Antifouling coating material and preparation method and application thereof

文档序号:1444146 发布日期:2020-02-18 浏览:12次 中文

阅读说明:本技术 一种防污涂层料及其制备方法和应用 (Antifouling coating material and preparation method and application thereof ) 是由 崔辛 梁秀兵 胡振峰 孔令超 王桂龙 于 2019-11-20 设计创作,主要内容包括:本发明提供一种防污涂层料及其制备方法和应用,所述涂层料的原料包括PDMS-PUa、PTFE纳米颗粒、有机溶剂A,其通过将分散于有机溶剂A中的PTFE分散液与PDMS-PUa混合交联得到。本发明的防污涂层料及其制得的防污材料具备较好的柔性和流动性,具有光泽的表面和较低的弹性模量,在保证了良好力学性能的同时兼顾了防污性能,具有一定的自修复性能,可延长防污材料的使用期限,实现持久高效的防污目的,具有广阔的应用前景。(The invention provides an antifouling coating material and a preparation method and application thereof, wherein the coating material comprises PDMS-PUa, PTFE nano particles and an organic solvent A, and is obtained by mixing and crosslinking a PTFE dispersion liquid dispersed in the organic solvent A and PDMS-PUa. The antifouling coating material and the antifouling material prepared from the antifouling coating material have good flexibility and fluidity, have glossy surfaces and lower elastic modulus, ensure good mechanical properties and antifouling properties, have certain self-repairing performance, can prolong the service life of the antifouling material, realize the aim of lasting and efficient antifouling, and have wide application prospects.)

1. An antifouling coating material comprises PDMS-PUa, PTFE nano-particles and an organic solvent A, wherein the antifouling coating material is obtained by mixing and crosslinking a PTFE dispersion liquid dispersed in the organic solvent A and the PDMS-PUa.

2. Antifouling coating mass according to claim 1, characterised in that the mass ratio of PTFE nanoparticles to PDMS-PUa is 0.05-5%, preferably 0.5-5%.

3. The antifouling coating composition according to claim 1, wherein the PDMS-PUa is obtained by copolymerizing a bisamino-terminated PDMS with a diisocyanate;

wherein the bisamino-terminated PDMS is bis (3-aminopropyl) -terminated polydimethylsiloxane, and the molecular weight of the bisamino-terminated PDMS is 3000-30000 g/mol;

the diisocyanate is one or more of hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, toluene diisocyanate and diphenylmethane diisocyanate.

4. The antifouling coating composition according to claim 1, wherein said PDMS-PUa is prepared by the following method:

stirring and mixing the diamino terminated PDMS and the organic solvent A in protective gas; dissolving diisocyanate in the same organic solvent, dropwise adding the diisocyanate into the solution obtained by stirring and mixing in the protective gas, continuously introducing the protective gas and stirring to obtain a PDMS-PUa solution, and sealing and storing;

preferably, in the preparation process of the PDMS-PUa, the molar concentration of the diamino terminated PDMS is 0.01-0.50 mol/L; the molar concentration of the diisocyanate is 0.01-0.50 mol/L;

preferably, the protective gas is nitrogen or inert gas, the stirring and mixing operations are carried out in water bath at 0-50 ℃, and the stirring adopts magnetic stirring;

preferably, the organic solvent A is selected from one or more of tetrahydrofuran, methanol, ethanol, acetone, toluene and ethyl acetate;

preferably, the organic solvent a is tetrahydrofuran, methanol or ethyl acetate.

5. A method for producing the antifouling coating composition according to any one of claims 1 to 4, wherein PTFE nanoparticles are dispersed in an organic solvent A to obtain a dispersion of PTFE nanoparticles; and blending and crosslinking the PDMS-PUa solution and the PTFE nano-particle dispersion liquid to obtain the composite material.

6. The method according to claim 5, wherein the mass ratio of PTFE nanoparticles to PDMS-PUa is 0.05-5%, preferably 0.5-5%.

7. The antifouling coating composition according to claim 5, wherein the PDMS-PUa is obtained by copolymerizing a bisamino-terminated PDMS and a diisocyanate;

wherein the bisamino-terminated PDMS is bis (3-aminopropyl) -terminated polydimethylsiloxane, and the molecular weight of the bisamino-terminated PDMS is 3000-30000 g/mol;

the diisocyanate is one or more of hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, toluene diisocyanate and diphenylmethane diisocyanate;

preferably, the PDMS-PUa is prepared by the following method:

stirring and mixing the diamino terminated PDMS and the organic solvent A in protective gas; dissolving diisocyanate in the same organic solvent, dropwise adding the diisocyanate into the solution obtained by stirring and mixing in the protective gas, continuously introducing the protective gas and stirring to obtain a PDMS-PUa solution, and sealing and storing;

preferably, in the preparation process of the PDMS-PUa, the molar concentration of the diamino terminated PDMS is 0.01-0.50 mol/L; the molar concentration of the diisocyanate is 0.01-0.50 mol/L;

preferably, the stirring and mixing operations are carried out in a water bath at 0-50 ℃, and the stirring is carried out by magnetic stirring;

preferably, the organic solvent A is selected from one or more of tetrahydrofuran, methanol, ethanol, acetone, toluene and ethyl acetate;

preferably, the organic solvent a is tetrahydrofuran, methanol or ethyl acetate.

8. The method according to claim 5, wherein the method comprises the steps of dispersing the PTFE nano-particles and the organic solvent A under high shear at room temperature for 5-30min to obtain a PTFE dispersion liquid, wherein the mass concentration of the PTFE nano-particles is 0.01g/ml-1.00 g/ml; and (2) blending PDMS-PUa and the PTFE dispersion liquid, and magnetically stirring for 10-60min at room temperature to obtain the PTFE nano-particles, wherein the mass ratio of the PTFE nano-particles to the PDMS-PUa is 0.05% -5%.

9. An antifouling material obtained by applying the antifouling coating composition according to any one of claims 1 to 4 to the surface of a substrate;

preferably, the substrate is an aluminum alloy, wood, glass, or a thermosetting resin;

preferably, the preparation method of the antifouling material comprises the following steps: coating the antifouling coating material according to any one of claims 1 to 4 on the surface of a substrate, and drying until the solvent is completely volatilized.

10. Use of the antifouling coating composition according to any one of claims 1 to 4 or the antifouling material according to claim 9 in the field of marine antifouling;

preferably, the application is the preparation of an antifouling coating on the surface of a marine facility;

preferably, the marine facility is a boat, buoy, submarine cable or marine pipeline.

Technical Field

The invention relates to the technical field of marine antifouling materials, and particularly relates to an antifouling coating material and a preparation method and application thereof.

Background

The information in this background section is only for enhancement of understanding of the general background of the invention and is not necessarily to be construed as an admission or any form of suggestion that this information forms the prior art that is already known to a person of ordinary skill in the art.

The ship, the ocean platform and the like which are in service in a complex and harsh ocean environment suffer serious damage caused by marine biofouling for a long time, and the coating of the antifouling coating material is the most effective, most economic and most wide-application-range antifouling strategy at present. The low-surface-energy antifouling material prepared from the organic silicon resin or the fluorine-containing polymer can effectively block the adhesion of marine fouling organisms, can separate fouling from the surface of a coating by weak water flow washing or simple mechanical cleaning, does not contain a toxic antifouling agent, does not relate to the problems of antifouling agent release and paint film loss, and has sufficient resistance to water flow washing and hydrolysis, so the low-surface-energy antifouling material has huge development potential and wide application prospect, and is widely concerned.

The inventors have found that an ideal low surface energy marine antifouling coating material should have the following characteristics: a molecular skeleton having a stable, moderately low surface energy and linear fluidity; the elastic modulus is as low as possible on the premise of ensuring the mechanical strength; a surface finish at a molecular level; the stable physicochemical property is maintained in complex and various marine environments. However, although the fluoropolymer has a very low surface energy, most coatings are hot-melt film-forming, have high surface roughness and poor compactness, are easily penetrated by biological mucus to generate a mechanical interlocking effect, and are difficult to realize an antifouling effect. In addition, the modification technology of the fluorine-containing polymer antifouling coating material is difficult, the coating process is complex, large-scale popularization is difficult, and practical application is relatively limited. And the organic silicon antifouling material represented by a Polydimethylsiloxane (PDMS) system has a flexible macromolecular chain segment with high fluidity, weak intermolecular force and easy processing, and the coating has a smooth surface, low elastic modulus, stable physicochemical properties, poor mechanical properties, low adhesion strength with a substrate, and easy mechanical damage to cause the reduction of antifouling performance. At present, the PDMS material system modified by polar groups such as epoxy and the like is generally adopted to improve the mechanical property and the adhesive strength of the coating, however, the flexibility and the fluidity of a macromolecular chain segment can be greatly reduced by the excessive crosslinking of the epoxy group, so that the elastic modulus of the coating is increased, and the antifouling effect of the coating is weakened. Therefore, the development of a low surface energy antifouling material having excellent mechanical properties and adhesive strength, low elastic modulus, and high smoothness is currently in urgent need.

Disclosure of Invention

Therefore, the invention aims to overcome the defect of the existing low-surface-energy antifouling coating that the mechanical property and the antifouling property of the existing organic silicon antifouling material cannot be considered at the same time, and provides a novel flexible low-surface-energy antifouling material system, which is based on multiple physical crosslinking, introduces carbamido groups into a PDMS macromolecular skeleton through condensation polymerization of diamino terminated PDMS and diisocyanate, blends, compounds and cures copolymerization products PDMS-PUa and PTFE nano particles to form an antifouling coating material, and coats the coating material on a substrate to prepare the antifouling material. The static contact angle of the water drop on the surface of the material is 95-115 degrees, and the surface free energy is 20mJ/m2-28mJ/m2The surface roughness is 0.005-0.02 μm, the tensile strength is 1.2-1.5 MPa, the elastic modulus is 0.3-0.5MPa, and the adhesion strength is 3A-4A grade. The adhesion rate of a typical marine biological protein or marine bacteria sample coated with the antifouling material in a simulated marine environment is represented and calculated to be reduced by more than or equal to 90 percent compared with that of an uncoated antifouling material sample. The antifouling material has good flexibility and fluidity, has a glossy surface and a lower elastic modulus, gives consideration to antifouling performance while ensuring good mechanical performance, has certain self-repairing performance, can prolong the service life of the antifouling material, realizes the aim of lasting and efficient antifouling, and has wide application prospect.

Specifically, the technical scheme of the invention is as follows:

in a first aspect of the present invention, the present invention provides an antifouling coating material, the raw materials of which include PDMS-PUa, Polytetrafluoroethylene (PTFE) nanoparticles, and an organic solvent a, which is obtained by mixing and crosslinking PDMS-PUa with PTFE dispersed in the organic solvent a.

PDMS-PUa is the linear macromolecule, the ureido in its structure can form intermolecular hydrogen bond, PDMS chain segment and PTFE nanometer particle surface energy are matched at the same time, these two kinds of reversible physical cross-linking effects cooperate synergistically, make the said material have fine mechanical properties and self-repairing performance; multiple physical crosslinking avoids excessive chemical crosslinking, so that the PDMS chain segment keeps higher flexibility and fluidity, and the material has a glossy surface and a lower elastic modulus.

In an embodiment of the present invention, the mass ratio of the PTFE nanoparticles to the PDMS-PUa is 0.05 to 5%.

In the embodiment of the invention, when the mass ratio of the PTFE nano-particles to the PDMS-PUa is 0.05-5%, the antifouling coating material has excellent performance, the static contact angle of a water drop on the surface of a material coated with the coating material is not less than about 95 degrees, and the surface free energy is not more than 28mJ/m2The surface roughness is not more than 20nm, the tensile strength and the elastic modulus are proper, the adhesion strength is 3-4A grade, and the adhesion rate of the antifouling coating material coated in a simulated marine environment is obviously reduced compared with an uncoated sample. In particular, in some embodiments of the present invention, the antifouling coating material of the present invention is more effective when the mass ratio of the PTFE nanoparticles to the PDMS-PUa is 0.5 to 5%, the static contact angle of the water drop on the surface of the material coated with the coating material can reach about 120 °, and the surface free energy can be as low as about 20mJ/m2The surface roughness is lower than 20 mu m, the tensile strength can reach 1.5MPa, the elastic modulus is 0.3-0.5MPa, the adhesion strength is 3-4A grade, and the adhesion rate of the antifouling coating material coated in a simulated marine environment can be reduced by more than or equal to 90 percent compared with that of an uncoated sample. And, in the embodiment of the present invention, the mass ratio of the PTFE nanoparticles to the PDMS-PUa is in the range of 0.5 to 5%, or 0.5 to 1%, or 1 to 5% (inclusive), the above-mentioned properties of the antifouling paint of the present invention are stable.

In an embodiment of the present invention, the PDMS-PUa is obtained by copolymerizing a diamino-terminated PDMS with a diisocyanate.

Wherein, the diamino terminated PDMS is bis (3-aminopropyl)Radical) end-capped polydimethylsiloxane with the molecular weight of 3000-30000g/mol and the structural formula of NH2-(CH2)3-Si(CH3)2-O-[Si(CH3)2-O]m-Si(CH3)2-(CH2)3-NH2Abbreviated NH2(CH2)3-PDMS-(CH2)3NH2

The diisocyanate is one or more of Hexamethylene Diisocyanate (HDI), isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (HMDI), Toluene Diisocyanate (TDI) and diphenylmethane diisocyanate (MDI).

In some preferred embodiments, when the diisocyanate is hexamethylene diisocyanate, the coating material prepared has more excellent properties.

In certain embodiments of the present invention, the method for preparing PDMS-PUa comprises:

stirring and mixing the diamino terminated PDMS and the organic solvent A in protective gas; dissolving diisocyanate in the same organic solvent (organic solvent A), dripping the diisocyanate into the solution obtained by stirring and mixing in the protective gas, continuously introducing the protective gas and stirring to obtain the PDMS-PUa solution, and sealing and storing. The shielding gas is a shielding gas conventionally used in the art, such as nitrogen or an inert gas, such as helium, argon, and the like.

In the preparation process of the PDMS-PUa, the molar concentration of the diamino terminated PDMS is 0.01-0.50 mol/L; the molar concentration of the diisocyanate is 0.01-0.50 mol/L.

In the preparation process of PDMS-PUa, the stirring and mixing operations are all carried out in a water bath at 25-50 ℃, and the stirring is carried out by magnetic stirring.

In a specific embodiment, the introducing time of the protective gas is about 5-15min, and the reaction time of the diamino terminated PDMS and the diisocyanate is 30-60 min.

In an embodiment of the present invention, the organic solvents a are each independently selected from one or more of tetrahydrofuran, methanol, ethanol, acetone, toluene, and ethyl acetate; in some more preferred embodiments, the organic solvent a is tetrahydrofuran, methanol, or ethyl acetate.

In some embodiments of the present invention, when the organic solvent a is tetrahydrofuran, the performance of the coating material is better.

Tetrahydrofuran, methanol, and ethyl acetate are typical organic solvents for preparing coating materials, with the polarity order: methanol is greater than tetrahydrofuran is greater than ethyl acetate, but in the experimental process, the inventor of the invention finds that three organic solvents of tetrahydrofuran, methanol or ethyl acetate have little influence on the material preparation process and the material performance, but the effect of tetrahydrofuran is slightly excellent, presumably because the three organic solvents have moderate polarity, have better solubility or dispersibility on various components in a material system, have lower boiling points, are easy to volatilize and are beneficial to forming.

In a second aspect of the present invention, the present invention also provides a method for producing the antifouling coating composition described in the first aspect above, comprising: dispersing PTFE nano particles in an organic solvent A to obtain a dispersion liquid of the PTFE nano particles; and blending and crosslinking the PDMS-PUa solution and the PTFE nano-particle dispersion liquid to obtain the composite material.

In an embodiment of the present invention, the mass ratio of the PTFE nanoparticles to the PDMS-PUa is 0.05 to 5%. In some embodiments, the mass ratio may be 0.05 to 0.5%, in still other embodiments 0.5 to 5%, and further may be 0.5 to 1% or 1 to 5%.

In an embodiment of the present invention, the organic solvent a is selected from one or more of tetrahydrofuran, methanol, and ethyl acetate.

In an embodiment of the present invention, the PDMS-PUa is prepared as described in the foregoing first aspect.

In some embodiments of the invention, the preparation method of the antifouling coating material comprises the steps of dispersing PTFE nano-particles and an organic solvent A at high shear for 10-30min at room temperature to obtain a PTFE dispersion liquid, wherein the mass concentration of the PTFE nano-particles is 0.01g/ml-1.00 g/ml; and (2) blending PDMS-PUa and the PTFE dispersion liquid, and magnetically stirring for 30-60min at room temperature to obtain the PTFE nano-particles, wherein the mass ratio of the PTFE nano-particles to the PDMS-PUa is 0.5% -5%.

In a third aspect of the present invention, the present invention also provides an antifouling material obtained by applying the antifouling coating material described in the first aspect to a surface of a substrate.

The substrate is a substrate material conventionally used in the art, for example, the substrate is an aluminum alloy, wood, glass, thermosetting resin, or the like.

The conventional linear PDMS resin material has weak intermolecular acting force, low molecular polarity, and is mostly liquid at normal temperature, and difficult to coat and cure. After chemical modification and chemical crosslinking are carried out, although the mechanical property is improved and the curing forming is easy, the elastic modulus is greatly improved (more than or equal to 2MPa), so that the antifouling property is reduced and fouling substances are difficult to remove. The literature: progress in organic Coatings,2004,50, 99; biofoulding, 2005,21, 41-48; journal of applied Polymer Science,2014,131,41050.

The surface of the PTFE coating is porous and has poor compactness, and marine microorganisms easily permeate into the coating to form mechanical interlocking so as to reduce the antifouling performance. The literature: biofouling,2000,26: 263-; nature,1994,39-41.

Compared with PDMS resin-based materials, the antifouling material avoids excessive chemical crosslinking, and the multiple physical crosslinking effects can ensure excellent mechanical properties and adhesive properties of the material, can also enable the material to have lower elastic modulus and more excellent molecular mobility, and enables pollutants to be removed more easily. Compared with a PTFE membrane material, the antifouling material has better surface compactness and higher smoothness, and can effectively prevent fouling and a coating from forming firm mechanical interlocking.

In an embodiment of the present invention, the method for preparing the antifouling material comprises: and (3) coating the antifouling coating material in the first aspect on the surface of a base material, and drying until the solvent is completely volatilized to obtain the antifouling coating material.

In some embodiments of the present invention, the drying conditions may be drying in a vacuum drying oven at 40-60 ℃ until the solvent is completely volatilized.

In a fourth aspect of the present invention, the present invention also provides a use of the antifouling coating material of the first aspect or the antifouling material of the third aspect in the field of marine antifouling; for example, the coating can be used for preparing antifouling coatings on the surfaces of marine facilities such as boats, buoys, submarine cables, marine pipelines and the like.

Compared with the prior art, the invention provides a flexible low-surface-energy marine antifouling coating material based on multiple physical crosslinking effects, a preparation method and application thereof. PDMS-PUa is the linear macromolecule, the ureido in its structure can form intermolecular hydrogen bond, PDMS chain segment and PTFE nanometer particle surface energy are assorted at the same time, these two reversible physical cross-linking effects cooperate synergistically, make the said material of the invention have fine mechanical properties and self-repairing performance, ureido can also form hydrogen bond with substrate, make the said material of the invention have good adhesive properties; meanwhile, excessive chemical crosslinking is avoided by multiple physical crosslinking, so that the PDMS chain segment keeps higher flexibility and fluidity, and the material has a glossy surface and a lower elastic modulus. The invention overcomes the defect that the mechanical property and the antifouling property of the prior organic silicon antifouling material can not be simultaneously considered, can prolong the service life of the antifouling material, realizes the aim of lasting and high-efficiency antifouling, and has wide application prospect.

Drawings

The accompanying drawings, which are incorporated in and constitute a part of this application, illustrate embodiments of the application and, together with the description, serve to explain the application and are not intended to limit the application. Embodiments of the invention are described in detail below with reference to the attached drawing figures, wherein:

FIG. 1 is a schematic diagram of a general formula of a copolymerization reaction of a double-ended PDMS and a diisocyanate.

FIG. 2 is a schematic diagram of a process for preparing a low surface energy antifouling material based on multiple physical crosslinking.

FIG. 3 is a schematic structural diagram of a low surface energy antifouling material based on multiple physical crosslinking.

Detailed Description

The invention will be further illustrated with reference to the following specific examples. It should be understood that these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. The experimental procedures, in which specific conditions are not noted in the following examples, are generally carried out according to conventional conditions or according to conditions recommended by the manufacturers.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. The reagents or starting materials used in the present invention can be purchased from conventional sources, and unless otherwise specified, the reagents or starting materials used in the present invention can be used in a conventional manner in the art or in accordance with the product specifications. In addition, any methods and materials similar or equivalent to those described herein can be used in the methods of the present invention. The preferred embodiments and materials described herein are intended to be exemplary only.

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:适用于水性颜料墨水打印非吸收性打印介质的底涂液、制备方法及应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!