液晶显示器件

文档序号:1412300 发布日期:2020-03-10 浏览:37次 >En<

阅读说明:本技术 液晶显示器件 (Liquid crystal display device having a plurality of pixel electrodes ) 是由 梁志安 李佳明 康素敏 张璇 王东梅 于 2018-08-31 设计创作,主要内容包括:本发明提供一种液晶显示器件,所述液晶显示器件包括第一基板、第二基板,以及设置在所述第一基板和所述第二基板之间的液晶组合物;所述第一基板的与所述液晶组合物接触的表面设有配向层,且所述第二基板无配向层;所述液晶组合物包含液晶化合物、自配向剂和式Ⅰ所示的可聚合化合物,&lt;Image he="159" wi="700" file="DDA0001785004020000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;(The invention provides a liquid crystal display device, comprising a first substrate, a second substrate, and a liquid crystal composition arranged between the first substrate and the second substrate; an alignment layer is arranged on the surface of the first substrate, which is in contact with the liquid crystal composition, and the second substrate is free of the alignment layer; the liquid crystal composition comprises a liquid crystal compound, a self-aligning agent and a polymerizable compound shown as a formula I,)

液晶显示器件

技术领域

本发明涉及液晶显示技术领域。更具体地,涉及液晶显示器件。

背景技术

随着显示技术的发展,液晶显示器件(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。

通常液晶显示器件包括彩膜(CF,Color Filter)基板、薄膜晶体管(TFT,ThinFilm Transistor)基板、夹于彩膜基板与薄膜晶体管基板之间的液晶(LC,LiquidCrystal)组合物层及密封胶框(Sealant)。

目前,常用的液晶显示器件(LCD)中,CF基板和TFT基板上分别有一层薄膜材料,其主要作用是使液晶分子按一定方向排列,称之为配向层。这种配向层主要分为摩擦配向型和光配向型。配向层具有均一性、密着性和稳定性的特点,配向层除了可以使液晶分子配向外,另一个重要的作用是可作为液晶分子与液晶显示器件基板之间的绝缘膜,配向层能够在一帧的时间内保持加在基板上的电压,从而防止基板中的离子等杂质扩散到液晶分子中,起到保持液晶分子纯度的作用。但是,配向层也具有一定的缺点。首先摩擦配向型配向层在液晶显示器件显示过程中容易造成粉尘颗粒、静电残留、刷痕等问题降低液晶显示器件制成良率,而光配向型虽然可以避免前述问题,但由于光配向型配向层材料特性受限,其耐热性和耐老化性较差,同时锚定液晶分子的能力也较弱,从而影响液晶显示器件的显示效果;其次,配向层在TFT-LCD上成膜的工艺也较为复杂,导致液晶显示器件生产成本提高。

如果将液晶显示器件中的配向层完全去除,液晶分子将无法垂直排列。目前,采用在液晶层中添加自配向剂,依靠自配向剂吸附在基板表面的特性使得液晶分子垂直排列。然而,如果完全省去配向层,液晶显示器件往往会出现显示不均、液晶分子配向不良等问题,液晶显示器件的残像问题也会严重。

在PSVA(Polmer Stabilized Vertivally Aligned,聚合物稳定的垂直排列液晶)、SAVA(垂直自配向)显示模式的液晶显示器件中,液晶层含有可聚合化合物作为反应性介晶(RM),由于在液晶显示器件制成过程中存在反应性介晶(RM)残留的可能性,而RM残留会造成液晶显示器件出现残像等显示不良的问题,并且RM残留量越大,残像的问题越严重。

发明内容

为了获得显示过程残像少、制备工艺简单的液晶显示器件,本申请的发明人等进行了深入研究后发现,通过本发明的液晶显示器件能够实现该目的,从而完成了本发明。

本发明的目的在于提供了一种液晶显示器件。

作为本发明的一个方案的液晶显示器件,其包括第一基板、第二基板,以及设置在第一基板和第二基板之间的液晶组合物;所述第一基板的与液晶组合物接触的表面设有配向层,且所述第二基板无配向层;液晶组合物包括液晶化合物、自配向剂和式Ⅰ所示的可聚合化合物。

Figure BDA0001785004010000021

本发明提供的液晶显示器件具有较宽的向列相温度范围、合适的或较高的双折射率各向异性Δn、高电荷保持率的特点,通过式Ⅰ所示的可聚合化合物作为反应性介晶(RM)与液晶化合物、自配向剂配合使用,提高液晶显示器件制成过程中反应性介晶(RM)的转化率、降低反应性介晶(RM)的残留量,从而有效缩短液晶显示器件的制备过程,提高生产效率,降低液晶显示器件出现残像显示不良的程度。

具体实施方式

作为本发明的一个方案的液晶显示器件,其包括第一基板、第二基板,以及设置在第一基板和第二基板之间的液晶组合物;第一基板的与液晶组合物接触的表面设有配向层,且第二基板无配向层;液晶组合物包括液晶化合物、自配向剂和式Ⅰ所示的可聚合化合物。

Figure BDA0001785004010000031

在液晶显示器件制作过程中,式Ⅰ所示的可聚合化合物作为反应性介晶(RM)与自配向剂通过紫外线照射而发生光聚合,形成聚合物薄膜。依靠自配向剂与第二基板分子间的物理吸附作用,使得形成的聚合物薄膜的一侧与第二基板结合,另一侧与液晶组合物接触,并起到对液晶分子进行垂直配向的作用。在第一基板的配向层与液晶组合物接触的一侧也会形成聚合物薄膜,同样依靠分子间的物理吸附作用,形成的聚合物薄膜的一侧与第一基板结合,另一侧与液晶组合物接触,聚合物薄膜能够有效防止配向层在液晶显示器件显示过程中产生的粉尘颗粒、静电残留等造成液晶显示器件良率下降问题的产生。

该液晶显示器件具有较宽的向列相温度范围、合适的或较高的双折射率各向异性Δn、高电荷保持率的特点,通过式Ⅰ所示的可聚合化合物作为反应性介晶(RM)与液晶组合物、自配向剂配合使用,提高液晶显示器件制成过程中反应性介晶(RM)的转化率、降低反应性介晶(RM)的残留量,从而有效缩短液晶显示器件的制备过程,提高生产效率,降低液晶显示器件出现残像显示不良的程度。

优选地,前述式Ⅰ所示化合物占液晶组合物总质量百分比含量为0.01-1%,优选为0.03-0.5%。从降低液晶显示器件的残像显示不良的角度考虑,前述式Ⅰ所示化合物的含量优选为1%以下,进一步优选为0.5%以下。另外,从与自配向剂发生聚合形成聚合物薄膜从而对液晶分子进行配向、以及防止配向层在液晶显示器件显示过程中产生的粉尘颗粒、静电残留等造成液晶显示器件良率下降的角度考虑,前述式Ⅰ所示化合物的含量优选为0.01%以上,进一步优选为0.03%以上。

本发明的液晶显示器件的一些实施方式中,可选的,前述第一基板为薄膜晶体管基板,前述第二基板为彩膜基板;或者前述第一基板为彩膜基板,前述第二基板为薄膜晶体管薄膜。优选地,前述第一基板为薄膜晶体管基板,前述第二基板为彩膜基板。

本发明的液晶显示器件的一些实施方式中,前述配向层厚度为30nm-120nm,优选40nm-60nm,配向层为聚酰亚胺薄膜层。

本发明的液晶显示器件的一些实施方式中,前述自配向剂具有至少两个锚定官能团,以及1~3个可聚合官能团。

锚定官能团为自配向剂中起到与基板吸附固定作用的官能团,可选为羟基、酯基、羰基,优选羟基,且至少有两个。可聚合官能团为能够与式Ⅰ所示化合物进行聚合的官能团,优选甲基丙烯酸酯基、丙烯酸酯基、乙烯基或环氧乙烷基,进一步优选甲基丙烯酸酯基。

本发明的液晶显示器件的一些实施方式中,前述自配向剂选自式Ⅱ1-Ⅱ42所示化合物组成的组。

Figure BDA0001785004010000041

Figure BDA0001785004010000051

Figure BDA0001785004010000061

Figure BDA0001785004010000081

Figure BDA0001785004010000101

Figure BDA0001785004010000111

Figure BDA0001785004010000131

Figure BDA0001785004010000141

优选地,前述的式Ⅱ所示化合物占液晶组合物总质量百分比含量为0.1-3%,优选为0.5%-1.5%。这是因为,从能够与式I所示的可聚合化合物形成聚合性薄膜从而对液晶分子进行配向、以及防止配向层在液晶显示器件显示过程中产生的粉尘颗粒、静电残留等造成液晶显示器件良率下降的角度考虑,式II所示的化合物占液晶组合物总质量百分比含量优选为0.1%以上,进一步优选为0.5%以上。另外,式II所示的化合物占液晶组合物总质量百分比含量优选为3%以下,进一步优选为1.5%以下。

本发明的液晶显示器件的一些实施方式中,前述液晶化合物包括一种或多种式Ⅲ所示化合物、一种或多种式IV所示化合物,

Figure BDA0001785004010000151

式Ⅲ中,R1、R2各自独立地表示碳原子数为1-10的烷基、碳原子数为1-10的烷氧基、碳原子数为2-10的链烯基、或者、碳原子数为3-8的链烯氧基;

Figure BDA0001785004010000152

各自独立地表示

Figure BDA0001785004010000153

式IV中,R3、R4各自独立地表示碳原子数为1-10的烷基、氟取代的碳原子数为1-10的烷基、碳原子数为1-10的烷氧基、氟取代的碳原子数为1-10的烷氧基、碳原子数为2-10的链烯基、氟取代的碳原子数为2-10的链烯基、碳原子数为3-8的链烯氧基或氟取代的碳原子数为3-8的链烯氧基,并且R3、R4所示基团中任意一个或多个不相连的-CH2-各自独立地任选被亚环戊基、亚环丁基或亚环丙基取代;

Z1、Z2各自独立地表示单键、-CH2CH2-或-CH2O-;

Figure BDA0001785004010000154

各自独立地表示1,4-亚苯基、1,4-亚环己基、氟代1,4-亚苯基或1,4-亚环己烯基;

m表示1或2;

n表示0、1或2。

式Ⅲ所示化合物具有旋转粘度低、与其他化合物互溶性好的特点。较低的旋转粘度更有利于提高液晶组合物的响应速度。

式Ⅳ所示化合物为负介电各项异性,通过式Ⅳ所示化合物来调节液晶组合物的驱动电压。

作为前述的碳原子数为1-10的烷基中一个或多个不相连的-CH2-被亚环丙基、亚环丁基或亚环戊基取代后得到的基团,可以列举出环丙基、环丁基、环戊基、甲基亚环丙基、乙基亚环丙基、丙基亚环丙基、异丙基亚环丙基、正丁基亚环丙基、异丁基亚环丙基、叔丁基亚环丙基、甲基亚环丁基、乙基亚环丁基、丙基亚环丁基、异丙基亚环丁基、正丁基亚环丁基、异丁基亚环丁基、叔丁基亚环丁基、甲基亚环戊基、乙基亚环戊基、丙基亚环戊基、异丙基亚环戊基、正丁基亚环戊基、异丁基亚环戊基等。R3、R4所示的基团中,从液晶化合物旋转粘度、溶解度和清亮点的角度考虑优选的是环丙基、环丁基或环戊基。

可选的,前述液晶组合物为负介电各向异性液晶组合物。

式Ⅲ所示化合物占液晶组合物总质量百分比含量优选为5-60%,进一步优选为10-40%;式Ⅳ所示化合物占液晶组合物总质量百分比含量优选为25-90%,进一步优选为40-65%。

可选的,前述一种或多种式Ⅲ所示化合物选自式Ⅲ1-Ⅲ16所示化合物组成的组;

Figure BDA0001785004010000171

可选的,前述一种或多种式IV所示化合物选自式IV 1-IV 14所示化合物组成的组;

Figure BDA0001785004010000172

Figure BDA0001785004010000181

其中,

R3、R4与前述式IV所示化合物中的R3、R4的含义相同,各自独立地表示碳原子数为1-10的烷基、氟取代的碳原子数为1-10的烷基、碳原子数为1-10的烷氧基、氟取代的碳原子数为1-10的烷氧基、碳原子数为2-10的链烯基、氟取代的碳原子数为2-10的链烯基、碳原子数为3-8的链烯氧基或氟取代的碳原子数为3-8的链烯氧基,并且R3、R4所示基团中任意一个或多个不相连的-CH2-任选被亚环戊基、亚环丁基或亚环丙基取代。

作为本发明的又一个方案的液晶显示器件,在一个实施方式中,可选的,前述液晶化合物还可以包含一种或多种式Ⅵ所示化合物:

Figure BDA0001785004010000182

其中,

R11、R12各自独立地表示碳原子数为1-10的烷基、氟取代的碳原子数为1-10的烷基、碳原子数为1-10的烷氧基、氟取代的碳原子数为1-10的烷氧基、碳原子数为2-10的链烯基、氟取代的碳原子数为2-10的链烯基、碳原子数为3-8的链烯氧基或氟取代的碳原子数为3-8的链烯氧基,并且R11、R12所示基团中任意一个或多个不相连的-CH2-任选被亚环戊基、亚环丁基或亚环丙基取代;

各自独立地表示或者、

可选的,前述一种或多种式Ⅵ所示化合物选自式Ⅵ1-Ⅵ7所示化合物组成的组,

Figure BDA0001785004010000193

其中,

R121表示碳原子数为1-6的烷基,R122表示碳原子数为1-6的烷氧基,R111表示碳原子数为2-6的烷基,R112表示碳原子数为2-6的烯基。

上述式Ⅵ所示的化合物端链为烯基R112时,液晶化合物具有更高的清亮点与弹性常数,尤其是展曲弹性常数K33,有利于提升液晶组合物的参数性能。

前述一种或多种式Ⅵ所示化合物占液晶组合物总质量百分比含量优为1-40%,进一步优选为5-20%。

作为本发明的又一个方案的液晶显示器件,在一个实施方式中,可选的,前述液晶化合物还可以包含一种或多种式Ⅶ所示化合物:

Figure BDA0001785004010000194

其中,

R13、R14各自独立地表示碳原子数为1-10的烷基、氟取代的碳原子数为1-10的烷基、碳原子数为1-10的烷氧基、氟取代的碳原子数为1-10的烷氧基、碳原子数为2-10的链烯基、氟取代的碳原子数为2-10的链烯基、碳原子数为3-8的链烯氧基或氟取代的碳原子数为3-8的链烯氧基;

Figure BDA0001785004010000201

表示

Figure BDA0001785004010000202

或者、

Figure BDA0001785004010000203

F1、F2、F3各自独立地表示H或F,且F2、F3不同时为F。

可选的,前述一种或多种式Ⅶ所示的化合物优选自式Ⅶ1-Ⅶ4所示化合物中的一种或多种:

Figure BDA0001785004010000204

其中,R131、R141各自独立地表示碳原子数为1-6的烷基。

上述式Ⅶ1-Ⅶ4所示的化合物具有高的清亮点,一般高于200℃,可以更加显著地提升液晶组合物清亮点。

前述一种或多种式Ⅶ所示化合物总质量百分比含量优选为1-10%,进一步优选为2-5%。

实施例

为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。

本发明中,制备方法如无特殊说明则均为常规方法,所用的原料如无特别说明均可从公开的商业途径获得,百分比均是指质量百分比,温度为摄氏度(℃),液晶化合物也成为液晶单体,其他符号的具体意义及测试条件如下:

Cp表示液晶清亮点(℃),DSC定量法测试;

Δn表示光学各向异性,Δn=ne-no,其中,no为寻常光的折射率,ne为非寻常光的折射率,测试条件为25±2℃,589nm,阿贝折射仪测试;

Δε表示介电各向异性,Δε=ε∥-ε⊥,其中,ε∥为平行于分子轴的介电常数,ε⊥为垂直于分子轴的介电常数,测试条件为25±0.5℃,20微米平行盒,INSTEC:ALCT-IR1测试;

γ1表示旋转粘度(mPa·s),测试条件为25±0.5℃,20微米平行盒,INSTEC:ALCT-IR1测试;

VHR表示电压保持率(%),测试条件为20±2℃、电压为±5V、脉冲宽度为10ms、电压保持时间16.7ms。测试设备为TOYO Model6254液晶性能综合测试仪;

残像评价:液晶显示器件的残像评价,是在显示区域内使规定的固定图案显示1000小时后,通过目测对进行全画面均匀显示时的固有图案的残留水平进行以下的4等级评价。

◎无残留

○有极少量残留,为可以容许的水平

△有残留,为不能允许的水平

×有残留,相当差

液晶组合物的制备方法如下:将各液晶单体按照一定配比称量后放入不锈钢烧杯中,将装有各液晶单体的不锈钢烧杯置于磁力搅拌仪器上加热融化,待不锈钢烧杯中的液晶单体大部份融化后,往不锈钢烧杯中加入磁力转子,将混合物搅拌均匀,冷却到室温后即得液晶组合物。

本发明实施例液晶单体结构用代码表示,液晶环结构、端基、连接基团的代码表示方法见下表1、表2。

表1环结构的对应代码

Figure BDA0001785004010000211

Figure BDA0001785004010000221

表2端基与链接基团的对应代码

Figure BDA0001785004010000222

举例:

Figure BDA0001785004010000223

其代码为CPY-2-O2;

Figure BDA0001785004010000224

其代码为CCY-3-OCpr。

液晶组合物1:

液晶组合物1的配方及相应的性能如下表3所示。

表3液晶组合物1的配方及相应的性能

Figure BDA0001785004010000231

液晶组合物1使用包含2个羟基作为锚定官能团,1个甲基丙烯酸酯基作为可聚合官能团的式Ⅱ-1所示化合物作为自配向剂。

液晶组合物2:

液晶组合物2的配方及相应的性能如下表4所示。

表4液晶组合物2的配方及相应的性能

Figure BDA0001785004010000241

液晶组合物2使用包含2个羟基作为锚定官能团,2个甲基丙烯酸酯基作为可聚合官能团的式Ⅱ-14所示化合物作为自配向剂。

液晶组合物3:

液晶组合物3的配方及相应的性能如下表5所示。

表5液晶组合物3的配方及相应的性能

Figure BDA0001785004010000252

Figure BDA0001785004010000261

液晶组合物3使用包含3个羟基作为锚定官能团,2个甲基丙烯酸酯基作为可聚合官能团的式Ⅱ-23所示化合物作为自配向剂。

液晶组合物4:

液晶组合物4的配方及相应的性能如下表6所示。

表6液晶组合物4的配方及相应的性能

Figure BDA0001785004010000262

Figure BDA0001785004010000271

液晶组合物4使用包含2个羟基作为锚定官能团,2个甲基丙烯酸酯基作为可聚合官能团的式Ⅱ-27所示化合物作为自配向剂。

液晶组合物5:

液晶组合物5的配方及相应的性能如下表7所示。

表7液晶组合物5的配方及相应的性能

Figure BDA0001785004010000272

液晶组合物5使用包含2个羟基作为锚定官能团,2个甲基丙烯酸酯基作为可聚合官能团的式Ⅱ-30所示化合物作为自配向剂。

液晶组合物6:

液晶组合物6的配方及相应的性能如下表8所示。

表8液晶组合物6的配方及相应的性能

Figure BDA0001785004010000282

液晶组合物6使用包含2个羟基作为锚定官能团,3个甲基丙烯酸酯基作为可聚合官能团的式Ⅱ-37所示化合物作为自配向剂。

液晶组合物7:

液晶组合物7的配方及相应的性能如下表9所示。

表9液晶组合物7的配方及相应的性能

Figure BDA0001785004010000301

Figure BDA0001785004010000311

液晶组合物7使用包含2个羟基作为锚定官能团,3个甲基丙烯酸酯基作为可聚合官能团的式Ⅱ-40所示化合物作为自配向剂。

实施例1:

准备薄膜晶体管基板作为第一基板,彩膜基板作为第二基板,并且所述第一基板的与液晶组合物接触的表面设有配向层,所述第二基板无配向层,将液晶组合物1灌注入第一基板与第二基板之间并密封,然后从第一基板侧或者第二基板侧对液晶组合物1进行紫外线照射,使液晶组合物中的自配向剂和可聚合化合物聚合。紫外线辐照强度为64mW/cm2,波长为365nm,照射时间为200s。由此,得到作为实施例1的液晶显示器件。

实施例2~7:

将实施例1中的液晶组合物1分别替换为液晶组合物2~7,其他条件与实施例1相同,分别得到作为实施例2~7的液晶显示器件。

对比例1:

在实施例3中,采用将液晶组合物3中式Ⅰ所示的可聚合化合物替换为式Ⅰ-1所示的可聚合化合物而得到的对比液晶组合物1作为液晶组合物,其余与实施例3相同地制作液晶显示器件,作为对比例1。

Figure BDA0001785004010000312

对比例2:

在实施例3中采用表面没有设置配向层的薄膜晶体管基板作为第一基板,采用表面没有设置配向层的彩膜基板作为第二基板,其余与实施例3相同地制作液晶显示器件,作为对比例2。

对经过紫外线照射后的液晶显示器件进行反应性介晶(RM)转化率计算、电压保持VHR测试,以及残像评价。反应性介晶(RM)的转化率的计算公式为:

Figure BDA0001785004010000321

下表为实施例1-7、对比例1-2的液晶显示器件的性能评价测量数据。

表10液晶显示器件的性能评价测量数据

由上述表10可以明显看出,本发明实施例1~7提供的液晶显示器件与对比例1~2提供的液晶显示器件相比,VHR更高,RM转化率更大,残像水平表现更佳。

通过实施例3与对比例1进行对比,式Ⅰ所示的可聚合化合物相对于式Ⅰ-1所示的可聚合化合物作为反应性介晶(RM)在相同UV制成过程中,RM转化更快,转化率更高,残留量更少,从而能够通过使用式Ⅰ所示的可聚合化合物作为反应性介晶(RM)有效地缩短液晶显示器件的制备过程,提高生产效率,降低液晶显示器件出现残像显示不良的程度。

通过实施例3与对比例2进行对比,虽然对比例2采用无配向层的液晶显示器件能够起到缩短液晶显示器件制备过程,提高生产效率的作用,但由于缺少配向层,基板表面的离子等杂质能够更为容易的进入液晶组合中,从而使液晶显示器件的VHR降低,导致液晶显示器件残像变得严重。并且,由于缺少配向层的配向作用,液晶分子更容易出现配向不良的问题,导致液晶显示器件出现显示不均的问题。

47页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:液晶组合物、液晶显示元件及用于液晶显示元件的用途

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!