一种基于低场核磁共振快速检测煤炭全水分的方法

文档序号:1419014 发布日期:2020-03-13 浏览:9次 >En<

阅读说明:本技术 一种基于低场核磁共振快速检测煤炭全水分的方法 (Method for rapidly detecting total moisture of coal based on low-field nuclear magnetic resonance ) 是由 毛玉强 谢广元 夏文成 彭耀丽 沙杰 梁龙 李懿江 郑康豪 于 2019-12-27 设计创作,主要内容包括:一种基于低场核磁共振快速检测煤炭全水分的方法,适用于煤质的全水分的检测。取待测全水分煤炭进行核磁测试条件下进行测试,由核磁测试软件和T&lt;Sub&gt;2&lt;/Sub&gt;图谱获得首峰点值,将首峰点值带入核磁信号首峰点值与煤炭全水分之间的关系式中即可获得全水分。其检测速度快,精度高,大大降低了煤炭全水分测试的时间、人力成本,为实现全水分在线检测提供了重要借鉴与指导意义;所用的低场核磁共振设备具有安全、小型化、低成本、易于操作和测试速度快等诸多优点,可以满足选煤厂的各种需求,具有很好的适应性。(A method for rapidly detecting the total moisture of coal based on low-field nuclear magnetic resonance is suitable for detecting the total moisture of the coal. Taking the to-be-tested full-moisture coal to perform testing under the condition of nuclear magnetic testing, and performing testing by using nuclear magnetic testing software and T 2 And obtaining a first peak value by the atlas, and substituting the first peak value into a relational expression between the first peak value of the nuclear magnetic signal and the total moisture of the coal to obtain the total moisture. The method has high detection speed and high precision, greatly reduces the time and labor cost of the coal total moisture test, and provides important reference and guiding significance for realizing the online detection of the total moisture; the low-field nuclear magnetic resonance equipment has the advantages of safety, miniaturization, low cost, easiness in operation, high testing speed and the like, can meet various requirements of a coal preparation plant, and has good adaptability.)

一种基于低场核磁共振快速检测煤炭全水分的方法

技术领域

本发明涉及一种检测煤中全水分的方法,尤其适用于煤炭工业中检测小粒径煤炭全水分时使用的基于低场核磁共振快速检测煤中全水分的方法。

背景技术

煤炭作为化石能源,在世界上拥有非常丰富的储量。它已被广泛应用于钢铁,化工,火力发电等行业。选煤厂生产的煤炭总水分含量是决定煤炭产品后续使用的一个非常重要的参数。在选煤厂的生产过程中,如果精煤中所含的全水分过高,不仅会严重降低精煤的热值,还会导致煤炭产品无法卸载。这些水分含量过高的精煤很可能会被客户退回,这不仅影响了选煤厂的信誉和经济效益,而且还影响了其正常生产。因此,必须在出售精煤之前快速并准确地检测出煤炭的全水分。

目前,通常采用烘箱干燥法来检测煤炭的全水分,方法如下:将待测煤炭放在

Figure BDA0002339944260000011

℃下干燥直至重量保持恒定,然后可以计算出干燥前后的重量损失,从而根据重量损失与未经干燥的煤的重量之比得出其全水分。尽管该检测方法可以获得准确的水分含量,但是需要很长时间并且难以实现在线检测,这显然是不利于未来选煤厂自动化环节的实现。因此,制定出一个快速且准确检测煤炭产品水分的方法显得极为迫切。

核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼***,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。根据核磁共振的功能和应用,它可以分为核磁共振波谱(MRS)、核磁共振成像(MRI)、核磁共振弛豫谱。通过核磁共振弛豫谱可以得到分子间相互作用(物理信息)和弛豫时间谱。核磁共振弛豫谱以低磁场强度(<1T)为主,也就是低磁场核磁共振(LF-NMR)。低场核磁共振具有安全、小型化、低成本、易操作等优点。

目前,1H和13C NMR被广泛的研究,并且1H NMR也称为质子磁共振(PMR)。1H原子核可以通过非辐射方式从高能态转换为低能态,这称为弛豫。目前,存在两种弛豫方式,即自旋晶格弛豫和自旋-自旋弛豫。高能态的原子核通过交变磁场将能量转移到周围的分子,即系统将能量释放到环境中并返回低能态本身,这称为自旋晶格弛豫。自旋晶格弛豫降低了磁核的总能量,也称为纵向弛豫。其速率用1/T1表示,T1称为纵向弛豫时间。具有一定距离,进动频率和进动方向不同的两个核交换能量并改变进动方向,这称为自旋-自旋弛豫。由于自旋-自旋弛豫不改变磁核的总能量,因此也称为横向弛豫。其速率用1/T2表示,T2称为横向弛豫时间。在频率较低、脉冲间隔较短的情况下,T2可以提供与T1相同的测量信息。但是T2的测量速度比T1快。因此,横向弛豫时间T2测试被广泛使用。

基于1H LF-NMR是通过检测水中的氢核来获得煤炭孔隙率的原理,核磁测试信号和煤炭水分之间必然存在某种关系,探究出两者之间的关系将有利于获得基于低场核磁共振检测煤炭全水分的方法,这对于实现选煤厂在线检测煤炭全水分具有重大意义。

发明内容

技术问题:本发明的目的是针对现有技术的不足之处,提供一种煤炭全水分检测速度块,检测精度高的快速检测煤炭全水分的方法。

技术方案:为实现上述技术目的,本发明的基于低场核磁共振快速检测煤中全水分的方法,其步骤为:

a配置出已知不同全水分的煤炭作为样品放入核磁测试量筒中,利用核磁发生器对核磁测试量筒产生低场核磁,低场核磁测试按设定的参数条件和时间完成;

b在低场核磁测试过程中,使用低场核磁纳米孔隙分析仪采集不同全水分煤炭的T2弛豫图谱,借助核磁分析软件生成不同全水分煤炭中水的氢质子的首峰点值,并利用绘图分析软件Origin 9.0将不同全水分煤的首峰点值与煤炭全水分进行比对并确认两者之间为正相关关系,因此利用核磁测试结果即首峰点值与煤炭全水分建立模型;

c利用首峰点值与煤炭全水分建立的模型进行二阶线性模型拟合,从而获得核磁信号首峰点值与煤炭全水分之间的关系式:y=a*x2+b*x+c,式中:y为核磁测试结果中首峰点值,x为煤炭的全水分百分率,a、b、c为该拟合模型的系数,a、b、c系数可通过拟合直接获得,分别为17.54、521.71、52.17,该模型的拟合度R2为0.9996,这表明首峰点值与煤炭全水分之间具有很好的二阶线型关系;

d取待测全水分煤炭放入核磁测试量筒中,在本发明规定的核磁测试条件下进行测试,由核磁测试软件和T2弛豫图谱获得首峰点值,将该值带入本发明所建立的二阶线性方程中即可获得全水分。

e选择任意全水分煤炭并进行破碎,然后利用步骤a、步骤b获得当前测试煤炭中水的氢质子的首峰点值,将获取的首峰点值代入二阶线性方程模型即可预测出所选煤炭的全水分数值。

所述使用的煤炭的粒径小于24mm,如果不符合需要进行破碎,煤炭全水分的范围在0-50.04%。

全水分测试的核磁参数条件包括:

核磁磁型为永磁体,核磁发生器发生频率为12MHz,核磁发生器的磁场强度为0.3±0.05T、核磁的探头线圈直径为25mm、核磁测试过程中磁体温度控制在32±0.1℃、脉冲序列为CPMG、回波时间为0.1ms、采样次数为32、重复采样等待时间为6000ms、回波数为16000。

核磁测试的测试时间为4min。

所述低场核磁纳米孔隙分析仪型号为苏州纽迈科技有限公司的NMRC12-010V,所述绘图分析软件为Origin 9.0。

有益效果:由于采用了上述技术方案,具有如下优点:

1)采用本发明所建立的模型可以快速预测煤炭的全水分,仅仅需要4min,同时,模型预测出的全水分与实际水分的最大误差小,仅仅为0.4%,检测精度高。

2)相对于传统烘箱法测试煤炭全水分,本发明有利于显著提高选煤厂对于产品煤水分检测的效率,大大降低了选煤厂人力、物力资源的浪费,降低了生产成本;同时,由于本发明预测结果的准确性,避免了客户退回产品煤的风险,也保证了选煤厂的正常生产,并为选煤厂实现自动化生产与检测提供了重要的借鉴与指导。

3)本发明所采用的低场核磁共振,相较于高场核磁具有安全、小型化、低成本、易于操作和测试速度快等优点,可以满足选煤厂的各种需求,具有很好的适应性。

附图说明

图1是本发明基于低场核磁共振快速检测煤中全水分的方法检测不同实际全水分煤炭的T2弛豫图谱示意图;

图2是本发明基于低场核磁共振快速检测煤中全水分的方法检测不同实际全水分煤炭的首峰点值示意图;

图3是本发明基于低场核磁共振快速检测煤炭全水分的方法中首峰点值与煤炭实际全水分之间的拟合示意图。

具体实施方式

下面结合附图对本申请的实施例做进一步说明:

本发的一种基于低场核磁共振快速检测煤炭全水分的方法,其步骤如下:

a配置出已知不同全水分的煤炭作为样品放入核磁测试量筒中,利用核磁发生器对核磁测试量筒产生低场核磁,低场核磁测试按设定的参数条件和时间完成;所述使用的煤炭的粒径小于24mm,如果不符合需要进行破碎,煤炭全水分的范围在0-50.04%;

b在低场核磁测试过程中,使用低场核磁纳米孔隙分析仪采集不同全水分煤炭的T2弛豫图谱,借助核磁分析软件生成不同全水分煤炭中水的氢质子的首峰点值,并利用绘图分析软件Origin 9.0将不同全水分煤的首峰点值与煤炭全水分进行比对并确认两者之间为正相关关系,因此利用核磁测试结果即首峰点值与煤炭全水分建立模型;

c利用首峰点值与煤炭全水分建立的模型进行二阶线性模型拟合,从而获得核磁信号首峰点值与煤炭全水分之间的关系式:y=a*x2+b*x+c,式中:y为核磁测试结果中首峰点值,x为煤炭的全水分百分率,a、b、c为该拟合模型的系数,a、b、c系数可通过拟合直接获得,分别为17.54、521.71、52.17,该模型的拟合度R2为0.9996,这表明首峰点值与煤炭全水分之间具有很好的二阶线型关系;

d取待测全水分煤炭放入核磁测试量筒中,在本发明规定的核磁测试条件下进行测试,测试时间为4min,由核磁测试软件和T2弛豫图谱获得首峰点值,将该值带入本发明所建立的二阶线性方程中即可获得全水分。

e选择任意全水分煤炭并进行破碎,然后利用步骤a、步骤b获得当前测试煤炭中水的氢质子的首峰点值,将获取的首峰点值代入二阶线性方程模型即可预测出所选煤炭的全水分数值。

全水分测试的核磁参数条件包括:

核磁磁型为永磁体,核磁发生器发生频率为12MHz,核磁发生器的磁场强度为0.3±0.05T、核磁的探头线圈直径为25mm、核磁测试过程中磁体温度控制在32±0.1℃、脉冲序列为CPMG、回波时间为0.1ms、采样次数为32、重复采样等待时间为6000ms、回波数为16000。

所述低场核磁纳米孔隙分析仪型号为苏州纽迈科技有限公司的NMRC12-010V,所述绘图分析软件为Origin 9.0。

实施例一

1)取已知不同全水分的煤炭放入测试量筒中,在低场核磁中进行测试,大约需要4min,可获得不同全水分煤炭的T2图谱,T2图谱如图1所示,基于T2图谱和软件获得不同全水分煤炭的首峰点值示意图,如图2所示,核磁测试出的首峰点值与煤炭全水分之间存在较好的正相关关系,这说明借助核磁测试结果可以判断煤炭全水分差异,并为建立核磁测试结果与煤炭全水分之间模型提供重要指导意义。

2)借助Origin 9.0软件建立首峰点值与煤炭全水分之间的关系式,如图3所示,从首峰点值与煤炭全水分相关拟合关系来看,二阶线性方程均要优于一阶线性方程。

3)配置出不同的但已确定全水分的煤炭样品,并检测所有煤炭的首峰点值,使用拟合出的二阶线性方程模型来预测煤炭的全水分数值,将预测的煤炭全水分数值与实际的煤炭全水分进行对比,得到预测水分和实际水分之间的标准差;

根据不同全水分煤炭的首峰点值并借助拟合出的二阶线性方程来计算模型预测出的全水分,将预测出的全水分与实际全水分进行对比,得到预测水分和实际水分之间的标准差如表1所示,由首峰点值与全水分拟合的二阶线性方程式预测出的全水分与实际全水分之间的最大标准偏差(S.D.)仅为0.4%,由此可知,首峰点值与煤炭全水分之间具有更好的相关性,并可借助首峰点值与煤炭全水分之间建立的二阶线型模型来预测煤炭的水分,方程如下:y=a*x2+b*x+c;式中y代表了核磁测试结果中首峰点值,x代表了煤炭的全水分(%),a、b、c为该拟合模型的相关系数,分别为17.54、521.71、52.17,该模型的拟合度R2为0.9996,这表明首峰点值与煤炭全水分之间具有很好的二阶线型关系。

4)测试时注意核磁参数的设置,本发明所用具体的核磁参数如下:

磁型=永磁体、频率=12MHz、磁场强度=0.3±0.05T、探头线圈直径=25mm、控温范围=32±0.1℃、脉冲序列=CPMG、回波时间=0.1ms、采样次数=32、重复采样等待时间=6000ms、回波数=16000。

表1

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:热导率测定装置、加热装置、热导率测定方法和品质保证方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!