氩气和氮气的生产方法

文档序号:1524997 发布日期:2020-02-11 浏览:26次 >En<

阅读说明:本技术 氩气和氮气的生产方法 (Production method of argon and nitrogen ) 是由 贾科莫·科尔梅 于 2018-06-18 设计创作,主要内容包括:一种方法,包括在合适的吸收媒介(23)中使含有NOx的工艺气体(22)经受吸收NOx的步骤,获得硝酸(24)和含有氮气、氩气和残余NOx的尾气(25);对所述尾气(25)进行包括至少一个NOx脱除步骤的处理,获得调节后的尾气(26);对所述调节后的尾气的至少一部分(26b)进行分离处理,获得含有氩气的产物流(40)和含有氮气的产物流(37)。(A method comprising the steps of subjecting a process gas (22) containing NOx to a step of absorbing NOx in a suitable absorption medium (23), obtaining nitric acid (24) and a tail gas (25) containing nitrogen, argon and residual NOx; subjecting said tail gas (25) to a treatment comprising at least one NOx removal step, obtaining a conditioned tail gas (26); at least a portion (26b) of the conditioned off-gas is subjected to a separation treatment obtaining a product stream (40) comprising argon and a product stream (37) comprising nitrogen.)

氩气和氮气的生产方法

技术领域

本发明涉及氩气和氮气生产技术领域。

背景技术

氩气(Ar)是一种稀有气体,因此具有化学惰性。凭借此特性,它可用于多种工业应用,例如,在惰性气氛的形成中。

由于其低反应性,分子氮(N2)也特别适合用于不同的工业和工艺环境中惰性气氛的形成。大量的氮也用于低温应用,但主要用途仍然是合成氨,由氨可获取肥料、聚合物、***和着色剂。

氩和氮通常与氧一起从空气分离过程中获得。

大多数空气分离装置都进行液态空气的分馏过程。所述过程称为低温过程(cryogenicprocess),利用氩气、氮气和氧气沸点的不同(分别为–186℃,–196℃和–183℃)将其基本分离。本领域已知的空气液化方法是例如林德法(Lindeprocess)和克劳德法(Claudeprocess)。分馏通常在包括几个蒸馏塔(通常是三个塔)的系统中进行。

这种技术的一个问题是氩气和氧气的沸点非常接近,这使得难以将氩气与氧气分离获得高纯度氩气。用该技术获得的氮气通常还包含ppm水平的Ar和氧气,这是不希望的。

为了尽可能促进氩和氮的分离,可以使用带有大量塔板的大型蒸馏塔,可以增加塔数,或者可以在塔的下游安装吸附床,从而实现进一步纯化由蒸馏获得的氩气和氮气流。但是,所有这些解决方案在装置设计和能耗方面都是昂贵的。

其他生产氩气和氮气的装置使用通过膜的选择性吸附过程。但是,这些装置仍然不是很普及,而且成本很高。

发明内容

本发明的目的是提供一种能够获得基本上纯的氩气和氮气且同时简单和成本低廉的方法。

申请人发现,基于硝酸合成过程的尾气的组成,其是生产氩气和氮气的一种方便的来源。

众所周知,根据奥斯特瓦尔德法(Ostwaldprocess)合成硝酸包括在水中吸收氮氧化物NOx的步骤,该步骤产生硝酸流和含有氮气、氩气、残余NOx以及任选地还包括N2O的尾气。在现有技术中,通常按照排放到大气中的规定限值来处理所述尾气以去除NOx和可能的N2O,然后排放。本发明的基本思想是处理至少一部分所述尾气以分离其中所含的氩气和氮气,从而获得具有高商业价值的产品。

前述目的是通过根据权利要求1的方法实现的,所述方法包括以下步骤:

在合适的吸收媒介(absorptionmeans)中使含有NOx的工艺气体经受NOx吸收步骤,得到硝酸和含有氮气、氩气和残余NOx的尾气;

对所述尾气进行包括至少一个NOx脱除步骤的处理,获得调节后的尾气;

对至少一部分所述调节后的尾气进行分离处理,获得包含氩气的第一产物流和包含氮气的第二产物流。

在所述NOx吸收步骤期间使用的吸收媒介优选是水。

优选地,将所述调节后的尾气分成至少两个部分,第一部分进行上述分离处理,第二部分有利地在合适的膨胀机中进行处理。

由于所述分离处理,所述第一产物流的氩气浓度大于所述调节后的尾气中的氩气浓度。类似地,所述第二产物流的氮气浓度大于所述调节后的尾气中的氮气浓度。

优选地,所述第一产物流包含至少99.5%(vol)的氩气,更优选至少99.95%(vol),甚至更优选至少99.995%(vol)。

优选地,所述第二产物流包含至少99.5%(vol)的氮气,更优选至少99.95%(vol),甚至更优选至少99.995%(vol)。

所述分离处理适于选择性地至少将氩气与氮气分开。优选地,所述分离处理是在不超过133K(–140℃)的温度下进行的低温处理。

在优选实施例中,所述工艺气体通过在空气或富氧空气(enrichedair)存在下将氨流氧化而获得。所以,所述尾气中包含的氮气和氩气的来源基本上是在所述氧化步骤期间引入的空气或富氧空气。

所述氧化步骤主要包括第一阶段的氨的催化氧化,提供一氧化氮NO和少量的一氧化二氮N2O;以及第二阶段的NO的氧化,提供二氧化氮NO2或四氧化二氮N2O4。根据本领域广泛的实践,化合物NO、NO2和N2O4用通式NOx表示。

有利地,在吸收塔中进行工艺气体的吸收步骤,在该吸收塔中,包含在所述工艺气体中的NOx至少部分地被吸收在所述吸收媒介中,优选为水,以提供硝酸和上述尾气。

可选地,可以在吸收步骤之前对所述工艺气体进行N2O脱除(所谓的“N2O二次脱除”)。在一些实施例中,将N2O从尾气中脱除(所谓的“三次脱除”);一些实施例包括二次脱除和进一步的三次脱除。

所述调节后的尾气主要包含氮气。优选地,所述气体包含的氮气的量等于或大于80%(vol),优选地大于90%(vol),甚至更优选地在95%~98%(vol)之间。

所述调节后的尾气还包含不可忽略量的氩气,通常至少0.9%(vol),优选至少1.0%(vol),甚至更优选至少1.1%(vol)。

所述调节后的尾气还可以包含少量的水,其量优选不大于0.5%(vol),更优选0.2~0.3%(vol)。

所述调节后的尾气优选包含可忽略量的NOx和N2O。

优选地,所述调节后的尾气包含的NOx的量不大于200ppm,更优选不大于30ppm,甚至更优选不大于5ppm。

优选地,所述调节后的尾气包含的N2O的量不大于1000ppm,优选地不大于100ppm;更优选不大于30ppm,甚至更优选不大于10ppm。

考虑到NOx和N2O在分离处理过程中冻结的趋势,如果存在的NOx和N2O的量大于上面确定的数量,则会在相关装置工作期间引起一系列操作问题,而在装置停止期间由于释放到大气中的NOx和N2O的累积量会引起安全问题。

在一些实施例中,所述调节后的尾气具有一定的氧含量,优选不大于5%(vol),更优选为2%~3%(vol)。

所述尾气的处理优选包括在还原剂(优选氨)的存在下通过催化还原,更优选地选择性催化还原(SCR)进行的脱硝步骤(DeNOxstage)。

在本发明的其他实施例中,所述尾气的处理包括非选择性催化还原(NSCR)的脱硝步骤。在这种情况下,所述调节后的尾气基本不含氧气,并且可含有痕量的烃或氢、CO、CO2和氨。

优选地,所述调节后的尾气的压力大于4bar,优选地在4~15bar的范围内。所述压力对应于处理所述尾气的优选压力。

所述调节后的尾气不含或含有极少量的二氧化碳。例如,所述调节后的尾气包含不超过800ppm的CO2,优选不超过700ppm,更优选不超过600ppm。ppm符号表示百万分之几的体积。

所述分离处理优选包括利用不同沸点的分馏,所述沸点对于氩气是–186℃,对于氮气是–196℃,对于氧气是–183℃(在标准条件STP下)。

优选地,所述分离处理包括:冷却并随后膨胀所述调节后的尾气,获得部分液化;以及使液化的馏分进行分馏。因此,所述方法优选包括氩气、氮气和氧气中的至少一种在各自沸点的分馏。

所述方法可以包括在低温处理之前脱除CO2的步骤,以避免CO2在制冷箱中冻结和积累。所述CO2的脱除优选地包括使气体通过分子筛。

本发明的另一方面是通过分离处理用于合成硝酸的装置的调节后的尾气来生产含氩气的料流和含氮气的料流的方法,所述调节后的尾气可通过以下步骤获得:

使含有NOx的工艺气体在合适的吸收媒介中进行NOx吸收步骤,得到硝酸和含有氮气、氩气和残余NOx的尾气;

对所述尾气进行包括至少一个NOx脱除步骤的处理,获得所述调节后的尾气。

本发明的另一方面涉及根据权利要求的用于生产氩气和氮气的装置。

与空气相比,所述调节后的尾气具有更大的氩气含量和更小的氧气含量。由于这些原因,从所述调节后的尾气中获得氩气比从空气中分离氩气实质上更容易且更有利。特别地,较小的氧含量(或在NSCR的情况下不存在氧)促进了包含氩气的产物流的产生,因为沸点接近的氧是最难与氩气分离的组分。

所述尾气的另一个优点是其污染物含量低(特别是NOx和N2O),这允许得到高纯度的氩气流和氮气流,并允许装置的正确工作,避免了与N2O和有毒气体(例如,NOx)的管理有关的问题。

另一个优点是可获得处于高压(通常大于4bar,例如4~15bar)下的所述调节后的尾气,这允许气体通过膨胀而部分液化。这样,不再需要为所述尾气使用专用的压缩机,这从经济的角度来看与常规的空气分馏装置相比具有优势,因为所述压缩机构成了其最昂贵的组成部分。

考虑到由于所述尾气处于压力下的事实而没有压缩机,并且由于尾气中的氧气含量较低而使分馏塔的结构得到简化,则根据本发明的分馏装置的投资成本将远小于传统的空气分馏装置。因此,可以以有竞争力的价格获得氩气和氮气。

考虑到硝酸装置必须从市场上购买所需的电力来补偿产生的功率,而产生的功率由于所述尾气未完全在膨胀机中膨胀而是去进行分馏的事实而丧失,可以以有竞争力的价格获得氩气和氮气的说法也是正确的。

由于这些原因,所述调节后的尾气代表了用于生产氩气和氮气的特别有利的来源。

此外,本发明增加了在现有技术中排放到大气中的硝酸生产装置排放的尾气的价值。这样,本发明为硝酸装置增加了重要的收入来源。因此,本发明的一个方面以硝酸、氩气和氮气的联合生产为代表。如此获得的氮气可以例如在市场上出售或用于增加与硝酸装置结合的可能的氨装置的生产能力。

与使用空气作为原料的氩气和氮气生产的现有技术方法(即蒸馏或选择性吸附)相比,本发明的另一个优点是节省了自然资源和能源,而现有技术方法需要大量的能源。

在当地的氩气和氮气市场(存在硝酸装置的地方)相对于空气的组成不平衡的情况下,本发明特别有吸引力。

参考以下与本发明的优选实施例有关的详细描述,本发明的优点将变得更加明显。

附图说明

图1示出了根据本发明的装置的简化图。

图2示出了根据本发明的优选实施例的用于联合生产硝酸、氩气和氮气的装置的图。

具体实施方式

根据图1的装置主要包括吸收塔4、用于离开所述塔的尾气的处理单元6、膨胀机7和用于分离氩气流和氮气流的工段2。

所述装置按照如下方法工作。

将包含NOx和少量N2O的工艺气体22和水流23进料至吸收塔4。在所述塔4内,NOx被部分吸收在水中,从而形成包含硝酸的料流24和主要包含氮气和少量的氧气、氩气、水、N2O和残留的NOx的尾气25。

所述尾气25被送至所述处理单元6,在所述处理单元6中,至少部分脱除NOx且任选地还脱除N2O,从而提供调节后的尾气26。离开所述处理单元6的气体26的压力优选在4~15bar范围内。

所述调节后的气体26有利地分成两部分:第一部分26a在膨胀机7内膨胀并作为料流27排放到大气中,第二部分26b被送入工段2并进行分离处理,获得含有氩气的料流40和含有氮气的料流37。

图2更详细地示出了图1的装置。所述装置特别包括用于合成硝酸的工段1和用于生产氩气和氮气的工段2。

所述工段1主要包括用于氨的催化氧化的反应器3、吸收塔4、热交换器5、用于脱除NOx和任选地脱除N2O的单元6以及膨胀机7。特别是在高容量装置的情况下,所述工段1还包括位于反应器3和吸收塔4之间的压缩机。

所述工段1按照如下方法工作。

将氨流20和空气流21供入反应器3。在反应器3内,所述氨被催化氧化以产生一氧化氮NO和较小量的一氧化二氮N2O,并且至少一部分NO进一步氧化产生二氧化氮NO2或四氧化二氮N2O4,产生气流22。

将所述气态流22和水流23引入吸收塔4中,在所述吸收塔4中,至少部分NOx被吸收产生硝酸24。

所述吸收塔4还提供了作为塔顶产物的尾气25,所述尾气25主要包含氮气和少量的氧气、水、氩气、N2O和残留的NOx。

所述尾气25在热交换器5中被预热并且随后被供给到所述单元6。根据图2所示的示例,所述单元6包括脱硝工段,在所述脱硝工段通过选择性地催化还原(SCR)将NOx至少部分地脱除。

所述单元6在4~15bar的压力下工作,并提供主要包含氮气、2~3%氧气、0.2~0.3%水、<30ppmNOx和<30ppmN2O的气体26。

所述气体26被分成两部分:第一部分26a在所述膨胀机7内膨胀,第二部分26b从用于合成硝酸的工段1中排出,并被送入用于生产氩气和氮气的工段2中。

所述膨胀机7产生硝酸工段1中压缩机(未示出)所需功率的至少一部分。膨胀的气体27排放到大气中。

用于生产氩气和氮气的工段2主要包括热交换器8、膨胀机9、分离器10和蒸馏装置11。

根据图2的示例,所述装置11包括:在大约4~5bar压力下工作的第一蒸馏塔12,在大气压下工作的第二蒸馏塔13和分离氩气的第三蒸馏塔14。

所述工段2按照如下方法工作。

来自工段1的气体部分26b与再循环流32混合,并被送入所述热交换器8,在所述热交换器8中进行冷却,将热量释放到来自分离器10的料流31中,从而获得制冷气体28。

然后,所述制冷气体28被送至膨胀机9中被部分液化。根据实施例,膨胀机9为阀或涡轮机。

将部分液化的气体29送入所述分离器10。所述分离器10分离出液相30和气相31。所述液相30被输送至蒸馏装置11,而所述气相31被输送至所述热交换器8,以制冷进入的气体26b,然后将其作为料流32重新引入循环中。

更详细地,所述液相30进料到第一塔12,所述第一塔12从顶部分离出气态氮33,从底部分离出包含氮气、氧气和氩气的液体馏分34。

所述液体馏分34被输送到第二塔13,而氮气33进料到冷凝器15中,在所述冷凝器15中与所述塔13的尾馏分35进行热交换冷凝。

根据图1的示例,离开所述冷凝器15的冷凝氮气流36被分成两部分:第一部分36a被输送到第二塔13,第二部分36b作为回流料流被输送到第一塔12。

所述第二塔13分离氮气37和氧气38。

在所述第二塔13的中间点收集含有氩气和氧气的馏分39,并将其送至第三塔14,第三塔14分离出基本上纯的氩气40和氧气41。

实例

在一个生产500MTD(公吨每天)硝酸的装置中,在吸收塔的入口处会获得含有5~6%NOx的工艺气体。在前述塔的出口处,尾气包含约300~500ppmNOx,并且在处理工段(SCR)的出口处,所述气体包含约0~22ppmNOx。使该气体进入分离工段,可获得约77'000kg/h的氮气和约1'300kg/h的氩气。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:碳纳米管组合物及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!