一种铁电增强的范德华异质结偏振探测器及其制备方法

文档序号:1448061 发布日期:2020-02-18 浏览:32次 >En<

阅读说明:本技术 一种铁电增强的范德华异质结偏振探测器及其制备方法 (Ferroelectric enhanced Van der Waals heterojunction polarization detector and preparation method thereof ) 是由 王建禄 陈艳 *** 胡伟达 沈宏 林铁 孟祥建 褚君浩 于 2019-11-18 设计创作,主要内容包括:本发明公开了一种铁电增强的范德华异质结偏振探测器及其制备方法。其特征在于,器件结构自下而上依次为衬底、两种二维半导体构成的范德华异质结、金属源漏电极、铁电薄膜和半透明金属栅电极。首先在衬底上制备一种二维半导体,在此基础上转移另外一种具有各向异性的二维半导体,这两种半导体通过范德华力相结合,再运用电子束光刻技术与剥离技术制备金属电极,接着旋涂铁电聚合物薄膜,制备半透明金属电极,最终形成铁电局域场增强的偏振探测器。区别于异质结光电探测器,该结构可实现高二向色性比、低功耗、快速响应的偏振探测器。(The invention discloses a ferroelectric enhanced Van der Waals heterojunction polarization detector and a preparation method thereof. The device is characterized in that the device structure sequentially comprises a substrate, a van der Waals heterojunction formed by two-dimensional semiconductors, a metal source and drain electrode, a ferroelectric film and a semitransparent metal gate electrode from bottom to top. Firstly, preparing a two-dimensional semiconductor on a substrate, transferring another two-dimensional semiconductor with anisotropy on the basis, combining the two semiconductors through Van der Waals force, preparing a metal electrode by applying an electron beam lithography technology and a stripping technology, then spin-coating a ferroelectric polymer film to prepare a semitransparent metal electrode, and finally forming the ferroelectric local field enhanced polarization detector. Different from a heterojunction photoelectric detector, the structure can realize a polarization detector with high dichroic ratio, low power consumption and quick response.)

一种铁电增强的范德华异质结偏振探测器及其制备方法

技术领域

本发明涉及偏振光探测领域,特别是涉及一种利用铁电极化电场增强的范德华异质结偏振探测器。

背景技术

偏振探测器作为光的强度探测器的延伸,具有智能识别的能力,可以提高目标识别精度,便于准确提取复杂背景下的目标信息,在航天遥感、卫星导航、仿生视觉等领域有重要的应用价值。基于当前偏振探测技术,主要是在探测系统中加入复杂的光学结构或结合金属纳米光栅实现对光的偏振吸收,存在结构复杂、响应慢、空间分辨率低等问题。

新兴的二维材料包括石墨烯、黑磷、过渡金属化合物等,种类丰富、性能各异,因此被广泛研究和应用。其中黑磷(bP)[Nature Nanotechnology 10,707(2015)]、二硫化铼(ReS2)[Advanced Functional.Materials 26,1169(2016)]、硒化锗(GeSe)[Journal ofthe American Chemical Society 139,14976(2017)]等二维材料具有各向异性的结构,对光的吸收表现出二向色性,是理想的偏振探测材料。然而,基于单一二维材料设计的偏振探测器存在探测光谱范围窄、暗电流大、响应速度慢等问题,亟需通过结构设计和外场调控等手段改善器件性能。在结构设计方面,二维材料层间以范德华力作用结合,易被剥离为单层或少层单晶,也可自由组合成范德华异质结,通过不同材料的集成可以构建PN结光电二极管降低暗电流、提高响应速度。在外场调控方面,通过施加电场可以有效增强光电转换效率,提升器件的探测能力。然而,对于光电晶体管中的普通栅介质,为了使探测器工作在最佳状态,通常需要持续施加一个外加电场,造成较大的功耗。

铁电材料是一种具有自发极化的电介质,施加外部电场后极化方向发生改变,并且在外电压撤去后,剩余极化导致极化电场仍然存在。这种极化电场不仅可以调控半导体的载流子浓度,还能有效调控二维材料能带结构。聚偏二氟乙烯(P(VDF-TrFE))是一种典型的有机铁电材料,已被验证可以有效增强诸如二硫化钼(MoS2)等二维半导体材料的光电探测性能[Advanced Materials 27,6575(2015)]。

本发明利用铁电材料产生的极化电场来调控由二维材料组成的范德华异质结,提出了一种新的偏振探测器结构,实现了高性能的偏振探测。

发明内容

本发明提出了一种新型铁电增强的范德华异质结偏振探测器及其制备方法。

该发明是利用具有各向异性的二维材料对偏振光敏感的特性,结合范德华异质结无损灵活制备工艺制备光伏型探测器,引入铁电极化电场调控范德华异质结,简化偏振探测器结构,提升范德华异质结偏振探测性能。

本发明指一种铁电增强的范德华异质结偏振探测器及制备方法,其特征在于,器件结构自下而上依次为:

—绝缘衬底1,

—第一层二维半导体2,

—第二层各向异性二维材料3,

—金属源极4、金属漏极5,

—铁电功能层6

—金属栅电极7,

其中绝缘衬底1为具有二氧化硅层的硅衬底;

其中第一层二维半导体2为过渡金属化合物MoS2

其中第二层各向异性二维材料3为GeSe,

可选的,金属源极4、金属漏极5为镍、铬、钛、钯、铂或金中的一种或两种,总厚度为20~100纳米。

其中铁电功能层6为聚偏氟乙烯基有机铁电聚合物,厚度为200-300纳米。

其中半透明金属栅电极7为高透光性超薄铝薄膜,厚度为9纳米。

本发明指一种铁电极化电场增强的范德华异质结偏振探测器及制备方法,其特征在于,器件制备包括以下步骤:

1)衬底准备

衬底为具有二氧化硅层的硅衬底。

2)第一层二维半导体的剥离及转移

采用机械剥离法将MoS2减薄至少层并转移至衬底。

3)第二层各向异性二维材料制备与转移

将第二层二维半导体(3)用机械剥离的方法制备于另一个衬底上,在该二维半导体上覆盖一层聚碳酸亚丙酯薄膜,加热使其与该二维半导体充分接触,降温后在衬底上取下该聚碳酸亚丙酯薄膜,此时二维半导体被聚碳酸亚丙酯吸附,在显微镜下移动薄膜,使得第二层二维半导体与第一层二维半导体(2)对准,加热使其缓慢接触,降温后将样品置于丙酮中浸泡,使聚碳酸亚丙酯完全溶解,至此制备好范德华异质结;

4)采用电子束曝光技术,结合热蒸发及剥离工艺制备金属源极(4),漏极(5),形成二维范德华异质结构器件。

5)在制备好的器件上运用旋涂方法制备聚偏氟乙烯基铁电薄膜,并在135℃温度下退火4小时保证铁电材料的结晶特性。

6)利用金属掩模版预留出栅电极图形,通过电子束蒸发或热蒸发制备半透明金属铝电极,形成铁电增强的范德华异质结器件。

附图说明

图1为铁电增强的GeSe/MoS2范德华异质结偏振探测器截面示意图。

图中:1衬底、2第一层二维半导体、3第二层各向异性二维半导体、4金属源极和5金属漏极、6铁电功能层、7金属电极。

图2为GeSe/MoS2范德华异质结在不同铁电极化状态下的电学特性曲线。

图3为铁电增强的范德华异质结在波长为520纳米(可见光)的激光照射下产生的光电流与入射光偏振角的关系。

图4为铁电增强的范德华异质结在波长为1310纳米(近红外光)的激光照射下产生的光电流与入射光偏振角的关系。

具体实施方式

下面结合附图对本发明的具体实施方式作详细说明:

本发明研制了铁电极化电场增强的范德华异质结偏振探测器。通过P(VDF-TrFE)铁电聚合物调控GeSe和MoS2形成的范德华异质结,有效降低暗电流,增强探测器偏振敏感特性。

具体步骤如下:

1.衬底选择

衬底为表面带有285纳米厚度二氧化硅(SiO2)的P型硅(Si)。

2.底层二维半导体制备

用胶带将过渡金属硫族化物MoS2晶体机械剥离,后将其转移至SiO2/Si衬底上,MoS2厚度5-15纳米。

3.第二层二维半导体转移

将第二层二维半导体(3)GeSe用机械剥离的方法制备于另一个衬底上,GeSe厚度为10-150纳米,在该二维半导体上覆盖一层聚碳酸亚丙酯薄膜,加热使其与该二维半导体充分接触,降温后在衬底上取下该聚碳酸亚丙酯薄膜,此时二维半导体被聚碳酸亚丙酯吸附,在显微镜下移动该薄膜,使得第二层二维半导体与第一层二维半导体(2)对准,加热使其缓慢接触,降温后将样品置于丙酮中浸泡,使聚碳酸亚丙酯完全溶解,至此制备好GeSe/MoS2范德华异质结。

4.金属源极、漏极制备

根据异质结的光学照片图像,定义出电极图形,通过电子束曝光工艺,利用热蒸发依次蒸镀铬和金,结合剥离工艺,获得金属源、漏电极。

5.铁电功能层制备

运用旋涂法制备P(VDF-TrFE)铁电功能层,厚度为100-300纳米,并在135℃温度下退火4小时保证其结晶特性。

6.半透明金属栅电极制备

利用金属掩模版定义栅电极图形,通过电子束蒸发制备半透明金属栅电极铝,厚度为9纳米,得到如图1所示的器件结构。

7.光电性能测试

首先测试在P(VDF-TrFE)不同极化状态下的GeSe/MoS2范德华异质结的电流-电压特性(4和5电极)。其中极化向上(向下)状态为在栅极7施加-30V(30V)电压,再把栅压撤除后的状态,此时铁电极化状态可以保持。选择输出电流较小状态测试探测器对不同入射角度的偏振光的响应。通过图2可以看出,不同极化状态下,GeSe/MoS2范德华异质结表现出不同的伏安特性,说明铁电极化场可以有效调控范德华异质结的电学特性,并且在极化向上的状态下使得反向电流显著减小。相应地,该异质结作为探测器时暗电流减小。

实施例1:

本实施例中提供一种铁电增强的范德华异质结偏振探测器及制备方法,所述的探测器结构如图1所示。

所述探测器自下而上依次为衬底1,第一层二维半导体2,第二层二维半导体3,金属源漏电极4、5,铁电功能层6,半透明金属电极7。

实施例1中衬底1为硅/二氧化硅衬底,二氧化硅厚度为285纳米;第一层二维半导体为二硫化钼,厚度为5纳米;第二层二维半导体为锡化亚锗,厚度为10纳米;金属源极4和金属漏极5为铬金,厚度为20纳米;铁电功能层6为100纳米;半透明金属电极为铝,厚度为9纳米。

实施例2:

本实施例中提供一种铁电增强的范德华异质结偏振探测器及制备方法,所述的探测器结构如图1所示。

所述探测器自下而上依次为衬底1,第一层二维半导体2,第二层二维半导体3,金属源漏电极4、5,铁电功能层6,半透明金属电极7。

实施例2中衬底1为硅/二氧化硅衬底,二氧化硅厚度为285纳米;第一层二维半导体为二硫化钼,厚度为10纳米;第二层二维半导体为锡化亚锗,厚度为80纳米;金属源极4和金属漏极5为铬金,厚度为80纳米;铁电功能层6为200纳米;半透明金属电极为铝,厚度为9纳米。

实施例1:

本实施例中提供一种铁电增强的范德华异质结偏振探测器及制备方法,所述的探测器结构如图1所示。

所述探测器自下而上依次为衬底1,第一层二维半导体2,第二层二维半导体3,金属源漏电极4、5,铁电功能层6,半透明金属电极7。

实施例1中衬底1为硅/二氧化硅衬底,二氧化硅厚度为285纳米;第一层二维半导体为二硫化钼,厚度为15纳米;第二层二维半导体为锡化亚锗,厚度为150纳米;金属源极4和金属漏极5为铬金,厚度为100纳米;铁电功能层6为300纳米;半透明金属电极为铝,厚度为9纳米。

基于以上三个实施例,测试结果相当。光响应结果均在极化向上时测试所得。GeSe/MoS2范德华异质结对波长为520纳米(可见光)的偏振光的响应如图3所示,三个实施例均可表现出显著的偏振灵敏性。另外,铁电超强的极化场可以将GeSe/MoS2范德华异质结的探测波段拓展到近红外波段,图4是器件对1310纳米近红外的光响应,也展现出偏振灵敏特性。以上三个实施例证明,通过铁电增强的GeSe/MoS2范德华异质结探测器可以实现高性能的可见-近红外波段的偏振探测。

本发明指一种铁电极化电场增强的范德华异质结偏振探测器及制备方法。实施结果说明该器件具有结构简单、暗电流低、偏振灵敏度高等优点,提高了范德华异质结器件在多维探测领域的实用性。

以上所述仅为本发明的优选实施例,不用于限制本发明,对于本领域内的一般技术人员,本发明可以有各种更改和变化。凡在本发明的思想和原则之内,所作的任何修改、替换、改进等,均包含在本发明的保护范围内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:降低太阳能电池芯片切割效率损耗的方法及光伏组件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类