g,0.003mol)、碳酸钾(34.5g,0.25mol)、甲苯(300mL)、乙醇(40mL)及水(100mL)置于三颈瓶中,架设冷凝管及控温器装置,在氮气系统下,升温至78℃,加热16小时,反应完后冷却至室温,除去水层后,再加入水搅拌一小时,利用抽气过滤得粗产物,取固体加入乙酸乙酯加热搅拌至全溶,再以管柱层析法进行纯化后获得淡黄色固体,接着利用乙酸乙酯与甲醇再结晶纯化,获得I-1固体产物26.3克,产率约60%。

1H-NMR(CDCl3,500MHZ):2.76(s,6H),7.34-7.36(m,6H),7.52-7.55(m,4H),8.11(d,2H),8.17(dd,1H),8.28(d,1H),8.38(s,1H),8.52(d,1H).高解析质谱(M/Z):[M+1],测定值:439.1937.(理论值[M]:C30H22N4 438.1844)

I-2合成例

将2,3-二甲基喹喔啉-6-硼酸(22.9g,0.11mol)、11-溴二苯并[a,c]吩嗪(37.0g,0.10mol)、四(三苯基磷)钯(5.95g,0.005mol)、碳酸钾(28.5g,0.21mol)、甲苯(350mL)、乙醇(40mL)及水(100mL)置于三颈瓶中,架设冷凝管及控温器装置,在氮气系统下,升温至78℃,加热16小时,反应完后冷却至室温,除去水层后,再加入水搅拌一小时,利用抽气过滤得粗产物,取固体加入乙酸乙酯加热搅拌至全溶,再以管柱层析法进行纯化后获得淡黄色固体,接着利用乙酸乙酯与甲醇再结晶纯化,获得I-2固体产物24.7克,产率55%。

1H-NMR(CDCl3,500MHZ):2.78(d,6H),7.73-7.83(m,4H),8.11-8.29(m,3H),8.43(d,2H),8.57(d,2H),8.68(s,1H),9.42(d,2H).高解析质谱(M/Z):[M+1],测定值:437.1726.(理论值[M]:C30H20N4 436.1688)

I-3合成例

将2,3-二甲基喹喔啉-6-硼酸(20.0g,0.10mol)、9-溴-苊并[1,2-b]喹喔啉(30.0g,0.09mol)、四(三苯基磷)钯(5.2g,0.0045mol)、碳酸钾(24.9g,0.18mol)、甲苯(300mL)、乙醇(40mL)及水(100mL)置于三颈瓶中,架设冷凝管及控温器装置,在氮气系统下,升温至78℃,加热16小时,反应完后冷却至室温,除去水层后,再加入水搅拌一小时,利用抽气过滤得粗产物,取固体加入乙酸乙酯加热搅拌至全溶,再以管柱层析法进行纯化后获得淡黄色固体,接着利用乙酸乙酯与甲醇再结晶纯化,获得I-3固体产物22.2克,产率60%。

1H-NMR(CDCl3,500MHZ):2.75(d,6H),7.82-7.87(m,2H),8.09-8.15(m,5H),8.29(d,1H),8.38(d,1H),8.41-8.45(m,2H),8.54(d,1H)高解析质谱(M/Z):[M+1],测定值:411.1718.(理论值[M]:C28H19N4 410.1531)

制备完成的电子传输材料,分别以NMR鉴定结构,利用CV量测材料的氧化还原电位,再换算成HOMO/LUMO能阶,使用的溶剂为二氯甲烷,电解质为四-丁基铵四氟硼酸。合成例中各材料的分析结果如表一所示。

二、电子传输材料应用于有机发光元件:

有机发光元件的制作一般包括基材前处理、有机层蒸镀、金属阴极蒸镀与封装等。其中,该有机发光元件结构如图1所示,包含基板000、铟锡氧化物阳极100、电洞注入层105、电洞传输层110、电子阻挡层115、发光层120、电洞阻挡层125、电子传输层130、电子注入层135及金属阴极140等结构。以本发明的电子传输材料应用于有机发光元件时,可作为有机发光元件的电子传输层。实验例与比较例中不同元件结构的制作条件,详细整理如表二。元件结构中使用的各层材料其分子结构如图2所示。制作完成的有机发光元件,经过适当封装后进行量测。电压与电流量测设备为Keithley 2230,光谱量测设备为Konica Minolta CS-1000A,设定起始为4V,逐渐升高至9V,并同时量测电流与亮度变化。各实验例与比较例的元件分析结果,详细整理如表三。

实验例1

以化合物I-1作为电子传输层,制作成有机发光元件进行测试。详细制作方式为,首先在铟锡氧化物阳极上蒸镀电洞注入层3nm,材料为HT-1;接着是电洞传输层65nm,材料为HT-2,然后是发光层30nm,材料为5%的BD-1掺杂于BH-1中;接着是电子传输层10nm,材料为50%的I-1与50%的Liq(8-Quinolinolato lithium)进行共蒸镀;最后是金属阴极100nm,材料是Aluminum。

实验例2

以化合物I-2作为电子传输层,制作成有机发光元件进行测试。详细制作方式为,首先在铟锡氧化物阳极上蒸镀电洞注入层3nm,材料为HT-1;接着是电洞传输层65nm,材料为HT-2,然后是发光层30nm,材料为5%的BD-1掺杂于BH-1中;接着是电子传输层10nm,材料为50%的I-2与50%的Liq(8-Quinolinolato lithium)进行共蒸镀;最后是金属阴极100nm,材料是Aluminum。

实验例3

以化合物I-3作为电子传输层,制作成有机发光元件进行测试。详细制作方式为,首先在铟锡氧化物阳极上蒸镀电洞注入层3nm,材料为HT-1;接着是电洞传输层65nm,材料为HT-2,然后是发光层30nm,材料为5%的BD-1掺杂于BH-1中;接着是电子传输层10nm,材料为50%的I-3与50%的Liq(8-Quinolinolato lithium)进行共蒸镀;最后是金属阴极100nm,材料是Aluminum。

比较例1

以典型的电子传输材料ET-1(专利号:TW I469967)作为电子传输层,制作成有机发光元件进行测试。详细制作方式为,首先在铟锡氧化物阳极上蒸镀电洞注入层3nm,材料为HT-1;接着是电洞传输层65nm,材料为HT-2,然后是发光层30nm,材料为5%的BD-1掺杂于BH-1中;接着是电子传输层10nm,材料为50%的ET-1与50%的Liq(8-Quinolinolatolithium)进行共蒸镀;最后是金属阴极100nm,材料是Aluminum。

评估:

制作完成的有机发光元件经分析后,将数据整理后详细如表二。不同的电子传输材料不仅能阶不同,电子传输速率亦不同,适当的材料是提高有机发光元件效率的关键。如图3、图4、图5与图6分别为电压-电流密度曲线图、电压-亮度曲线图、亮度-效率曲线图与电流密度-亮度曲线图的分析结果,图7为亮度2000cd/m2时的光谱图。

本发明的喹喔啉衍生物二聚体相较于典型的电子传输材料具有低操作电压与高发光效率的优势。如实验例1、实验例2与实验例3,只需6.7V操作电压即可达到2000cd/m2的亮度,而典型的电子传输材料如比较例1,则需要6.9V以上。其中,采用化合物I-1或化合物I-2制作的有机发光元件如实验例1或实验例2,不仅优于一般典型的电子传输材料,且展现了最佳的发光效率,达到5.5/cd/A,而比较例1则5.2cd/A。

表一 合成例中各种电子传输材料基本性质

Figure BDA0002029143000000071

表二 实验例与比较例中有机发光元件电子传输材料对照表

Figure BDA0002029143000000082

表三 实验例与比较例中有机发光元件的各项效能指标量测结果

Figure BDA0002029143000000083

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:高效低毒无公害广谱杀菌新铜化合物及其组合物

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!