用于复合结构的表面材料

文档序号:147614 发布日期:2021-10-26 浏览:31次 >En<

阅读说明:本技术 用于复合结构的表面材料 (Surfacing material for composite structures ) 是由 J·J·桑 D·K·科利 K·R·穆勒里 于 2016-11-29 设计创作,主要内容包括:披露了用于复合结构中的多功能表面材料。根据一个实施例,该表面材料包括(a)加强层、(b)可固化树脂层、(c)导电层、以及(d)非织造层,其中该加强层(a)和该非织造层(d)是最外层并且这些最外层的暴露表面在室温(20℃至25℃)下是基本上无粘性的。该导电层可以插置在该可固化树脂层与该加强层之间或者嵌入在该可固化树脂层中。根据另一个实施例,该表面材料包括在两个可固化树脂层之间的流体阻挡膜。这些表面材料可以是呈适用于自动铺放的连续或细长带的形式。(Multifunctional surfacing materials for use in composite structures are disclosed. According to one embodiment, the surface material comprises (a) a reinforcing layer, (b) a curable resin layer, (c) an electrically conductive layer, and (d) a nonwoven layer, wherein the reinforcing layer (a) and the nonwoven layer (d) are outermost layers and the exposed surfaces of the outermost layers are substantially tack-free at room temperature (20 ℃ to 25 ℃). The conductive layer may be interposed between the curable resin layer and the reinforcing layer or embedded in the curable resin layer. According to another embodiment, the surface material comprises a fluid barrier film between two curable resin layers. These surfacing materials may be in the form of continuous or elongated strips suitable for automated placement.)

具体实施方式

为了使雷击对复合结构的损害最小化,需要增强复合结构的导电性以提供对航天复合零件的雷击保护(LSP)。然而,不希望结合将显著增加飞机的总体重量的导电材料。

本披露的一方面涉及一种整体式导电表面材料,该表面材料能够提供雷击保护。此表面材料可以作为保护材料施加到复合结构例如飞机复合零件的外表面上。

该导电表面材料可以呈柔性带的形式,该柔性带是轻质的并且被配置用于自动铺放工艺,诸如自动带铺设(ATL)或自动纤维铺放(AFP)。由于其柔性和轻质特性,表面带可以按与常规树脂浸渍的预浸料带相比显著更快的速度铺设。表面带可以具有约0.125英寸至约12英寸(或约3.17mm至约305mm)的宽度。在一个实施例中,表面带具有约0.125英寸至约1.5英寸(或约3.17mm至约38.1mm)、包括约0.25英寸至约0.50英寸(或约6.35mm至约12.77mm)的宽度。在另一个实施例中,表面带具有约6英寸至约12英寸(或约152mm至约305mm)的宽度。带的长度是连续的或者相对于其宽度是非常长的,例如为其宽度的100-100,000倍。在连续形式中,表面带可以被卷绕成卷以便在其在自动工艺中施加之前进行储存。

ATL和AFP是使用计算机引导的机器人技术将连续带铺设到模具表面(例如,心轴)上以建立复合结构或纤维预成型件的工艺。ATL/AFP工艺涉及将一个或多个带并排分配到心轴表面上以产生所希望的宽度和长度的层,并且然后将附加层构建到先前的层上以提供具有所希望的厚度的叠层。后续带可以相对于先前带以不同角度定向。ATL/AFP系统配备有用于将带直接分配并压实到心轴表面上的装置。

AFP可以将多个单独的丝束(或非常窄缝的带)(例如,0.125英寸-1.5英寸)自动铺设到心轴上以构成给定总带宽。材料铺放使用数字控制的铺放头以高速度进行以在铺放期间分配、夹持、切割和重启每个丝束。ATL机器可以铺设树脂浸渍带或连续织物条带,其比AFP中所用的丝束宽。典型地,对于这两种工艺,经由机器人控制头施加材料,该机器人控制头包括材料铺放所需要的机构。AFP在传统上用于非常复杂的表面上。

根据由图1示意性示出的一个实施例,导电表面材料是整体式结构,该整体式结构包括夹在加强层12与可固化树脂层13之间的非常薄的导电层11以及与可固化树脂层13接触的非织造层14。当将表面材料施加到复合基材上时,加强层12与复合基材接触,使得非织造层14在铺放表面材料之后为复合基材上的最外层。加强层12和非织造层14的外表面基本上或完全无粘性。

导电层可以是金属或非金属导电材料的无孔连续层,其厚度小于约102μm,在一些实施例中在约5μm至约75μm或约3μm至约5μm的范围内。可替代地,导电层可以是多孔层,例如具有约60gsm至约350gsm,在一些实施例中,约60gsm至约195gsm的范围内的面积重量的筛网。另外,多孔导电层可以具有在约50μm至约102μm(或约2-4密耳)范围内的厚度。“gsm”是指g/m2。当导电层是金属层时,金属可以选自铜、铝、青铜、钛、以及其合金。在一些实施例中,多孔导电层是金属筛网或网眼金属箔。在其他实施例中,导电层由具有固有导电性的非金属材料形成,这些材料诸如片材形式的碳,包括石墨烯片和碳纳米管(CNT)纸。CNT纸的具体实例是柔性CNT巴克纸。

可固化树脂层13可具有小于约500gsm,例如约50gsm至约150gsm的面积重量。它不含任何增强纤维诸如碳纤维。可固化树脂层的组成在下文中更详细讨论。

当导电表面材料呈连续或细长带的形式时,整个带可具有约270gsm至约380gsm的总面积重量。带的总厚度可以在约76μm至约229μm(或3至9密耳)的范围内。

加强层12在自动铺放期间为表面带提供强度、刚度和支撑,并且防止在呈窄宽度带(或切割丝束)形式的表面材料通过自动铺放来铺设时的“可折叠”效应。“可折叠”效应是指在自动铺放期间(如在AFP或ATL工艺中)带(或切割丝束)的起皱和聚束。

将非织造层14施加到可固化树脂层13的暴露表面上,以便抑制粘性的可固化树脂层在预期使用该表面材料之前粘到其他表面上。但是可固化树脂层13未渗透穿过非织造层14的厚度。非织造层14是随机取向纤维的非织造片材,并且可以通过常规湿法成网工艺制造。非织造层14的纤维可以是聚合物纤维,诸如聚酯和聚酰胺纤维,或无机纤维,诸如玻璃纤维和碳纤维。还考虑金属涂覆的纤维,诸如金属涂覆的碳纤维、金属涂覆的聚酯纤维、金属涂覆的玻璃纤维、以及金属涂覆的聚酰胺纤维的非织造层。纤维上的金属涂层可以是任何金属,包括铜、镍、银、以及其组合。非织造层14可具有约10 gsm至约50gsm,在一些实施例中,约10gsm至约22gsm的面积重量。

在另一个实施例中,非织造层14是未涂覆纤维例如聚合物纤维或碳纤维的层,其在形成非织造层之后在一个或两个表面上用薄金属涂层涂覆。例如,非织造层14可以是具有沉积在未与可固化层13接触的表面上的薄金属涂层(例如,铜、镍、银、或其组合)的碳纤维或聚酯纤维的非织造片材。金属涂层的面积重量可以是在金属涂覆的非织造层的按重量计约1gsm至约25gsm(或约10%至约50%的范围内。

具有热塑性层的实施例

在一个实施例中,加强层是连续的无孔热塑性层,该层也可充当流体阻挡层,并且可提高复合结构的损害耐受性。热塑性层可具有约50μm至约153μm(或约2至约6密耳)的厚度,特别是当表面材料是呈用于自动铺放的连续或细长带的形式时。但根据表面材料的施加,较高厚度是可能的。在此实施例中,热塑性层不含有任何增强纤维,并且整体式表面材料也不包括诸如碳纤维等增强纤维的任何附加层。

热塑性层的特征在于以下结构特性:从约640MPa(或93ksi)至约2.1GPa(或305ksi)的拉伸模量,如通过ASTM D-882测量的;从约27MPa(或4ksi)至约76MPa(或11ksi)的屈服拉伸强度,如通过ASTM D-882测量的;从约41MPa(或5.9ksi)至约110MPa(或16ksi)的断裂拉伸强度,如通过ASTMD-882测量的;以及从约4%至约10%的屈服或断裂伸长率,如通过ASTM D-882测量的,所有特性均在约23℃下测定。此外,热塑性层在室温(20℃至25℃)下不具有粘性,这意味着它触摸起来是干燥的(即不具有粘性)。

在一个实施例中,热塑性层由半结晶热塑性聚合物形成,该聚合物具有大于280℃、更确切地说280℃至360℃的熔融温度(Tm),如通过差示扫描量热法(DSC)在10℃/分钟的斜升速率下测量。特别合适类别的聚合物是聚芳醚酮(PAEK)。

PAEK聚合物是含有单元-Ar-O-Ar-C(=O)-的聚合物,其中每个Ar独立地是芳族部分。PAEK聚合物的具体实例包括聚(醚酮)(“PEK”)、聚(醚醚酮)(“PEEK”)、聚(醚酮酮)(“PEKK”)、聚(醚酮醚酮酮)(“PEKEKK”)、聚(醚醚酮醚醚酮)(“PEEKEEK”)、聚(醚二苯基酮)(“PEDK”)、聚(醚二苯基醚酮)(“PEDEK”)、聚(醚二苯基醚酮酮)(“PEDEKK”)、以及聚(醚酮醚萘)(“PEKEN”)。可商购的PAEK聚合物包括PEEK、或DSE或FC、以及全部可商购自氰特工业有限公司(Cytec Industries Inc)。

其他热塑性聚合物可用于形成热塑性层,前提是这些聚合物具有以上所讨论的拉伸模量、拉伸强度和伸长率。其他合适的热塑性聚合物包括聚酰亚胺(例如来自杜邦公司的HN和VN型聚酰亚胺)、聚醚酰亚胺(例如来自沙特基础工业公司(SABIC)的UltemTM 1000B PEI膜)、聚酰胺-酰亚胺(例如来自苏威公司(Solvay)的4000TF)、聚酰胺(例如来自帝斯曼公司(DSM)的高性能聚酰胺46膜)、聚酯(例如来自沙伯公司(Valox)的聚对苯二甲酸乙二醇酯聚酯(PET、PETP)膜、聚砜(例如来自CS海德公司(CS Hyde Company)的PSU膜)以及其组合。

具有玻璃质树脂的实施例

在另一个实施例中,表面材料包括图1所示的部件,其中加强层12由已用含有一种或多种玻璃质热固性树脂的可固化组合物涂覆或灌注的织造织物或非织造面网(veil)构成。

玻璃质热固性树脂是指在室温(20℃至25℃)下的固体且脆性的材料。此外,用玻璃质树脂组合物涂覆/灌注的织造织物或非织造面网在室温(20℃至25℃)下具有最小粘性或不具有粘性,这意味着它触摸起来基本上干燥或完全干燥(即不具有粘性)。

特别合适的是由下式表示的环氧甲酚酚醛清漆:

其中

n=1至6

可商购的环氧甲酚酚醛清漆的实例包括来自汽巴精化公司(Ciba SpecialtyChemicals)的ECN 1273、1280、1299、9511。

其他合适的玻璃质热固性树脂是低水分的具有由下式表示的二环戊二烯(DCPD)主链的烃环氧酚醛清漆树脂:

其中

n=1至3

可商购的基于DPCD的环氧酚醛清漆的实例包括来自亨斯迈公司(Huntsman)的556和756;

还合适的是固体环氧加合物,其为表氯醇和双酚A的固体反应产物(或缩合产物)并且由下式表示:

其中n=2至7。

这些固体环氧加合物可具有约500至约930,例如500-560或860-930的环氧当量重量(g/eq),如通过ASTM D-1652测定的。这些材料在室温(20℃-25℃)下为固体并且具有超过60℃的软化温度。在一些实施例中,环氧加合物可具有约65℃至约140℃,例如75℃-85℃或100℃-110℃的软化温度,如通过ASTMD-3104测定的。此类固体环氧加合物的具体可商购的实例是来自陶氏化学公司的D.E.R.TM 661和D.E.R.TM 664。

可以用玻璃质树脂组合物涂覆或灌注的织造织物是由连续纤维,诸如玻璃纤维,特别是E玻璃纤维构成的轻质织造织物,该轻质织造织物具有约10gsm至约50gsm范围内的面积重量。E-玻璃是具有按重量计小于1%的碱金属氧化物的铝-硼硅酸盐玻璃。除玻璃纤维之外,其他合适的纤维包括碳纤维、热塑性纤维诸如聚酰胺纤维和聚酯纤维。还考虑金属涂覆的纤维或金属纤维。金属涂覆的纤维的实例包括金属涂覆的碳纤维、金属涂覆的聚酯纤维、金属涂覆的玻璃纤维、以及金属涂覆的聚酰胺纤维。纤维上的金属涂层可以是铜、镍、银、铜-银、以及其组合。织造纤维可以具有在约10μm至约15μm(微米)范围内的直径。

适用于本文目的的非织造面网是由短纤维构成的轻质、高度多孔非织造材料,这些短纤维随机取向并通过少量粘合剂诸如PVA(聚乙烯醇)保持在一起。面网的纤维可以是聚合物纤维、无机纤维或金属涂覆的纤维,如对于非织造层14所述的。像非织造层14一样,非织造面网可以通过常规湿法成网工艺制造。纤维可以具有在约10mm至约15mm范围内的长度和在10μm至15μm范围内的直径。在优选的实施例中,非织造面网具有在约10gsm至约50gsm,在一些实施例中,约10gsm至约35gsm范围内的面积重量。

在一个实施例中,将以上所披露的一种或多种热固性树脂(环氧甲酚酚醛清漆、DCPD主链环氧酚醛清漆或固体环氧加合物)与固化剂、有机溶剂和任选地流动控制剂混合以形成含有按重量计约65%至约75%固体的涂覆溶液。涂覆溶液可进一步包含微量热塑性聚合物。可以将组分在室温下在剪切混合器中共混,直到形成基本上均匀的共混物。当使用固体环氧加合物时,将环氧加合物任选地进一步研磨成细粉末,之后与其他组分混合。然后将所得树脂溶液涂覆到玻璃织物或面网的两侧,接着进行干燥。

用于环氧酚醛清漆和环氧加合物的合适固化剂可以选自胺固化剂,例如双氰胺(DICY)、4,4′-二氨基二苯基砜(4,4'DDS)和3,3’-二氨基二苯基砜(3,3’DDS)、胍胺、胍、氨基胍、哌啶,以及非胺固化剂,诸如三氟化硼(BF3)或其络合物,以及酸酐。在一个实施例中,该固化剂是双氰胺。在涂覆溶液中树脂与固化剂的比率是使得按重量计每100份一种或多种玻璃质树脂存在约5份至约30份的固化剂。

合适的有机溶剂包括但不限于甲基乙基酮(MEK)、丙酮、甲苯、PMA、氯仿、甲苯-MIBK、氯化乙烯、以及二甲苯-MIBK。本文所披露的环氧甲酚酚醛清漆、DCPD-主链环氧酚醛清漆和固体环氧加合物可溶于此类溶剂中。

合适的流动控制剂包括呈微粒形式(例如粉末)的无机填充剂。这种流动控制剂作为流变改性组分加入到涂覆溶液中,以控制树脂组合物的流动并防止其中的附聚。可以用于树脂涂覆组合物中的合适无机填充剂包括滑石、云母、碳酸钙、氧化铝、以及气相二氧化硅。在一个实施例中,疏水性气相二氧化硅粉末(例如来自卡伯特公司(CabotCorporation)的TS-720)用作流动控制剂。流动控制剂的量可处于基于100份一种或多种玻璃质热固性树脂按重量计约1份至约5份的范围内。呈微粒形式的流动控制剂(诸如气相二氧化硅粉末)是特别合适的。

热塑性聚合物可以选自聚芳砜,诸如聚醚砜(PES)、聚醚醚砜(PEES)以及PES与PEES的共聚物、聚醚酰亚胺(PEI)(例如来自通用电气公司(General Electric)的UltemTM)。热塑性聚合物的量可以是每100份一种或多种热固性树脂约1份至约20份。

玻璃质树脂组合物可进一步包含微量(小于20份/100份玻璃质热固性树脂)呈粉末形式的双马来酰亚胺或BMI,例如来自亨斯迈公司的5292A作为增韧剂。

表1披露了用于涂覆织造织物或非织造面网的一些示例性基于溶剂的树脂配制品。

表1

在替代性实施例中,在不使用溶剂的情况下将玻璃质热固性树脂(环氧甲酚酚醛清漆、基于DCPD的环氧酚醛清漆或环氧加合物)与固化剂以及任选地流动控制剂和/或热塑性聚合物共混,以形成熔融混合物。在具有加热/冷却和真空能力的混合器中进行组分的共混以将树脂混合物组分均匀地共混。然后例如通过以下方式将熔融混合物用于形成固体树脂层:将热熔体膜涂覆到载体层(玻璃织物或面网载体)或剥离纸上,接着冷却以使树脂凝固。然后使固体树脂层与织造织物或非织造面网接触。施加热量和压力以熔融树脂层并用熔融树脂灌注织物或面网。可以将一个树脂层压靠在织物/面网的一侧或者可以将两个树脂层压靠在织物/面网的相反侧。

具有玻璃面网/织物和非织造层的实施例

在又另一个实施例中,由图2所绘示的,整体式表面材料是包括嵌入在可固化树脂层22中的多孔导电层21、外部织造织物或非织造面网23(在下文中为“纤维层”)和外部非织造层24的表面材料。纤维层23和非织造层24的外表面基本上或完全无粘性。并且可固化树脂22未渗透穿过纤维层23或非织造层24的厚度。当将此表面材料放置于复合基材上时,纤维层23与复合基材接触以提供刚度并且非织造层24变成复合零件的最外层。多孔导电层21是如先前参考图1所述的。在一个实施例中,多孔导电层是金属筛网。织造织物或非织造面网23是如先前对于其他实施例所述的。非织造层24是如先前参考图1中的非织造层14所述的。在一个实施例中,层23和24是具有相同或不同面积重量的非织造面网。当层23和24是具有不同面积重量的非织造面网时,在施加表面材料之后具有较高面积重量的非织造面网将与复合基材接触并且具有较低面积重量的非织造面网将是最终复合零件中的最外层。此表面材料可以是呈用于如先前所述的诸如ATL或AFP等自动铺放的窄宽度带的形式。

图2的整体式表面材料可以通过首先将可固化树脂层形成到可移除载体层例如剥离层上来制造。将多孔导电片材(例如金属筛网)铺放到可固化树脂层的暴露的表面上,然后将热量和压力施加到组装的层,以便将多孔导电片材嵌入到树脂层中。随后,将纤维层23和非织造层24中的每一个单独地层压到所得树脂层的相反侧上。施加压力以将纤维层23和非织造层24粘结到树脂层上,但并未高到足以引起树脂基本上或完全渗透到纤维层23或非织造层24中。

流体阻挡层

本披露的另一方面涉及一种用作复合结构中的外部流体阻挡层的表面材料。此类流体阻挡层特别适用于含有多孔芯的复合夹层板。复合夹层板典型地具有通过高压釜处理使用粘合剂共固化至芯的复合蒙皮。芯材料可以采用多种形式,诸如轻质蜂窝、硬质泡沫、纸或木材。优选地,该芯是蜂窝材料,因为这为非常低重量的材料提供优异的结构特性。由于高的刚度与重量比和强度与重量比,复合夹层板广泛用于航天结构部件。

图3示出了流体阻挡层表面材料30的一个实施例,该表面材料包括第一可固化树脂层31、第二可固化树脂层32和夹在这些树脂层之间的阻挡膜33。可固化树脂层和阻挡膜形成整体式结构。第一树脂层和第二树脂层中的每一个包含一种或多种热固性树脂和固化剂,并且不包含任何增强纤维。

在一些实施例中,第一树脂层和第二树脂层中的至少一个进一步包含呈微粒形式的选自以下各项的无机填充剂:TiO2粉末、纳米级二氧化硅、纳米级粘土、碳、石墨、石墨烯、碳纳米管(CNT)、以及其组合。这种无机填充剂的存在增加树脂层的疏水性并且提供与阻挡膜的协同作用以消除进入表面材料下方的复合结构中的任何流体侵入。

阻挡膜由液体不可渗透的聚合物材料形成。聚合物材料的优选特性包括高Tg,例如在140℃-170℃)或150℃-162℃内,如通过DSC在10℃/分钟的斜升速率下根据ASTMD3418测量的。另一个优选的特性是3%-50%、包括10%-40%或20%-30%的结晶度,如通过DSC在10℃/分钟的斜升速率下根据ASTM D3418测量的。

作为实例,阻挡膜可以由选自以下各项的热塑性材料制成:聚芳醚酮(PAEK)聚合物、聚酰胺、聚酰亚胺、聚醚酰亚胺(PEI)、聚酰胺-酰亚胺、聚酯、以及其组合。在一些实施例中,阻挡膜的组成包括选自以下各项的PAEK聚合物:聚(醚酮)(“PEK”)、聚(醚醚酮)(“PEEK”)、聚(醚酮酮)(“PEKK”)、聚(醚酮醚酮酮)(“PEKEKK”)、聚(醚醚酮醚醚酮)(“PEEKEEK”)、聚(醚二苯基酮)(“PEDK”)、聚(醚二苯基醚酮)(“PEDEK”)、聚(醚二苯基醚酮酮)(“PEDEKK”)、以及聚(醚酮醚萘)(“PEKEN”)、以及其组合。

图4示出了流体阻挡层表面材料40的另一个实施例,该表面材料包括第一可固化树脂层41、第二可固化树脂层42、阻挡膜43以及导电层44。所有四个层构成整体式结构。阻挡膜43和导电层44定位在两个树脂层之间。可固化树脂层和阻挡膜为如先前所述的。导电层44是如上文参考图1所述的。在此实施例中,表面材料除了提供流体阻挡层之外还可以提供LSP。

图5示出了其中结合有图3或图4的流体阻挡层表面材料的示例性复合夹层板的部件。如图5所示,复合夹层板包括表面材料(50)、第一预浸料蒙皮51、第二预浸料蒙皮52、蜂窝芯53、以及用于将预浸料蒙皮粘结(经由共固化或二次粘结)至蜂窝芯的粘合剂膜54、55。每个预浸料蒙皮由若干个可固化预浸料板层构成。

用于产生蜂窝夹层板的一般方法包括将蜂窝芯与在两侧上的预浸料蒙皮和粘合剂膜层压、将流体阻挡层表面材料层压在蒙皮之一上并且共固化所有部件以将它们彼此粘结。另一种制造相同蜂窝夹层板的方式是通过二次粘结,诸如在板修复的情况下。在此二次粘结过程中,将预固化的预浸料蒙皮表面通过机械性磨损(例如砂纸打磨或喷砂处理)或去除可剥板层进行处理以产生粘结好的表面。然后,经由粘合剂膜通过固化工艺将预固化的蒙皮与蜂窝芯粘结。然后,将流体阻挡层表面材料施加至固化的蜂窝夹层板的外表面,接着固化该表面材料,以便形成硬化的保护外层。

用于将蜂窝芯粘结至预浸料蒙皮的粘合剂可以由含有一种或多种热固性树脂(例如环氧树脂)和固化剂的热固性组合物形成。例如,可以使用可商购的来自氰特工程材料有限公司(Cytec Engineered Materials Inc.)的基于环氧树脂的粘合剂FM 309-1和FM300。

可固化树脂

如本文使用的术语“固化(cure/curing)”是指通过在高温下加热、暴露于紫外光和辐射或化学添加剂而引起的预聚物材料或树脂前体的不可逆硬化。术语“可固化”意指可以固化成硬化材料。如本文使用的“部分固化的”是指小于100%的固化度。

在不同实施例中、特别是参考图1-4所述的每个可固化树脂层由含有一种或多种热固性树脂和固化剂的热固性组合物形成。

合适的热固性树脂的实例包括但不限于环氧树脂、酚醛树脂、氰酸酯、双马来酰亚胺、苯并噁嗪(包括聚苯并噁嗪)、不饱和聚酯、乙烯基酯树脂、以及其组合。

在一些实施例中,该热固性组合物含有一种或多种多官能环氧树脂。多官能环氧树脂(或聚环氧化物)每个分子含有两个或更多个环氧官能团。

合适的多官能环氧树脂的实例包括通过在碱存在下表氯醇或表溴醇与多酚的反应制备的聚缩水甘油醚。合适的多酚是例如间苯二酚、邻苯二酚、氢醌、双酚A(双(4-羟苯基)-2,2-丙烷)、双酚F(双(4-羟苯基)甲烷)、双(4-羟苯基)-1,1-异丁烷、4,4′-二羟基苯甲酮、双(4-羟苯基)-1,1-乙烷、以及1,5-羟基萘。

还包括多元醇的聚缩水甘油醚。此类多元醇包括乙二醇、二乙二醇、三乙二醇、1,2-丙二醇、1,4-丁二醇、三乙二醇、1,5-戊二醇、1,6-己二醇、以及三羟甲基丙烷。

另外的环氧树脂包括多羧酸的聚缩水甘油酯,例如缩水甘油或表氯醇与脂族或芳族多羧酸诸如草酸、琥珀酸、戊二酸、对苯二甲酸、或二聚脂肪酸的反应产物。

其他环氧化物可包括衍生自烯属不饱和脂环族化合物的环氧化产物或衍生自天然油和脂肪的那些。

还包括为双酚A或双酚F和表氯醇的反应产物的液体环氧树脂。这些环氧树脂在室温下是液体并且通常具有从约150至约480的环氧当量重量(g/eq),如通过ASTM D-1652测定的。

特别合适的是环氧酚醛清漆树脂,其为具有以下化学结构的苯酚-甲醛酚醛清漆或甲酚-甲醛酚醛清漆的聚缩水甘油基衍生物:

其中n=0至5,并且R=H或CH3。当R=H时,该树脂是苯酚酚醛清漆树脂。当R=CH3时,该树脂是甲酚酚醛清漆树脂。前者作为DEN 428、DEN 431、DEN 438、DEN 439、以及DEN485从陶氏化学公司可商购。后者作为ECN 1235、ECN 1273和ECN 1299从汽巴-嘉基公司(Ciba-Geigy Corp.)可商购。可以使用的其他合适的酚醛清漆包括来自塞拉尼斯聚合物特种材料公司(Celanese Polymer Specialty Co.)的SU-8。在优选的实施例中,环氧酚醛清漆树脂具有在25℃下4000-10,000mPa·s的粘度和约190g/eq至约235g/eq的环氧当量重量(EEW),如通过ASTM D-1652测定的。

特别合适的多官能环氧树脂是每个分子具有四个环氧官能团和至少一个缩水甘油胺基团的四官能芳族环氧树脂。实例是具有以下一般化学结构的亚甲基二苯胺的四缩水甘油醚:

结构中的胺基团示出在芳族环结构的对位或4,4’位置中,然而应理解其他异构体诸如2,1’、2,3’、2,4’、3,3’、3,4’是可能的替代形式。可商购的四官能环氧树脂的实例是由亨斯迈先进材料公司(Huntsman Advanced Materials)供应的MY 9663、MY9634、MY 9655、MY-721、MY-720、MY-725。

另一种特别合适的多官能环氧树脂是三官能环氧树脂,例如氨基苯酚的三缩水甘油醚。可商购的三官能环氧树脂的具体实例是由亨斯迈先进材料公司供应的MY0510、MY 0500、MY 0600、MY 0610。

可固化树脂组合物可以被配制以产生高Tg和高交联密度。在一些实施例中,使用一种或多种环氧酚醛清漆树脂和一种或多种非酚醛清漆多官能环氧树脂(特别是三官能和/或四官能环氧树脂)的组合。环氧酚醛清漆树脂和非酚醛清漆多官能环氧树脂的相对量可以变化,但是优选的是环氧酚醛清漆树脂的量是在每100份非酚醛清漆多官能环氧树脂约80至约100份的范围内。环氧酚醛清漆树脂和多官能环氧树脂在指定比例下的组合在固化时有助于所希望的高Tg和交联密度。

基于树脂膜组合物的总重量,全部树脂的总量构成了按重量计至少15%。作为实例,基于热固性组合物的总重量,树脂的总量可以构成按重量计约30%至约60%,或者按重量计约15%至约25%。

在一些实施例中,树脂组合物包含某些多官能热固性树脂、增韧树脂基质的聚合物增韧组分、潜伏性基于胺的固化剂、作为流体阻挡层组分的陶瓷微球、以及作为流变改性组分的微粒无机填充剂的组合。多官能树脂和陶瓷微球构成了总组合物的按重量计超过35%,优选地按重量计超过45%。

聚合物增韧剂

热固性组合物可进一步包含一种或多种聚合物增韧剂。聚合物增韧剂可以选自下组,该组由以下各项组成:热塑性聚合物,弹性体,核-壳橡胶颗粒,为环氧树脂、双酚和弹性体聚合物的反应产物的预反应加合物,以及其组合。在一些实施例中,使用来自此组的两种不同增韧剂的组合。基于组合物的总重量,一种或多种增韧剂的总计量可以是按重量计约1%至约30%,在一些情况下是约10%至约20%。关于预反应加合物,合适的环氧树脂包括双酚A的二缩水甘油醚、四溴双酚A的二缩水甘油醚、双酚A的氢化二缩水甘油醚、或双酚F的氢化二缩水甘油醚。还合适的是脂环族环氧树脂,其包括每个分子含有至少一个脂环族基团和至少两个环氧乙烷环的化合物。具体实例包括由以下结构表示的脂环族醇、氢化双酚A的双环氧化物:

此类脂环族环氧树脂的实例是从CVC热固性特种材料公司(CVCThermosetSpecialties)可获得的5000(通过氢化双酚A二缩水甘油醚制备的脂环族环氧树脂)。适用于预反应加合物中的其他脂环族环氧化物可包括EPONEX脂环族环氧树脂,例如由迈图特用化学品公司(Momentive Specialty Chemicals)供应的EPONEX树脂1510。

预反应加合物中的双酚用作直链或脂环族环氧树脂的增链剂。合适的双酚包括双酚A、四溴双酚A(TBBA)、双酚Z、以及四甲基双酚A(TMBP-A)。

用于形成预反应加合物的合适弹性体包括但不限于液体弹性体诸如胺封端的丁二烯丙烯腈(ATBN)、羧基封端的丁二烯丙烯腈(CTBN)和羧基封端的丁二烯(CTB)。还可能的是氟碳弹性体、有机硅弹性体、苯乙烯-丁二烯聚合物。在一个实施例中,预反应加合物中所使用的弹性体是ATNB、CTBN或CTB。

在一个实施例中,环氧树脂与双酚增链剂和弹性体聚合物在催化剂诸如三苯基膦(TPP)存在下、在约300°F(或约148.9℃)下反应,以链接环氧树脂并形成高粘度、成膜、高分子量环氧树脂预反应加合物。预反应加合物然后与热固性组合物的其余组分混合。

合适的热塑性增韧剂包括聚芳砜聚合物诸如聚醚砜(PES)、聚醚醚砜(PEES)。在一些实施例中,增韧剂是PES和PEES的共聚物,其描述于美国专利号7084213中。在一些实施例中,增韧剂是聚(氧基-1,4-亚苯基磺酰基-1,4-亚苯基),其具有如通过DSC测量的约200℃的Tg

增韧组分可以是具有300nm或更小的颗粒大小的核-壳橡胶(CSR)颗粒。CSR颗粒可以是任何核-壳颗粒,其中软核由硬壳围绕。优选的CSR颗粒是具有聚丁二烯橡胶核或丁二烯-丙烯腈橡胶核以及聚丙烯酸酯壳的那些颗粒。然而,还可以使用具有由软壳围绕的硬核的CSR颗粒。CSR颗粒可以按分散在液体环氧树脂中的CSR颗粒重量百分比计以25%-40%供应。具有橡胶核和聚丙烯酸酯壳的CSR颗粒可以商品名Kane Ace MX从钟渊德州公司(Kaneka TexasCorporation)(德州休斯顿(Houston,Tex.))商购。优选但不需要的是,核-壳橡胶颗粒作为颗粒在合适液体环氧树脂中的悬浮液添加到表面膜组合物中。Kane AceMX 411是按重量计25%核-壳橡胶颗粒在MY721环氧树脂中的悬浮液并且是核-壳橡胶颗粒的合适来源。含有按重量计25%-37%的分散在DER331树脂中的相同核-壳橡胶颗粒的KaneAce MX120、MX125或MX156也是核-壳橡胶颗粒的合适来源。还可以使用核-壳橡胶颗粒的其他合适来源,诸如MX257、MX215、MX217和MX 451。核-壳橡胶颗粒的另一种商业来源是来自陶氏化学公司的ParaloidTMEXL-2691(具有约200nm的平均颗粒大小的甲基丙烯酸酯-丁二烯-苯乙烯CSR颗粒)。

固化剂

多官能环氧树脂可以通过多种在高温(例如高于150°F(65℃)的温度)下活化的潜伏性基于胺的固化剂来固化。合适的固化剂的实例包括双氰胺(DICY)、胍胺、胍、氨基胍、及其衍生物。还可以使用咪唑和胺络合物类别的化合物。在一个实施例中,该固化剂是双氰胺。基于胺的固化剂是以在基于树脂膜组合物的总重量按重量计约1%至约5%的范围内的量存在。

固化加速剂可以与基于胺的固化剂结合使用,以促进环氧树脂与基于胺的固化剂之间的固化反应。合适的固化加速剂可以包括烷基和芳基取代的脲(包括芳香族或脂环族二甲基脲),以及基于甲苯二胺或亚甲基二苯胺的双脲。双脲的一个实例是作为Omicure U-52或CA 152从CVC化学品公司(CVCChemicals)可商购的4,4’-亚甲基双(苯基二甲基脲),其为双氰胺的合适加速剂。另一个实例是作为OmicureU-24或CA150从CVC化学品公司可商购的2,4-甲苯双(二甲基脲)。固化加速剂可以是在基于热固性组合物的总重量按重量计约0.5%至约3%的范围内的量存在。

陶瓷微球

可以将陶瓷微球添加到热固性组合物中以改善由其形成的树脂膜的表面光滑度。它们可以是空心的或实心的陶瓷微球。在一个实施例中,使用由惰性二氧化硅-氧化铝陶瓷材料制成的空心陶瓷微球。陶瓷微球可以具有超过60,000psi的压碎强度、约3.7-4.6的介电常数、在1000℃-1100℃(或1832°F-2012°F)范围内的软化点、以及从0.1微米至50微米或1-50微米范围内的颗粒直径。陶瓷微球的高软化点使得它们对溶剂不具吸附性、不易燃、以及对化学品的高抗性。已发现具有在从约0.1μm至约20μm、并且优选地从约1μm至约15μm范围内的直径的微球是特别合适的。特别适用于本发明树脂膜组合物中的可商购的陶瓷微球的实例由Zeelan工业有限公司以商品名例如G-200、G210和W-200销售。这些微球是具有厚壁、没有气味并且颜色为浅灰色的空心二氧化硅-氧化铝球。在优选的实施例中,多官能树脂和陶瓷微球的组合构成了树脂膜组合物的按重量计超过50%,优选地按重量计超过60%。在某些实施例中,基于树脂膜组合物的总重量,陶瓷微球的量是按重量计至少20%。在一些实施例中,基于热固性组合物的总重量,陶瓷微球的量可以是在按重量计约20%至约40%、或按重量计约25%至约35%的范围内。在其他实施例中,陶瓷微球的量可以是在按重量计约3%至约15%、或按重量计约5%至约10%的范围内。

流动控制剂

将呈微粒形式(例如粉末)的无机填充剂作为流变改性组分加入到热固性组合物中,以控制树脂组合物的流动并防止其中的附聚。可以用于树脂膜组合物中的合适的无机填充剂包括滑石、云母、碳酸钙、氧化铝、以及气相二氧化硅。在一个实施例中,疏水性气相二氧化硅(例如Cab-O-Sil TS-720)用作无机填充剂。基于热固性组合物的总重量,无机填充剂的量可以是在按重量计约1%至约5%的范围内。

任选的添加剂

热固性组合物可以进一步包含一种或多种任选的添加剂,这些添加剂影响固化或未固化树脂膜的机械特性、电学特性、光学特性、以及热特性中的一种或多种。此类添加剂包括但不限于紫外线(UV)稳定剂、颜料/染料以及导电材料。当使用此类添加剂时,其总量是基于热固性组合物的总重量按重量计小于约5%。

可以加入到树脂组合物中的UV稳定剂的实例包括丁羟甲苯(BHT);2-羟基-4-甲氧基-苯甲酮(例如UV-9);2,4-双(2,4-二甲基苯基)-6-(2-羟基-4-辛基氧基苯基)-1,3,5-三嗪(例如UV-1164光吸收剂);3,5-二-叔丁基-4-羟基苯甲酸;n-十六烷基酯(例如UV-2908光稳定剂);季戊四醇四(3-(3,5-二-叔丁基-4-羟基苯基)丙酸酯(例如IRGANOX 1010)。来自汽巴精化公司的液体受阻胺光稳定剂,诸如2-(2H-苯并三唑-2-基)-4,6-二叔戊基苯酚(例如TINUVIN 328)、1,2,2,6,6-五甲基-4-哌啶基癸二酸甲酯(例如TINUⅥN 292)。癸二酸双(2,2,6,6-四甲基-1-(辛基氧基)-4-哌啶基酯(例如TINUⅥN 123)也可以用作合适的UV稳定剂。另外,纳米级氧化锌(n-ZnO)(例如NanoSunGuard3015)和二氧化钛纳米颗粒(n-TiO2)也可以用作UV稳定剂。

可以将本领域中已知的用于将颜色加入到树脂体系中的颜料和/或染料加入到树脂膜组合物中。颜料和/或染料的实例包括但不限于氧化铁红、铬绿、碳黑、以及二氧化钛。在一个实施例中,将二氧化钛(白色)颜料加入到树脂膜组合物中。在另一个实施例中,加入碳黑颜料。

也可以将呈微粒形式(例如颗粒或薄片)的导电材料加入到树脂膜组合物中,以赋予最终树脂膜导电性。合适的导电材料的实例包括呈薄片或颗粒形式的金属,诸如银、金、镍、酮、铝、青铜、以及其合金。基于碳的材料诸如碳纳米管(单壁纳米管或多壁纳米管)、碳纳米纤维和石墨烯也可以用作导电添加剂以赋予树脂膜导电性。纳米纤维可以具有在从70至200纳米范围内的直径和约50-200微米的长度。纳米管可以具有约10纳米的外直径、约10,000纳米的长度以及约1000的纵横比(L/D)。此外,导电添加剂也可以包括碳黑颗粒(诸如来自德固赛公司(DeGussa)的Printex XE2)。

在一个实施例中,用于形成可固化树脂层或基质的热固性组合物具有以基于组合物的总重量的重量百分比计的以下配方:20%-25%环氧苯酚酚醛清漆树脂;20%-25%四官能环氧树脂;10%-15%预反应加合物、1%-3%PES-PEES共聚物、25%-35%陶瓷微球;1%-5%潜伏性基于胺的固化剂;0.5%-3%固化加速剂;1%-3%无机填充剂;以及任选地0.1%-1%着色颜料。

在另一个实施例中,热固性组合物具有以基于组合物的总重量的重量百分比计的以下配方:5%-15%环氧苯酚酚醛清漆树脂;5%-15%四官能环氧树脂;10%-20%预反应加合物、1%-3%PES-PEES共聚物、25%-35%陶瓷微球;1%-5%潜伏性基于胺的固化剂;0.5%-3%固化加速剂;1%-3%无机填充剂;以及45%-70%导电添加剂,诸如银薄片或银-铜薄片、或以上讨论的基于碳的纳米级材料。

可以将热固性组合物的组分加入到配备有混合、加热和/或冷却机构的剪切混合器中。此外,也可以按需要将一种或多种有机溶剂加入到混合物中以促进组分的混合。此类溶剂的实例可包括但不限于甲基乙基酮(MEK)、丙酮、二甲基乙酰胺、以及N-甲基吡咯烷酮。

为了促进树脂层的处理,将热固性组合物施加到如以上所述的可移除载体层上以形成树脂层。如果没有使用溶剂,则树脂层可通过使用热熔体涂覆方法来形成,或者如果使用溶剂,则树脂层可通过使用溶液涂覆方法来形成。如果使用溶剂,则将需要随后干燥树脂层以去除挥发物。

应用

本文披露的表面材料可以在高于150°F(65℃)、更具体地在200°F至365°F(或93℃至185℃)范围内的温度下施加到纤维增强的聚合物复合基材上并且与其共固化。纤维增强的聚合物复合基材由已用可固化基质树脂浸渍或灌注的增强纤维构成。在一些实施例中,复合基材可以是预浸料板层或预浸料叠层。预浸料叠层由多个以堆叠顺序安排的预浸料板层构成。每个预浸料板层由已用基质树脂例如环氧树脂浸渍/灌注的呈织物或定向对齐的连续纤维形式的增强纤维构成。定向对齐的纤维可以是单向纤维或多向纤维。总体上,可固化导电表面材料可以施加到纤维增强的聚合物复合基材上,该聚合物复合基材是呈未固化或部分固化的状态,随后进行共固化以形成具有作为最外层粘结至其上的硬化表面膜的完全固化的复合结构。

在连续表面带的形式中,表面材料可以通过诸如ATL和AFP工艺等自动铺放铺设到复合基材上。表面带可以结合到ATL/AFP工艺中,该工艺自动铺设连续的树脂浸渍的预浸料带以形成复合结构。每个预浸料带由单向增强纤维例如碳纤维构成,这些增强纤维嵌入在可固化树脂基质例如基于环氧树脂的基质中。在自动铺放工艺中,在高速度下使用一个或多个数字控制的铺放头将单独的预浸料带直接铺设到心轴或模具表面上,以在铺放期间分配、夹持、切割和重启每个带。并排分配预浸料带以产生所希望的宽度和长度的层,并且然后将附加层构建到先前的层上以提供具有所希望的厚度的预浸料叠层。然后,将表面带铺设在预浸料叠层上以形成最外层。这种ATL/AFP工艺常规地用于制造大的复合航天结构,诸如飞机的机身区段或机翼蒙皮。此自动铺放工艺消除了一些中间加工步骤,这些步骤在将大表面膜手动施加到现有预浸料叠层上的常规方法中是典型的。

对于具有流体阻挡层特性的表面材料,所披露的流体阻挡层表面材料可以用于制造飞机结构零件(诸如机翼、机身、机尾、以及发动机舱结构等)。使用此类多功能流体阻挡层表面材料作为外部保护层提供了多层面益处,包括消除流体浸入、良好的表面特性以及显著成本节约的LSP。

实例

以下实例用于给出根据本披露的表面材料的具体实施例,但并不旨在以任何方式限制本披露的范围。

实例1

将球状形式的PEKK进料到单螺杆挤出机中,在它们行进穿过挤出机料筒时将其加热至所需温度以用于熔融PEKK粒料。从挤出机离开的熔融材料进入模具以形成PEKK膜,随后使其冷却。

然后将PEKK膜层压至铜筛网(73gsm)和来自氰特工业有限公司的可固化SM 905表面层(90gsm),其中铜筛网被夹在PEKK层与表面层之间。通过施加热量和压力将12gsm非织造聚酯垫层压至表面膜的暴露表面,从而产生整体式层压结构。层压不会引起表面层的树脂渗透通过非织造聚酯垫的厚度。另外,所得层压件具有无粘性的外表面。然后将层压件切割成适用于AFP工艺的具有约6.35mm(或0.25英寸)的窄条带。图6示出了具有露出的PEKK表面的新切割带。应注意,切割带的侧边缘是整齐的并且在切割期间铜筛网没有变形。图7是两个AFP切割带的摄影图像,其中PEKK表面朝上。

实例2

根据以下配方制备涂覆树脂溶液:

·固体环氧加合物(例如DER 661),喷磨的:100g

·MEK溶剂:50g

·DICY:15g

·气相二氧化硅(Cabosil TS 720):5g

将这些组分在室温(23℃)下在高速剪切混合器中混合,直到形成基本上均匀的树脂溶液。此溶液的固体含量是按重量计大约70%固体。

然后将树脂溶液以48gsm面积重量涂覆到玻璃织物(由BGF工业公司(BGFIndustries)供应的108玻璃织物)的两侧上。树脂涂覆的玻璃织物的总面积重量是大约100gsm,并且厚度是约102μm(或4密耳)。

然后将树脂涂覆的玻璃织物与铜筛网(175gsm)、来自氰特工业有限公司的可固化SM 905表面层(90gsm)和10gsm非织造玻璃垫组合,其中铜筛网被夹在树脂涂覆的玻璃织物与表面层之间,并且表面层与非织造玻璃垫接触。将热量和压力施加到组装的层以形成整体式层压结构。但是表面层的树脂不会渗透通过非织造聚酯垫的厚度。然后将层压件切割成具有6.35mm(或0.25英寸)的窄条带。

实例3

通过施加热量和压力将铜筛网(175gsm)嵌入到可固化SM 905表面膜(90gsm)中。通过施加热量和压力将具有17gsm的面积重量的非织造玻璃面网(来自技术纤维产品公司(Technical Fibre Products)的)层压到含有筛网的树脂层的一侧上,以将玻璃面网粘结至树脂层,但是表面层的树脂不会渗透通过玻璃面网的厚度,并且然后将10gsm玻璃面网(来自技术纤维产品公司的)类似地粘结至树脂层的相反侧上。将所得层压件切割成具有6.35mm(或0.25英寸)的窄条带。在表面带已被施加在复合基材上之后10gsm玻璃面网将是最外表面层,并且17gsm玻璃面网将与复合基材接触。

实例4

通过施加热量和压力将铜筛网(175gsm)嵌入到可固化SM 905表面膜(90gsm)中。通过施加热量和压力将具有8gsm的面积重量的非织造碳面网(来自技术纤维产品公司的)层压到含有筛网的树脂层的一侧上,以将面网粘结至树脂层,但是表面层的树脂不会渗透通过面网的厚度,并且然后将另一个8gsm碳面网(来自技术纤维产品公司的)类似地粘结至树脂层的相反侧上。将所得层压件切割成具有6.35mm(或0.25英寸)的窄条带。在表面带已被施加在复合基材上之后碳面网之一将是最外表面层,并且另一个面网将与复合基材接触。

实例5

通过施加热量和压力将铜筛网(175gsm)嵌入到可固化SM 905表面膜(90gsm)中。通过施加热量和压力将具有12gsm的面积重量的铜涂覆的碳面网(即非织造铜涂覆的碳纤维)(来自技术纤维产品公司的)层压到含有筛网的树脂层的一侧上,以将面网粘结至树脂层,但是表面层的树脂不会渗透通过面网的厚度,并且然后将面积重量为12gsm的另一个铜涂覆的碳面网(来自技术纤维产品公司的)类似地粘结至树脂层的相反侧上。将所得层压件切割成具有6.35mm(或0.25英寸)的窄条带。在表面带已被施加在复合基材上之后铜涂覆的碳面网之一将是最外表面层,并且另一个面网将与复合基材接触。

术语、定义和缩写

在本披露中,与数量关联使用的修饰语“大约”和“约”包括所述值并且具有上下文指示的含义(例如,包括与具体数量的测量相关的误差度)。例如,在“约”之后的数值可以意指所述值加上或减去该所述值的0.1%至1%。如本文所用的后缀“(s)”旨在包括其所修饰的术语的单数和复数二者,从而包括一种或多种该术语(例如,金属(metal(s))包括一种或多种金属)。本文所披露的范围包括端点以及这些范围的所有中间值,例如“1%至10%”包括1%、1.5%、2%、2.5%、3%、3.5%等。

虽然本文描述了各种实施例,但是从说明书将理解的是,其中的元素、变体或改进的各种组合可以由本领域技术人员做出,并且是在本发明的范围内。此外,可以做出许多修改以便使具体的情况或材料适应于本发明的传授内容,而不背离其基本范围。因此,本发明旨在不受限于作为进行本发明所考虑的最佳模式而披露的具体实施例,但本发明将包括落入所附权利要求书的范围内的所有实施例。

22页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种真空绝热板用耐高温膜材及真空绝热复合板材

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!