用于测量对准的系统和方法

文档序号:1510273 发布日期:2020-02-07 浏览:15次 >En<

阅读说明:本技术 用于测量对准的系统和方法 (System and method for measuring alignment ) 是由 埃米尔·皮特·斯克米特-威沃 K·巴塔查里亚 R·M·G·J·昆斯 W·H·亨克夫 W·T· 于 2018-05-18 设计创作,主要内容包括:一种系统,包括:形貌测量系统,配置成确定衬底上的多个部位中的每一个部位的各自的高度;和处理器,配置成:基于确定的多个部位的高度确定所述衬底的高度图;和通过对比所述高度图和参考高度图确定所述衬底的至少一个对准参数,其中所述参考高度图包括或表示在参考衬底部分上的多个部位的高度。(A system, comprising: a topography measurement system configured to determine a respective height of each of a plurality of sites on a substrate; and a processor configured to: determining a height map of the substrate based on the determined heights of the plurality of sites; and determining at least one alignment parameter of the substrate by comparing the height map to a reference height map, wherein the reference height map comprises or represents the height of a plurality of locations on a reference substrate portion.)

用于测量对准的系统和方法

相关申请的交叉引用

本申请要求于2017年6月8日提交的欧洲申请17174982.3的优先权,该欧洲申请通过引用全文并入本文。

技术领域

本发明涉及一种测量对准的系统和方法。所述系统可以构成光刻设备的一部分。

背景技术

光刻设备是一种构造成将所期望的图案施加到衬底(通常是在衬底的目标部分)上的机器。光刻设备可以例如用于集成电路(IC)的制造中。在这种情况下,可以将可替代地称为掩模或掩模版的图案形成装置用于生成要在IC的单层上形成的电路图案。可以将该图案转印到衬底(例如硅晶片)上的目标部分(例如包括管芯的一部分、一个或几个管芯)上。典型地,通过将图案成像到设置在衬底上的辐射敏感材料(抗蚀剂)层上进行图案的转印。通常,单个衬底将包含被连续图案化的相邻目标部分的网络。已知的光刻设备包括所谓的步进器和所谓的扫描器,在步进器中,通过将整个图案一次曝光到目标部分上来辐射每个目标部分;在扫描器中,通过辐射束沿给定方向(“扫描”方向)扫描图案,同时沿与该方向平行或反向平行的方向同步扫描衬底来辐照每个目标部分。也有可能通过图案压印到衬底上而将图案从图案形成装置转印到衬底上。

在将图案从图案形成装置投影到设置在衬底上的辐射敏感材料层上之前,测量衬底的形貌。为了实现这一点,光刻设备设置有形貌测量系统,该形貌测量系统也可以被称为水平传感器、调平系统或形貌测量系统。形貌测量系统测量横跨衬底表面的衬底表面的高度。高度测量用于形成高度图,该高度图有助于将图案准确地投影到衬底上。

为了控制光刻过程以将期望的图案准确地施加到衬底上,在衬底上设置对准标记,并且光刻设备设置有对准系统。对准系统被配置为执行测量并由此确定在衬底上设置的对准标记的位置。在一些已知的系统中,衬底的每个场可能有例如1或2个对准标记。例如,在具有大约80个场的衬底中,可能存在80到160个对准标记。对准系统可以被配置为测量衬底上的32至40之间的对准标记。

可能期望提供一种对准方法,该对准方法在晶片上测量比当前的32至40个对准标记更多数目的点处的位置。通过使用更多数目的点,除了全晶片对准之外,还可以确定场间和/或场内对准。还可能期望减少执行形貌测量和对准所花费的时间。

发明内容

在本发明的第一方面中,提供了一种系统,包括:形貌测量系统,配置成确定衬底上的多个部位中的每一个部位的各自的高度;和处理器,配置成:基于确定的多个部位的高度确定用于所述衬底的高度图;和通过对比所述高度图和参考高度图确定所述衬底的至少一个对准参数,其中所述参考高度图包括或表示在参考衬底部分上的多个部位的高度。

通过使用衬底上的高度确定至少一个对准参数,可以替代或补充依赖于测量对准标记的常规的对准测量方法。可以测量数量远大于通常放置对准标记的位置的数量的位置处的高度,这可以允许更准确的对准参数和/或确定更多数目的对准参数。

在某些情况下,可以省略对准步骤。可以使用形貌测量系统而不使用另外的对准系统获得对准。在某些情况下,可以去除对准标记,这可能导致增加实际情形中衬底空间的可用性。在某些情况下,可以提高生产率。例如,可以增加生产量或可以减少生产周期。

通过对比高度图和参考高度图确定衬底的至少一个对准参数可以包括:基于高度图和参考高度图确定对应于参考衬底部分的衬底的至少一部分的位置;和使用确定的衬底的所述部分或每个部分的位置来确定至少一个对准参数。参考衬底部分可以是衬底的参考部分。参考衬底部分可以包括多个特征,例如多个电路。衬底的该部分或每个部分可包括与参考衬底部分基本相同的特征(例如,电路)。衬底的该部分或每个部分可以包括衬底的表面的一部分,例如衬底的顶表面。

使用确定的位置来确定至少一个对准参数可包括针对该部分或每个部分,将确定的衬底部分的位置与衬底部分的预期位置进行对比。将确定的衬底的该部分的位置与该衬底的该部分的预期位置对比可以包括确定至少一个相对位置或移位。至少一个对准参数的确定可以依赖于衬底的每个部分的至少一个相对位置或移位。

对比高度图和参考高度图可以包括使参考高度图拟合至高度图。对比高度图和参考高度图可包括重复地将参考高度图拟合至高度图,例如对于表面上的多个部分中的每个部分拟合一次,每个部分对应于参考衬底部分。在实施例中,可以将参考高度图与其它与晶片有关的数据或测量结果(例如诸如在对准标记上的对准测量结果,或其它测量结果)组合用作深度学习网络的输入,以改善高度图与参考高度图的对比。

对比高度图和参考高度图可包括将参考高度图的图像和确定的高度图的图像对准。对比高度图和参考高度图可包括重复地将参考高度图与高度图对准,例如对于表面上的多个部分中的每个部分拟合一次,每个部分对应于参考衬底部分。

对于衬底上的该部分或每个部分,确定的位置可以包括衬底的该部分的重心。多个部分的重心可以形成栅格。可以根据所述栅格确定至少一个被确定的对准参数。

参考衬底部分可以包括衬底的表面的一部分或另一表面的一部分。参考衬底部分可以从衬底的表面的多个部分和/或另一表面的多个部分导出。例如,参考衬底部分可以通过平均该衬底或另一衬底的多个部分而获得。参考高度图可以包括衬底上或另一衬底上的多个部分的平均高度图。参考衬底部分可以是被预测的或模型化的衬底部分。参考高度图可以包括场到场识别标记高度图,其是从高度图或滤波后的高度图中减去平均场高图而得到的,在该滤波后的高度图中,诸如晶片的整体形状、污染、突节指纹(fingerprint)等特征已被从高度图滤除。

衬底的该部分或每个部分可以包括衬底的各个目标部分的至少一部分(例如衬底的顶各个场)。该部分或每个部分可以包括管芯的至少一部分。该部分或每个部分可以包括一个或更多个管芯。该部分或每个部分可以包括至少一个场的至少一部分。

衬底的该部分或每个部分可以包括至少一个电路或电路的一部分。衬底的该部分或每个部分可以包括至少一个形貌测量标记。

至少一个形貌测量标记可以包括至少一个标记,该至少一个标记被配置成当用该形貌测量系统测量时提供已知的信号,例如,被配置成当使用形貌测量系统进行测量时提供强信号的信号。至少一个形貌测量标记可以包括至少一个光栅。

该系统可以进一步包括位置调整器,该位置调整器被配置为根据至少一个对准参数来调整衬底的位置和/或方向。

至少一个对准参数可以包括衬底的至少一个整体对准参数。位置调整器可以被配置为依赖于至少一个整体对准参数来调整衬底的位置和/或方向。

至少一个对准参数可以包括衬底的一个或更多个目标部分(例如衬底的一个或更多个场)的至少一个对准参数。

处理器可以被配置为基于多个目标部分的对准参数来确定至少一个衬底对准参数。处理器可以被配置为确定两个或更多个目标部分之间的对准的测量或量度。

至少一个对准参数可以包括衬底的单个目标部分内的多个特征的对准参数。处理器可以被配置为确定单个目标部分内的两个或更多个特征之间的对准的量度。

高度图可以包括以z方向上的高度。所述至少一个对准位置可以包括x方向上的的相对位置、y方向上的相对位置、x-y平面中的旋转中的至少一个。

x和/或y方向上的相对位置可以包括确定的位置和预期位置之间的差异。

衬底上的多个部位可以包括至少100个部位,可选地至少1000个部位,进一步可选地至少10000个部位,进一步可选地至少100000个部位。

所使用的部位的数目可以远远大于可以使用常规的对准系统测量的对准标记的数目,例如是其10倍或100倍以上。大量的测量可以提高对准的精确度。除了整体衬底对准之外,所使用的大量测量可以允许测量场间和/或场内对准。可以将具有更多系数的模型拟合至所述数据。

形貌测量系统可以包括:辐射源,配置为产生测量辐射束;光栅,配置为接收测量辐射束并提供由光栅图案化的测量辐射束;光学元件,配置为在衬底上的目标部位处形成光栅的图像;检测光学元件,配置成接收从衬底的目标部位反射的辐射,并在第二光栅处形成光栅图像的图像;检测器,配置为接收透射通过第二光栅的辐射并依赖于所接收的辐射产生输出信号;和处理器,配置为分析输出信号并根据输出信号确定衬底的形貌。

所述处理器或另一处理器可以被配置成基于确定的高度确定光刻设备的聚焦调整。

所述形貌测量系统可以包括第一传感器和第二传感器。所述第一传感器可以被配置成确定所述衬底上的多个部位中的每一个部位的各自的高度,根据被确定的所述衬底上的多个部位中的每一个部位的相应的高度确定所述高度图。所述第二传感器可以被配置成确定所述衬底的另外的高度。所述处理器或另一处理器可以被配置成基于确定的高度确定光刻设备的聚焦调整。

所述系统还包括对准系统,所述对准系统配置成确定所述衬底上的多个对准标记中的每一个对准标记的各自的位置。所述处理器或另一处理器可以配置成基于确定的对准标记的位置确定至少一个另外的对准参数。对准标记中的每一个的各自的位置可以包括在x和/或y方向上的位置。

所述处理器或另一处理器可以配置成组合至少一个对准参数和至少一个另外的对准参数。

通过组合调平高度图信息和传统的对准量测术,可以提高对准精确度。通过组合调平高度图信息和传统的对准量测术,可以提高对准速度,例如通过减少对准系统需要测量的点的数量来提高对准速度。

至少一个对准参数可以用于辅助替代的对准方法(例如,晶片对准的边缘),以用于确定衬底的旋转和/或场间或场内旋转。

在可以独立提供的本发明的另一方面中,提供了一种方法,包括:确定衬底上的多个部位中的每一个的各自的高度;基于确定的多个部位的高度确定所述衬底的高度图;和通过对比所述高度图和参考高度图确定所述衬底的至少一个对准参数,其中所述参考高度图包括或表示在参考衬底部分上的多个部位的高度。

在可以独立提供的本发明的另一方面中,提供了一种处理器,配置成:接收衬底上的多个部位中的每一个的各自的高度;基于确定的多个部位的高度确定所述衬底的高度图;和通过对比所述高度图和参考高度图确定所述衬底的至少一个对准参数,其中所述参考高度图包括或表示在参考衬底部分上的多个部位的高度。

在可以独立提供的本发明的另一方面中,提供了一种光刻设备,包括:照射系统,配置成调节辐射束;支撑件,构造成支撑图案形成装置,所述图案形成装置能够在辐射束的横截面中赋予辐射束图案以形成图案化的辐射束;衬底台,构造成保持衬底;和投影系统,配置为将所述图案化的辐射束投影到所述衬底的目标部分上,其中,所述光刻设备还包括:形貌测量系统,配置成确定衬底上的多个部位中的每一个的各自的高度;和处理器,配置成:基于确定的多个部位的高度确定所述衬底的高度图;和通过对比所述高度图和参考高度图确定所述衬底的至少一个对准参数,其中所述参考高度图包括或表示在参考衬底部分上的多个部位的高度。

所述光刻设备还包括对准系统,所述对准系统配置成确定所述衬底上的多个对准标记中的每一个的各自的位置。

在可以独立提供的本发明的另一方面中,提供了一种系统,包括:形貌测量系统,配置成确定衬底上的多个部位中的每一个的各自的高度;对准系统,配置成确定所述衬底上的多个对准标记中的每一个对准标记的各自的位置;和处理器,配置成:基于确定的多个部位的高度确定所述衬底的高度图;使用确定的多个对准标记的位置,确定所述衬底的多个目标部分中的每一个目标部分的部位,每一个目标部分包括基本上相同的特征;和通过处理对应于每个所述目标部分的所述高度图的区段确定参考高度图。

处理所述高度图的区段可以包括求所述高度图的区段的高度的平均值。目标部分中的每一个的特征可以包括多个特征,例如多个电路。

在可以独立提供的本发明的另一方面中,提供了一种处理器,配置成:接收衬底上的多个部位中的每一个部位的各自的高度;接收所述衬底上的多个对准标记中的每一个对准标记的各自的位置;基于确定的多个部位的高度确定所述衬底的高度图;使用确定的多个对准标记的位置,确定所述衬底的多个目标部分中的每一个目标部分的部位,每一个目标部分包括基本上相同的特征;和通过处理对应于每个所述目标部分的所述高度图的区段确定参考高度图。

在可以独立提供的本发明的另一方面中,提供了一种方法,包括:确定衬底上的多个部位中的每一个部位的各自的高度;确定所述衬底上的多个对准标记中的每一个对准标记的各自的位置;基于确定的多个部位的高度确定所述衬底的高度图;使用确定的多个对准标记的位置,确定所述衬底的多个目标部分中的每一个目标部分的部位,每一个目标部分包括基本上相同的特征;和通过处理对应于每个所述目标部分的所述高度图的区段确定参考高度图。

在一个方面中的特征可以视情况被提供为任何其它方面中的特征。例如,一方法的特征可以被提供为一设备的特征,反之亦然。一个方面中的任何一个或更多个特征可以与任何其它方面中的任何合适的一个或更多个特征组合而被提供。

附图说明

现在将参考附图仅通过举例的方式描述本发明的实施例,在附图中:

-图1示意性地描绘了包括对准系统和形貌测量系统的光刻设备;

-图2是形貌测量系统的示意图;

-图3是概括地示出了实施例的方法的流程图;

-图4是原始的或未加工的晶片图的图示;

-图5是高度图的图示;

-图6是参考高度图的图示;

-图7是已经根据预期的栅格放置在其上叠加了栅格的高度图的图示;

-图8是已经根据使用图3的方法获得的对准参数在其上叠加了栅格的高度图的图示;和

-图9是概括地示出了根据实施例的获得参考高度图的方法的流程图。

具体实施方式

虽然本文具体提及的是光刻设备用于集成电路的制造中,但是,应该理解,本发明所述的光刻设备可以具有其它应用,诸如集成光学系统的制造、磁畴存储器的引导和检测图案、液晶显示器(LCD)、薄膜磁头等。本领域技术人员将理解,在这种替代应用的内容背景下,本发明使用的任何术语“晶片”或“管芯”可以被认为分别与更上位的术语“衬底”或“目标部分”同义。本发明所指的衬底可以在曝光之前或之后进行处理,例如在涂覆显影系统(一种典型地将抗蚀剂层施加到衬底上并且对已曝光的抗蚀剂进行显影的工具)、量测工具或检查工具中。在可应用的情况下,可以将本发明的公开内容应用于这种和其它衬底处理工具中。另外,所述衬底可以被处理一次以上,例如用于产生多层IC,使得本发明使用的术语“衬底”也可以表示已经包含多个已处理层的衬底。

这里使用的术语“辐射”和“束”包含全部类型的电磁辐射,包括紫外(UV)辐射(例如具有为365nm、248nm、193nm、157nm或126nm的波长)和极紫外(EUV)辐射(例如具有在5nm至20nm的范围内的波长)以及诸如离子束或电子束等的粒子束。

本文使用的术语“图案形成装置”应该被广义地理解为指的是能够用于在辐射束的横截面上赋予辐射束图案、以在衬底的目标部分上形成图案的装置。应注意,赋予辐射束的图案可以不完全对应于衬底的目标部分中的所期望的图案。通常,被赋予至辐射束的图案将对应于在目标部分中产生的器件(诸如集成电路)中的特定功能层。

图案形成装置可以是透射式或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程LCD面板。掩模在光刻术中是公知的,并且包括诸如二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜可以独立地倾斜,以便沿不同的方向反射入射的辐射束;以此方式,被反射的束被图案化。

支撑结构保持图案形成装置。支撑结构以依赖于图案形成装置的方向、光刻设备的设计和诸如例如图案形成装置是否保持在真空环境中的其它条件的方式保持图案形成装置。支撑可以使用机械夹持技术、真空或其它夹持技术(例如在真空条件下的静电夹持)。支撑结构可以是框架或台,例如,其可以根据需要是固定的或可移动的,并且可以确保图案形成装置处于期望的位置,例如相对于投影系统。本发明使用的任何术语“掩模版”或“掩模”可以被认为与更上位的术语“图案形成装置”同义。

本发明使用的术语“投影系统”应该被广义地理解为包括各种类型的投影系统,包括折射光学系统、反射光学系统和反射折射光学系统,例如对于所使用的曝光辐射或者对于诸如浸没液体的使用或真空的使用之类的其它因素合适的。本发明使用的任何术语“投影透镜”可以被认为与更上位的术语“投影系统”同义。

本发明所使用的术语“照射系统”可以涵盖各种类型的光学部件,所述光学部件包括用于引导、成形或控制辐射束的折射式光学部件、反射式光学部件、反射折射式光学部件,这些部件也在下文中统称或单独地称为“透镜”。

光刻设备也可以是这样一种类型:其中衬底浸没在具有相对高折射率的液体(例如,水)中,以便填充投影系统的最终元件和衬底之间的空间。本领域中众所周知的是,浸没技术用于增加投影系统的数值孔径。

a.图1A示意性地描绘了一种包括根据本发明的实施例的形貌测量系统的光刻设备。所述设备包括:照射系统IL,用于调节辐射(例如,DUV辐射或EUV辐射)束PB;和支撑结构(其可以被称为掩模台)MT,用于支撑图案形成装置(例如掩模)MA并连接到第一定位装置PM,所述第一定位装置相对于项目PL准确地定位图案形成装置。所述设备还包括:衬底台(其可被称为晶片台)WT2,用于保持衬底(例如,涂覆有抗蚀剂的晶片)W2并连接到第二定位装置PW2,所述第二定位装置相对于项目PL准确地定位衬底;和另一衬底台WT1,用于保持衬底W1并连接到第三定位装置PW3,所述第三定位装置相对于对准系统AS和形貌测量系统TMS准确地定位衬底。所述设备还包括投影系统(例如折射式投影透镜)PL,配置成将由图案形成装置MA赋予辐射束PB的图案成像到衬底W2的目标部分C(例如包括一个或更多个管芯)上。

如此处所描绘的,所述设备属于透射型(例如,采用透射式掩模)。可替代地,所述设备可以属于反射类型(例如,采用如上文所提及类型的可编程反射镜阵列)。

照射器IL接收来自辐射源SO的辐射束。例如,当所述源为准分子激光器时,所述源和光刻设备可以是分立的实体。在这种情况下,不认为所述源构成光刻设备的一部分,且辐射束被借助于包括(例如)适合的定向反射镜和/或扩束器的束行进系统BD从源SO行进至照射器IL。可以将源SO和照射器IL以及需要时设置的束行进系统BD一起称为辐射系统。

照射器IL可以包括用于调整束的角度强度分布的调整装置AM。通常,可以对所述照射器的光瞳平面中的强度分布的至少所述外部和/或内部径向范围进行调整。此外,照射器IL通常包括各种其它部件,诸如,积分器IN和聚光器CO。照射器提供被调节的辐射束PB,使得在其横截面中具有所期望的均一性和强度分布。

辐射束PB入射到被保持在支撑结构MT上的图案形成装置(例如,掩模)MA上。在已横穿图案形成装置MA的情况下,束PB行进通过透镜PL,透镜PL将所述束聚焦至衬底W2的目标部分C上。借助于第二定位装置PW2和位置传感器IF(例如干涉仪装置),可准确地移动衬底台WT2,例如以便使不同目标部分C定位在束B的路径中。类似地,第一定位装置PM和另一位置传感器(未在图1中明确描绘)可以用于例如在将图案形成装置MA自掩模库机械获取之后或在扫描期间相对于束PB的路径来准确地定位所述图案形成装置MA。一般而言,将借助于构成定位装置PM和PW的部分的长行程模块(粗定位)和短行程模块(精定位)来实现物体台MT和WT的移动。然而,在步进机的情况下(与扫描器相反),支撑结构MT可以仅与短行程致动器相连,或可以是固定的。

当将图案从图案形成装置投影到目标部分C上时,光刻设备例如可以通过扫描运动来移动图案形成装置MA和衬底W2。图1中示出了笛卡尔坐标。与传统的一样,z方向对应于辐射束PB的光轴。在光刻设备是扫描光刻设备的实施例中,y方向对应于扫描运动的方向。x方向与z方向和y方向正交。在下面的描述中,rZ用于表示绕z轴的旋转,即在x-y平面上的旋转。

如所描绘的,光刻设备可以是具有两个(双平台)或更多个衬底台WT1、WT2的类型。在双平台光刻设备中设置两个衬底台WT1、WT2,以便允许在测量一个衬底W1的性质的同时曝光另一衬底W2(“曝光衬底”意味着图案化的辐射投影至衬底,如上文所描述的)。

在图1所描绘的双平台光刻设备中,对准系统AS设置在该图的左侧。在该图的左侧还设置了一个形貌测量系统TMS。投影系统PL设置在该图的右侧。

对准系统AS测量设置在保持在第一衬底台WT1上的衬底W1上的对准标记的位置。对准标记由框P1、P2示意性地描绘。对准标记是已经施加到衬底上专门用于对准测量的标记。每个对准标记可以包括例如至少一个光栅。

形貌测量系统TMS测量衬底W1的形貌。下面参照图2进一步描述形貌测量系统TMS。

通过投影系统PL将图案同时投影到保持在第二衬底台WT2上的衬底W2上。当完成由第一衬底台WT1支撑的衬底W1的测量并且完成由第二衬底台WT2支撑的衬底W2的曝光时,交换衬底台的位置。然后,使用由投影系统PL投影的图案化的辐射曝光由第一衬底台WT1支撑的衬底W1。由第二衬底台WT2支撑的已经曝光的晶片W2被从衬底台移出以用于后续处理。然后在PL投影的图案化辐射进行曝光之前,将另一衬底放置在第二衬底台WT2上,以通过对准系统AS和形貌测量系统TMS进行测量。

干涉仪(未描绘出)和/或其他位置测量装置可以用于在对准和形貌测量期间监控衬底台WT1的位置。处理器PR可以接收来自对准系统AS、形貌测量系统TMS的数据,还可以接收衬底台WT1的位置信息。由于衬底W被固定在衬底台WT1上,因此可以将与衬底台有关的位置信息作为与衬底有关的位置信息。

对准系统AS被配置为通过确定每个对准标记的在x和/或y上的位置并将确定的对准标记的位置与对准标记的预期位置进行对比来确定用于衬底W1的至少一个对准参数(例如,x偏移,y偏移或在x-y平面中的旋转)。在实施例中,在衬底W1存在数目在32至40之间的对准标记。

对准系统AS可以包括例如智能对准传感器混合或SMASH,如美国专利号6,961,116中详细描述的;美国专利号6,297,876中描述的类型的对准系统(也称为使用高阶对准增强的先进技术,或ATHENA);或使用了众所周知的“通过透镜(TTL)”对准技术的对准系统,其中由对准标记衍射的辐射被形成在检测器光栅上,以产生周期性对准信号。对于本领域技术人员将清楚的是,其它(光学)布置可以被用于获得与照射衬底上的对准标记、检测所产生的辐射并由此产生对准信号相同的结果。

上述对准系统的共同特性是,通过测量衬底W1上的多个对准标记中的每个对准标记在x和/或y上的位置来确定衬底W1的至少一个对准参数,其中对准标记被选择为可通过对准系统测量,并且被应用到衬底W1上,以专门用于在对准测量时进行使用的目的。

图2是形貌测量系统TMS的示意图,该系统被配置为测量衬底W1的形貌。在形貌测量期间,辐射源2产生辐射束4。可以提供光学元件6以引导和/或聚焦辐射束4。辐射束4入射到光栅8上。辐射束4在行进通过光栅时被光栅8的图像图案化。图案化的辐射束可以被称为测量束9(或称为测量辐射束)。

测量束9行进通过光学元件10,该光学元件10被配置为在衬底12的目标部位上形成光栅8的图像。测量束9以入射角θ入射到衬底上。光栅图像形成在箭头13所示的部位。测量束9从衬底反射并行进通过检测光学元件14。检测光学元件14构造为接收被反射的测量束11并形成光栅图像13的图像。光栅图像的该图像在第二光栅16处形成。检测器18被配置为接收透射通过第二光栅16的辐射。检测器18检测入射辐射的强度并产生指示该辐射的强度的输出信号。检测器18可以例如是光电二极管。检测器18可以例如是CCD阵列,由此将检测到的辐射强度跨过所有像素积分。一般而言,可以使用提供指示入射到检测器上的辐射的强度的输出信号的任何检测器。

当在光栅图像13下方扫描衬底12时,衬底高度的变化导致光栅图像13的图像在第二光栅16处上下移动。光栅图像13的图像的位置的这种移位使第二光栅16透射的辐射量发生改变。由第二光栅16透射的辐射量的变化继而改变入射到检测器18上的辐射的强度。因此,从检测器18输出的信号指示衬底12的高度。

从检测器18输出的信号可以由处理器PR进行分析,以生成衬底12的形貌的图。该形貌的图可以包括数据集或由数据集表示,所述数据集包括对于衬底上的多个部位中的每一个部位的衬底的各自的高度(其是衬底的相对高度)。

光栅可以包括一维光栅结构。光栅可以包括二维光栅结构,诸如例如棋盘图案。一般而言,可以使用任何光栅结构。然而,因为由于衬底高度的变化导致的光栅图像的图像的位置移位仅在一个维度上发生,因此可以仅需要一维的空间分辨率。

可以使用多个辐射源来产生多个辐射束,该多个辐射束然后可以行进通过多个照射光学元件并照射衬底12上的多个目标部位。使用多个辐射束可以允许以更少的行程扫描衬底,这可以允许更快地确定衬底的形貌。

在实施例中,使用35个辐射源产生35个辐射束。晶片的整个表面可以以3或4个行程(或扫描)进行扫描。每个辐射束9当入射到衬底12上时,具有在y方向上约2.5mm乘以x方向上1mm的斑点尺寸。形貌的图可以包括衬底上213,000个点的高度值。在其它实施例中,可以使用不同数目的辐射源、不同数目的行程(扫描)、不同斑点尺寸和/或衬底上的不同数目的测量部位。在一些实施例中,可以产生连续的或近连续的高度图。

衬底将被依序设置有多个图案化层,以便例如创建多层IC。通过投影图案化层以曝光衬底上的抗蚀剂然后处理所述衬底而形成每个层。所述处理例如可以包括蚀刻抗蚀剂,将材料沉积到通过蚀刻形成的凹槽中,然后抛光衬底。这在衬底上形成图案化材料层。层的厚度将依赖于所执行的所述处理,并且将逐层变化。衬底上的一组图案化层可以被称为叠层。光刻设备应该能够将图案投影到具有性质和构成变化很大的叠层的衬底上。形貌测量系统TMS应该能够测量针对所有预期的叠层构成的衬底形貌。尽管以上参考图2描述的形貌测量系统TMS是三角测量系统,但是在其它实施例中,可以使用能够测量衬底表面的高度的任何形貌测量系统TMS。

图3是概括地示出了本发明的实施例的流程图。在图3的实施例中,通过使用图1的形貌测量系统TMS(如上面参考图2所述)获得的高度数据被用于提供晶片对准的测量,以补充由图1的对准系统提供的晶片对准的测量。例如,在一个实施例中,对准系统AS被用于获得X和Y上的对准,而形貌测量系统TMS被用于获得旋转rZ。在另一实施例中,形貌测量系统TMS被用于提供粗对准,即比下一个对准具有更低的精确度(“粗”)的对准,并且对准传感器被用于提供精对准(将粗对准的结果用作输入,从而获得更准确的(“精”)对准)。

在图3的阶段20中,形貌测量系统TMS测量衬底W1的形貌。处理器PR接收从形貌测量系统TMS的检测器18输出的信号。在其它实施例中,处理器PR可以接收来自任何适当的形貌测量系统的信号。

处理器PR分析从检测器18输出的信号,以生成衬底W1的顶表面的形貌的图。处理器PR对信号的分析可以包括信号的去卷积。

形貌的图包括或表示衬底W1的表面上多个部位中的每个部位的各自的高度。形貌的图也可以称为高度图或水平传感器晶片图。在此阶段,形貌的图也可以称为原始/未加工晶片图,因为该形貌的图尚未经过现将参考图3的阶段22进行描述的处理,

等高线图如图4所示。等高线图表示原始晶片图。不同的高度由不同的等高线或轮廓表示。在图4的示例中,位于晶片中心的区域30和相对的区域32、34表示晶片表面的高于晶片表面的平均高度的区域。晶片边缘周围的区域36表示低于晶片表面的平均高度的晶片表面的区域。每个都占据晶片的大部分的这类区域可以被认为表示衬底的整体(global)形状。在其它实施例中,衬底可以具有任何整体形状,例如较高和/或较低区域的任意组合。

虽然衬底的整体形状可以例如与执行聚焦的调整以适应晶片高度的变化有关,但是衬底的整体形状没有用于根据实施例使用TMS确定对准。对准的确定使用在图4的等高线图中不可见的较小的高度变化。

在阶段22,处理器PR处理原始晶片图以去除晶片的整体形状和其它非场内的性质。

在本实施例中,处理器PR确定对原始晶片图数据的局部加权的回归拟合。局部加权的回归拟合可被认为表示晶片的整体形状。处理器PR去除对原始晶片图数据的局部加权的回归拟合。局部加权的回归拟合的去除揭示了潜在的残差识别标记,其包括晶片台、晶片以及针对晶片的每个目标部分重复的重复识别标记的组合。重复识别标记可以被称为装置图像识别标记、芯片识别标记或场识别标记。

处理器PR将滤波器应用于残差识别标记以去除具有已知维度/尺寸的特征。例如,保持晶片的卡盘上的突节之间的间隔是已知的。图像滤波器去除与卡盘上的突节之间的间隔相对应的维度的特征(其可以被称为突节栅格),并且从而可以去除由于突节而引起的高度图的特征。类似地,图像过滤器可以去除与电子销的尺寸和/或间隔相对应的维度的特征。

在另一实施例中,处理器PR应用滤波器以去除由于处理晶片的污染而产生的特征,例如晶片背面的污染。

在阶段24的处理导致一晶片图,在晶片图中可以区分较小尺度的特征。可以在晶片图上区分与每个目标部分C对应的重复识别标记。在实施例中,计算平均场高度数据,并从包括表示每个场或每个目标部分C的识别标记数据的晶片图高度数据中减去这些平均场高度数据,从而产生参考高度图,该参考高度图表示场中心(即,目标部分或场的重心)的未对准,或者换句话说,场到场的识别标记。在实施例中,包括场到场识别标记的或场到场识别标记的绝对值的高度图可以用作深度学习网络的输入,该深度学习网络应用与诸如对准结果的多维互相关,例如所述对准结果源自不同的对准测量(诸如对准源的不同波长),以提高根据高度数据对对准结果的估计(速度),诸如提高从高度图和参考高度图之间的拟合中提取对准参数的速度。通过对比(诸如拟合)高度图和参考高度图来提取对准参数,可以使用与深度学习步骤(使用对准数据)相同或不同的参考高度图来完成。

图5是图4的晶片图在已经被处理以去除晶片的整体形状和其他非场内性质之后的示意图。图5是等高线图。具有与晶片表面的平均高度不同的高度的特征由等高线表示,其在图5中是框38。在图5的图像中可以看到重复识别标记。重复识别标记包括框38的重复图案。图5是晶片图的简化表示。在实践中,特征的重复图案可能比图5中所示的图案复杂。重复图案可以包括大量具有不同位置、尺寸和/或高度的特征。重复识别标记的每次重复对应于衬底表面的各自的部分,表示为相应的目标部分C,也可以称为场。每个目标部分C具有基本相同的特征(例如,电路)。

已经发现,当用形貌测量系统TMS测量时,一些特征(例如,电路)比其它特征产生更强的信号。对于某些特征,由形貌测量系统TMS测量的高度可能不完全对应于该特征的实际高度。然而,高度图中的重复识别标记可以被认为是表示特征的重复布置,所述特征在衬底的每个部分上重复。

在阶段24,处理器PR获得参考高度图,该参考高度图也可以称为参考高度轮廓或参考场高度轮廓。在本实施例中,处理器PR检索存储的参考高度图。在其它实施例中,处理器PR可以使用任何合适的方法,例如,通过使用下面参考图9描述的方法来获得参考高度图。

参考高度图例如包括参考目标部分的高度图。参考目标部分可以是平均或理想的目标部分。参考高度图的示意图如图6所示。在图6中,参考目标部分的特征表示为等高线,其在图6中为框39。在图6中可以看出,参考高度图类似于图5中的重复识别标记。参考高度图可以表示场到场的识别标记。

在阶段26,处理器PR使参考高度图拟合至晶片高度图。处理器PR将参考高度图拟合到其对应的晶片高度图的每个部分,在该实施例中,处理器PR包括将参考高度图拟合到每个目标部分。可以使用任何合适的方法来将参考高度图拟合到每个目标部分。例如,可以使用最小二乘法。另外,可以使用与深度学习(机器学习)的多维互相关(使用参考高度图和测量的对准数据)来提高将参考高度图拟合到高度图或每个目标部分的速度。

对于每个目标部分,处理器PR确定最适合该目标部分的参考高度图的位置(以及可选的方向)。在本实施例中,处理器PR确定目标部分的重心,该重心可以表示为X和Y上的位置。参考高度图覆盖在每个目标部分的顶部,其在X、Y和rZ上具有位置移位,这些位置移位给出最低拟合残差。

重心可以为目标部分提供计算出的中心部位。可用于目标部分的大量高度数据可以允许以高精确度确定中心部位。

在阶段28,处理器PR将针对每个目标部分确定的重心与针对该目标部分的预期重心进行对比。在本实施例中,对于每个目标部分,处理器PR计算确定的重心与预期的重心之间的x和y上的差,并输出该目标部分的x移位和y移位的值。在其它实施例中,处理器PR还确定x-y平面中的旋转移位Rz。

在本实施例中,处理器PR使用场拟合结果(包括每个目标部分的重心)来拟合X、Y和Rz中的晶片方向。晶片方向包括衬底整体的对准参数(X移位,Y移位和Rz移位)的组。处理器PR确定在其下该对准参数处目标部分的重心与目标部分的预期重心最佳对准的对准参数的组。

在其它实施例中,除了确定衬底作为一个整体的对准参数之外或代替确定衬底作为一个整体的对准参数,处理器PR还确定单独目标部分的对准参数。例如,处理器PR可以确定两个或更多个目标部分之间的移位。

在另外的实施例中,处理器PR确定单个目标部分内的特征的对准参数。例如,处理器PR可以确定两个或更多个特征之间的移位。处理器PR可以确定目标部分的第一部分中的特征与目标部分的第二部分中的特征之间的移位。可以通过以下方式来方便确定单个目标部分和/或单一目标部分的单个部分的对准参数:通过形貌测量系统测量高度的部位的数目远远大于对准标记所位于的衬底上的部位的数目。

图7示出了图5的晶片高度图,其上覆盖有黑色矩形40的栅格。每个黑色矩形40的中心表示目标部分的期望位置(可以称为期望场位置)。如果晶片在其预期位置与每个目标部分正确对准,则可以预期每个黑色矩形40的含量将相同。但是,在图7中可以看到,高度图的重复识别标记相对于黑色矩形40的定位并非一致地相同。

图8示出了与图7相同的晶片图,但是具有一组新的黑色矩形42,这些黑色矩形使用在阶段28获得的X、Y和Rz值进行定位。可以看到,新的黑色矩形42可以更好地与高度图中的重复识别标记对准。

每个目标部分可被认为起对准标识的作用,其中该目标部分的黑色矩形40的中心是该目标部分的预期位置,而该目标部分的黑色矩形42的中心是对准的位置。

在本实施例中,将由使用图3的方法的形貌测量系统TMS获得的对准结果(例如X、Y和Rz移位)与已经通过使用对准系统AS获得的对准结果相结合,以测量专用对准标识在衬底上的位置。

通过形貌测量系统TMS获得的对准结果是通过测量晶片表面上比对准系统所测量的点更多的点而产生的,这依赖于对准标记的存在。在一个实施例中,通过形貌测量系统TMS测量每晶片213,000个点的高度。在一些情况下,使用形貌测量系统TMS获得的对准结果可以用于提高使用对准系统AS获得的对准结果的精确度。换句话说,通过使用形貌测量结果增加了对准结果的数目。

在本实施例中,图1的系统被配置为执行对准阶段和分立的形貌测量阶段,在该对准阶段,使用对准系统AS来测量对准;在分立的形貌测量阶段,形貌信息和对准信息都通过形貌对准系统TMS获得。由形貌测量系统TMS确定的对准补充了由对准系统AS确定的对准。

在其它实施例中,可以从图1的系统中省略对准系统AS,并且可以仅由形貌测量系统TMS提供对准。在一些实施例中,通过省略对准阶段节省了时间。在一些实施例中,通过省略对准阶段节省的时间可用于执行更详细的调平阶段。使用形貌测量来确定对准可以减少生产率的增加,例如生产量的增加或生产周期的减少。

在某些情况下,可以通过使用相同的水平感测设备来测量形貌和对准降低系统的复杂性。

在图3的实施例中,在阶段26通过将参考场图的高度数据拟合到高度图的高度数据来确定对准。

在另一实施例中,处理器PR被配置为处理晶片图数据以获得晶片的图像。处理器PR使用已知的图像处理技术将参考高度图的图像与晶片的图像进行对比,所述已知的图像处理技术例如是已知的图像对准技术,诸如医学和卫星图像处理中使用的图像配准技术。图像识别可用于将每个目标部分与参考高度图进行匹配。处理器PR根据图像的对比确定至少一个对准参数。在其它实施例中,可以以任何合适的方式对比高度图和参考高度图,以确定在参考高度图中表示的特征的布置的对准。

在图3的实施例中,形貌测量系统TMS用于根据目标部分的现有特征(例如,电路)确定对准,该目标特征可能不包括对准系统AS使用的对准标记。衬底中不包括标记,特别地,便于专门由形貌测量系统TMS检测,

在另一实施例中,可以提供形貌测量标记以用于由形貌测量系统TMS确定对准。可以将形貌测量标记设计为与用于水平感测的传感器互补。可以发现,当使用形貌测量系统TMS测量时,某些类型的特征(例如某些类型的电路)产生特别强的信号。这样的特征可以作为形貌测量标记设置在衬底上。包括一个或更多个光栅的类产品结构可用于产生类似于例如图5所示的效果。形貌测量标记的位置可以位于使用形貌测量系统TMS获得的高度图中,并且可以用于确定对准参数。在一些实施例中,参考高度图包括一组形貌测量标记的被测量的高度。将参考高度图与衬底上的相应的一组形貌测量标记的被测量的高度进行对比。

尽管以上参考图2的形貌测量系统TMS描述了多个实施例,但是在其它实施例中,可以使用任何合适的形貌测量系统。

在一些实施例中,附加传感器被添加到形貌测量系统,例如图2的形貌测量系统TMS。附加传感器可以具有相对于如图2所示的检测器18的不同的入射角和/或偏振角。在对晶片进行扫描以调平时,附加传感器可用于测量至少一个目标。由附加传感器测量的该目标或每个目标可以包括专门设计的标记。附加传感器可以使用来自与图2所示的检测器18所使用的源不同的源的辐射来测量至少一个目标。在一些实施例中,附加传感器测量另外的高度图。在其它实施例中,附加传感器可以使用衍射光来对准。附加传感器可以以类似于已知的对准系统AS来操作。

图9是概括地示出了根据实施例的确定参考高度图的方法的流程图。

在图3的阶段50中,形貌测量系统TMS测量衬底的形貌。处理器PR接收从形貌测量系统TMS的检测器18输出的信号。处理器PR分析从检测器18输出的信号,以生成衬底的形貌的图。

在阶段52,对准系统AS测量衬底上对准标记的水平位置。处理器PR接收由对准系统输出的信号,并使用对准标记的水平位置来确定衬底的水平对准。处理器PR通过使用根据对准系统数据确定的对准来对准从形貌测量系统数据获得的高度图。

在阶段54,处理器PR使用多个目标部分的预期位置将衬底的被对准的高度图分为多个目标部分。

在阶段56,处理器PR对多个场中的每一个使用高度图以拟合目标部分的平均高度图,该平均高度图也可以称为平均场指纹。在图3的实施例中,平均高度图可以用作参考高度图。

在其它实施例中,可以任何合适的使用处理衬底的高度图以获得目标部分或目标部分的一部分的参考高度图的方法。参考高度图可以是用于一个或几个管芯的一部分的参考高度图。

在一些实施例中,参考高度图是根据要使用高度图确定对准的同一衬底确定的。例如,可以将衬底中的每个目标部分与根据该衬底计算出的平均管芯识别标记进行对比。在一些实施例中,针对一个衬底获得的参考高度图用于确定针对另一衬底的参考高度图。参考高度图可以被认为提供基线参考。

在其它实施例中,可以预测或模型化参考高度图,而不是根据高度数据来拟合参考高度图。在一些实施例中,参考高度图是通过使用从其它工具获得的离线高度测量结果、以及使用形貌测量系统的知识来预测形貌测量系统将测量的高度轮廓来确定的。例如,可以考虑形貌测量系统的斑点尺寸。

尽管在本文中在光刻设备的情形下对本发明的实施例进行详细的参考,但是本发明的实施例可以用于其它设备。本发明的实施例可以构成掩模检查设备、量测设备或测量或处理诸如晶片(或其它衬底)或掩模(或其它图案形成装置)之类的物体的任何设备的一部分。这些设备通常可称为光刻工具。这种光刻工具可以使用真空条件或环境(非真空)条件。

照射光学元件、光学元件和检测光学元件可以涵盖各种类型的光学部件,包括折射式、反射式和反射折射式光学部件,以用于引导、成形或控制辐射束。

术语“EUV辐射”可以被认为包括波长在4-20nm范围内(例如在13nm-14nm范围内)的电磁辐射。EUV辐射可以具有小于10nm波长,例如在4-10nm范围内的波长,诸如6.7nm或6.8nm的波长。

尽管在本文中可以对在IC制造中的光刻设备的使用进行了具体参考,但是应该理解,本文描述的光刻设备可以具有其它应用。可能的其它应用包括集成光学系统,用于磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCD)、薄膜磁头等的制造。

本发明的实施例可以以硬件、固件、软件或其任意组合来实施。本发明的实施例还可以被实施为储存在机器可读介质上的指令,该指令可以被一个或更多个处理器读取和执行。机器可读介质可以包括用于储存或传输呈机器(例如,计算装置)可读的形式的信息的任何机制。例如,机器可读介质可以包括只读存储器(ROM);随机存取存储器(RAM);磁盘储存介质;光学储存介质;闪速存储装置;电学、光学、声学或其它形式的传播信号(例如,载波、红外信号、数字信号等)等。此外,固件、软件、例行程序、指令在本文中可被描述为执行某些动作。但是,应当理解,这样的描述仅仅是为了方便,并且这样的动作实际上是由计算装置、处理器、控制器或执行固件、软件、例行程序、指令等的或其它设备来产生。

虽然上文已经描述了本发明的具体实施例,但是应该理解,本发明可以以与上述不同的方式来实践。上文描述旨在是说明性的而不是限制性的。因此,本领域技术人员将明白,可以在不背离下文所阐述的权利要求的范围的情况下对所描述的本发明进行修改。

23页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于基于成像的叠加及基于散射测量的叠加的混合叠加目标设计

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类