一种gis管道缺陷在线检测装置及方法

文档序号:1489557 发布日期:2020-02-28 浏览:8次 >En<

阅读说明:本技术 一种gis管道缺陷在线检测装置及方法 (GIS pipeline defect online detection device and method ) 是由 郭晨鋆 丛成龙 马显龙 王黎明 曹占国 梅红伟 舒越 于虹 龚泽威一 于 2019-11-27 设计创作,主要内容包括:本发明提供一种GIS管道缺陷在线检测装置,包括检测装置、控制系统和数据分析处理系统,检测装置主要包括闪光灯热激励单元和红外热像采集单元;控制系统与检测装置通信连接,控制系统用于调节闪光灯热激励单元的激励产生时间及频率,控制系统还用于调节红外热像采集单元的采集频率和采集时间;数据分析处理系统与检测装置以及控制系统均通信连接,数据分析处理系统采用频域热特征成像方法对数据进行分析处理。本发明能够快速、准确、定量地检测出存在缺陷的GIS管道,并且能够多角度地收集红外图像序列,实现对GIS管道缺陷的位置、深度、大小的识别。本发明还提供一种应用在该检测装置中的GIS管道缺陷在线检测方法。(The invention provides a GIS pipeline defect online detection device which comprises a detection device, a control system and a data analysis processing system, wherein the detection device mainly comprises a flash lamp thermal excitation unit and an infrared thermal image acquisition unit; the control system is in communication connection with the detection device, is used for adjusting the excitation generation time and frequency of the flash lamp thermal excitation unit, and is also used for adjusting the acquisition frequency and acquisition time of the infrared thermal image acquisition unit; the data analysis processing system is in communication connection with the detection device and the control system, and the data analysis processing system analyzes and processes data by adopting a frequency domain thermal characteristic imaging method. The method can quickly, accurately and quantitatively detect the GIS pipeline with defects, and can collect infrared image sequences at multiple angles to realize the identification of the positions, depths and sizes of the defects of the GIS pipeline. The invention also provides a GIS pipeline defect online detection method applied to the detection device.)

一种GIS管道缺陷在线检测装置及方法

技术领域

本申请涉及电力设备无损检测技术领域,尤其涉及一种GIS管道缺陷在线检测装置及方法。

背景技术

随着经济的不断发展,电力需求不断上升,对电网的投资迅速增加,电网规模急速扩大,越来越多的GIS设备引入电网之中。GIS是气体绝缘全封闭组合电器,由断路器、隔离开关、接地开关、互感器、避雷器、母线、连接件和出线终端等组成,这些设备或部件全部封闭在金属接地的外壳中,在其内部充有一定压力的六氟化硫绝缘气体。GIS目前广泛应用于电力系统之中。尽管GIS设备因其全封闭的特点,故障率低,但也不能忽视故障的风险,如GIS管道在出厂或长期的恶劣运行条件下,可能产生开裂,细小裂纹若不加检测,愈加严重,可能会导致管内六氟化硫气体的泄漏,进一步造成GIS管道内部部件的损坏,甚至引发***,事故一旦发生,其封闭的特点造成的后果就比敞开式或者分散式电气设备要严重很多。其维修也更为复杂,耗费时间更长,对电网和经济生产造成更大的直接和间接经济损失。

GIS管道在工厂制造过程中,在工艺上可能会产生缺陷,在设备安装过程中,可能会产生人为损伤且随着运行时间的增加,GIS管道风吹日晒,或在一些较差的天气条件下,可能会导致管道形成裂纹,GIS管道裂纹细小,这些细小裂纹对GIS的安全运行构成巨大威胁,如若不加检测,使得GIS管道进一步开裂甚至引发管道内六氟化硫气体泄漏,将会严重影响电力系统的运行安全,对经济生产造成不可估量的影响。因此,对GIS管道进行在线检测对于设备安全运行具有重要的意义。

现有技术中,对GIS管道裂纹的无损检测主要采用两种方式,分别为超声检测法和射线检测法。超声检测法的原理是当超声波在GIS管道中传播时,超声波会在界面上产生反射和折射,当内部或表面存在缺陷时,根据反射、折射的不同可判断缺陷的位置及形状大小。超声波检测可检测到很小的缺陷,具有设备轻便,对环境无污染,缺陷定位准确等优点。但是超声波检测需要耦合剂且难度较大,步骤繁琐,检测结果保存困难且检测范围较小。射线检测法是由射线发射仪产生射线透过管道,根据透过有裂纹部位和无裂纹部位射线衰减量的不同,用胶片检测透过被测管道的射线强度的差异,判断是否存在缺陷,缺点是每次检测都要消耗胶片导致成本高,效率低,射线对人体有一定危害,这两种检测方法都有一定的局限性。

因此,提出一种能够实现GIS管道的多角度在线检测,并且能够快速、准确、定量地检测出存在缺陷的GIS管道,实现对GIS管道缺陷的位置、深度、大小的识别,提高检测的准确性和检测的速度,同时可以有效节省人力成本成为本领域技术人员亟待解决的技术问题。

发明内容

本申请提供了一种GIS管道缺陷在线检测装置,以解决现有技术中检测准确度不高、检测速度不够以及不能检测出GIS管道缺陷的深度和大小的问题。

本申请的第一方面,一种GIS管道缺陷在线检测装置,包括:

检测装置,所述检测装置主要包括闪光灯热激励单元和红外热像采集单元,所述闪光灯热激励单元对称设置在所述红外热像采集单元的两端;

控制系统,所述控制系统与所述检测装置通信连接;

数据分析处理系统,所述数据分析处理系统与所述检测装置以及所述控制系统均通信连接,所述数据分析处理系统采用频域热特征成像方法对数据进行分析处理。

上述技术方案中,闪光灯热激励单元采用短脉冲热激励的方式对GIS管道进行加热,闪光灯热激励单元的对称设置,能够保证GIS管道均匀受热,使用闪光灯作为热激励单元,是由于闪光灯能量大、体积小,对于便携设备而言更具有实用性,并且闪光灯的脉冲宽度连续可调,可以设定为适合实际场景的控制模式,如设定为周期固定的模式,此时适合检测导热率大的样品;还可以设置为能量固定模式,即每次闪光灯的总能量固定,可自动补偿闪光系统的能量衰变,检测结果更加精准;红外热像采集单元能够将被检测部分的GIS管道的红外辐射转换成可见图像,并且能够进行实时采集形成热图序列。

上述技术方案中,所述控制系统和所述数据分析处理系统均设置在计算机的内部。

可选的,所述检测装置内部设置有固定调节装置,所述固定调节装置内部设有导线连接所述闪光灯热激励单元和所述红外热像采集单元。

采用上述技术方案,能够确保在激励源触发的同时红外热像采集单元能够对红外辐射进行有效的同步采样。

可选的,所述检测装置的壳体上设置有至少一个把手。

采用上述技术方案,可以调节检测装置的高度和角度,实现对GIS管道不同方位的检测,并收集GIS管道多个角度的热图序列,把手设置的数量以确保可以稳定调整检测装置的高度和角度即可。

可选的,所述控制系统用于调节所述闪光灯热激励单元的激励产生时间及频率。

可选的,所述控制系统用于调节所述红外热像采集单元的采集频率和采集时间。

采用上述技术方案,对激励产生时间和频率以及采集时间和采集频率的合理调整,能够达到更好的图像序列收集效果。

可选的,所述数据分析处理系统用于将所述红外热像采集单元采集的动态热成像图存储为时序热图序列,并对时序热图序列进行频域分析。

采用上述技术方案,利用频域分析得到的幅值图和相位图,可以更为清晰地识别出时序热图序列中的缺陷,能够提高GIS管道缺陷的检测效果。

本申请的第二方面,还提供一种基于上述GIS管道缺陷在线检测装置的GIS管道缺陷在线检测方法,包括以下步骤:

根据GIS管道位置相对调整检测装置的位置;

通过控制系统设定闪光灯热激励单元的激励产生时间和频率;

通过控制系统设定红外热像采集单元的采集频率和采集时间;

红外热像采集单元采集GIS管道的动态热成像图,并发送至数据分析处理系统;

数据分析处理系统采用频域热特征成像的方法对数据进行分析处理,识别GIS管道缺陷的位置、深度和大小。

可选的,所述根据GIS管道位置相对调整检测装置的位置的步骤中,包括根据GIS管道位置调节所述检测装置的高度和角度。

采用上述技术方案,根据实际检测的需要,调整检测装置的参数,能够使得闪光灯热激励单元和红外热像采集单元处于合适的位置,从而保证待测区域均可被有效进行热激励,能更大范围的收集红外热图,确保获得更好的热激励的效果以及达到更好的图像序列收集效果。

可选的,所述数据分析处理系统采用频域热特征成像的方法对数据进行分析处理,识别GIS管道缺陷的位置、深度和大小的步骤中,具体包括以下步骤:

将采集到的动态热成像图转化为时序热图序列;

对所述时序热图序列进行离散傅里叶变换处理得到幅值热图序列和相位热图序列;

采用快速傅里叶算法对所述幅值热图序列和所述相位热图序列进行频域分析,根据所得热图序列的变化情况,与标准无缺陷GIS管道的热图序列对比,识别GIS管道是否存在缺陷;

若GIS管道存在缺陷,采用频域热特征成像方法结合差分相位谱计算分析GIS管道缺陷的位置、深度、大小。

可选的,所述数据分析处理系统采用频域热特征成像的方法对数据进行分析处理,识别GIS管道缺陷的位置、深度和大小的步骤中包括采用快速傅里叶算法对数据进行频域分析。

采用上述技术方案,能够实现多角度收集红外图像序列,并且通过分析得到的幅值图和相位图实现对GIS管道缺陷位置、深度、大小的识别,达到有效检测GIS管道缺陷的目的,GIS管道缺陷的检测效果也明显提升。

本申请的一种GIS管道缺陷在线检测装置相对于现有技术具有以下有益效果:

(1)本申请的检测装置基于热传导的原理利用GIS管道在涡流效应下发热,热量通过热传导至管道表面及以下,若GIS管道存在缺陷,则热量传导过程会受到影响;通过红外热像采集单元对GIS管道表面温度信息进行采集并采用快速傅里叶算法进行处理,很容易能够在处理后的幅值及相位热图序列中发现GIS管道的缺陷位置。

(2)本申请对样品的在线检测并没有对样品造成损伤,根据热量在GIS管道缺陷处传递的差异,通过红外热像采集单元采集到的热图序列推导出GIS管道微小缺陷的信息,从而快速、准确地对GIS管道开裂情况进行诊断,可以有效避免GIS管道内六氟化硫气体的泄露和其他严重事故的发生。

(3)本申请中采用频域热特征成像的方法,通过对被检测区域施加脉冲激励的同时,对GIS管道温度响应采用傅里叶变换进行频谱分析,并将得到的幅值谱和相位谱与标准GIS管道的幅值谱和相位谱进行比较,再结合差分相位谱即可准确地找出GIS管道缺陷的具***置、深度、大小。

(4)本申请具备在线测量、非接触测量、检测速度快、检测结果形象直观并且可以定量测量的优点。

(5)本申请在检测过程中,红外热像采集单元的采集时间和采集频率均为可控制的,可根据实际需求设定不同的采集时间和采集频率进行多次检测,以确保获取准确的GIS管道缺陷信息。

附图说明

为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本申请的整体结构示意图;

图2为本申请的检测装置正面结构示意图;

图3为本申请检测GIS管道缺陷情况的检测流程图;

附图标记说明:

其中,1-检测装置,101-闪光灯热激励单元,102-红外热像采集单元,103-把手;2-计算机。

具体实施方式

下面将详细地对实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下实施例中描述的实施方式并不代表与本申请相一致的所有实施方式。仅是与权利要求书中所详述的、本申请的一些方面相一致的系统和方法的示例。

参见图1和图2,本申请的第一方面,提供一种GIS管道缺陷在线检测装置,包括:检测装置1、控制系统、数据分析处理系统,所述检测装置1主要包括闪光灯热激励单元101和红外热像采集单元102所述闪光灯热激励单元101对称设置在所述红外热像采集单元102的两端;所述控制系统与所述检测装置1通信连接;所述数据分析处理系统与所述检测装置1以及所述控制系统均通信连接,所述数据分析处理系统采用频域热特征成像方法对数据进行分析处理。

上述技术方案中,闪光灯热激励单元101采用短脉冲热激励的方式对GIS管道进行加热,闪光灯热激励单元101的对称设置,能够保证GIS管道均匀受热,使用闪光灯作为热激励单元,是由于闪光灯能量大、体积小,对于便携设备而言更具有实用性,并且闪光灯的脉冲宽度连续可调,可以设定为适合实际场景的控制模式,如设定为周期固定的模式,此时适合检测导热率大的样品;还可以设置为能量固定模式,即每次闪光灯的总能量固定,可自动补偿闪光系统的能量衰变,检测结果更加精准;红外热像采集单元102能够将被检测部分的GIS管道的红外辐射转换成可见图像,并且能够进行实时采集形成热图序列。

上述技术方案中,所述控制系统和所述数据分析处理系统均设置在计算机2的内部(控制系统和数据分析处理系统在附图中均未示出)。

在上述具体实施方式基础上,进一步地,所述检测装置1内部设置有固定调节装置(附图中未示出),所述固定调节装置内部设有导线连接所述闪光灯热激励单元101和所述红外热像采集单元102。

采用上述技术方案,能够确保在激励源触发的同时红外热像采集单元102能够对红外辐射进行有效的同步采样。

在上述具体实施方式基础上,进一步地,所述检测装置1的壳体上设置有至少一个把手103,把手103设置的数量以确保可以稳定调整检测装置1的高度和角度即可;需要进一步指出的是,本实施例中把手103优选设置为对称的两个,使得检测装置1的移动更加平稳。

采用上述技术方案,可以调节检测装置1的高度和角度,实现对GIS管道不同方位的检测,并收集GIS管道多个角度的热图序列。

在上述具体实施方式基础上,进一步地,所述控制系统用于调节所述闪光灯热激励单元101的激励产生时间及频率。

在上述具体实施方式基础上,进一步地,所述控制系统用于调节所述红外热像采集单元102的采集频率和采集时间。

采用上述技术方案,对激励产生时间和频率以及采集时间和采集频率的合理调整,能够达到更好的图像序列收集效果。

在上述具体实施方式基础上,进一步地,所述数据分析处理系统用于将所述红外热像采集单元102采集的动态热成像图存储为时序热图序列,并对时序热图序列进行频域分析。

采用上述技术方案,利用频域分析得到的幅值图和相位图,可以更为清晰地识别出时序热图序列中的缺陷,能够提高GIS管道缺陷的检测效果。

本申请的第二方面,还提供基于上述GIS管道缺陷在线检测装置的一种GIS管道缺陷在线检测方法,包括以下步骤:

根据GIS管道位置相对调整检测装置1的位置;

通过控制系统设定闪光灯热激励单元101的激励产生时间和频率;

通过控制系统设定红外热像采集单元102的采集频率和采集时间;

红外热像采集单元102采集GIS管道的动态热成像图,并发送至数据分析处理系统;

数据分析处理系统采用频域热特征成像的方法对数据进行分析处理,识别GIS管道缺陷的位置、深度和大小。

在上述具体实施方式基础上,进一步地,所述根据GIS管道位置相对调整检测装置1的位置的步骤中,包括根据GIS管道位置调节所述检测装置1的高度和角度。

采用上述技术方案,根据实际检测的需要,调整检测装置1的参数,能够使得闪光灯热激励单元101和红外热像采集单元102处于合适的位置,从而保证待测区域均可被有效进行热激励,能更大范围的收集红外热图,确保获得更好的热激励的效果以及达到更好的图像序列收集效果。

在上述具体实施方式基础上,进一步地,所述数据分析处理系统采用频域热特征成像的方法对数据进行分析处理,识别GIS管道缺陷的位置、深度和大小的步骤中,具体包括以下步骤:

将采集到的动态热成像图转化为时序热图序列;

对所述时序热图序列进行离散傅里叶变换处理得到幅值热图序列和相位热图序列;

采用快速傅里叶算法对所述幅值热图序列和所述相位热图序列进行频域分析,根据所得热图序列的变化情况,与标准无缺陷GIS管道的热图序列对比,识别GIS管道是否存在缺陷;

若GIS管道存在缺陷,采用频域热特征成像方法结合差分相位谱计算分析GIS管道缺陷的位置、深度、大小。

在上述具体实施方式基础上,进一步地,所述数据分析处理系统采用频域热特征成像的方法对数据进行分析处理,识别GIS管道缺陷的位置、深度和大小的步骤中包括采用快速傅里叶算法对数据进行频域分析。

采用上述技术方案,能够实现多角度收集红外图像序列,并且通过分析得到的幅值图和相位图实现对GIS管道缺陷位置、深度、大小的识别,达到有效检测GIS管道缺陷的目的,GIS管道缺陷的检测效果也明显提升。

参见图3,本申请的一种GIS管道缺陷在线检测装置的具体使用过程及使用原理如下:

根据GIS管道的位置调节检测装置1的位置,使得闪光灯热激励单元101和红外热像采集单元102与待测区域的距离适宜,以待测区域均可被有效进行热激励作用,可以获得好的热激励效果,收集的红外热图序列范围较大为两者间的适宜距离;接通检测装置1的电源,打开闪光灯热激励单元101,打开红外热像采集单元102;根据实际检测的需求,利用计算机2的控制系统设置闪光灯热激励单元101激励产生时间及频率,控制闪光灯热激励单元101的能量,利用计算机2的控制系统设置红外热像采集单元102的采集频率和采集时间,参数设置完毕后,手持检测装置1对被检测GIS管道进行检测,红外热像采集单元102对GIS管道的红外热图序列进行采集;红外热像采集单元102将所采集到的红外热图序列传送到计算机2的数据分析处理系统中进行分析处理,数据分析处理系统利用频域热特征成像方法分析所得幅值热图序列和相位热图序列,根据热图序列的变化情况,将其与标准无缺陷GIS管道的热图序列进行对比,从而判断出GIS管道是否存在缺陷;若GIS管道不存在缺陷,则GIS管道缺陷在线检测结束,若GIS管道经过分析后存在缺陷,结合差分相位谱即可准确找到缺陷的具***置、深度、大小等,对缺陷信息进行记录,关闭检测装置1的电源,完成对GIS管道缺陷的检测。

本申请提供的实施例之间的相似部分相互参见即可,以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高通量表征成分梯度薄膜抗辐照性能的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类