发动机的尾气处理装置及其制造方法

文档序号:1549208 发布日期:2020-01-17 浏览:29次 >En<

阅读说明:本技术 发动机的尾气处理装置及其制造方法 (Exhaust gas treatment device for engine and manufacturing method thereof ) 是由 田中荣治郎 于 2018-05-23 设计创作,主要内容包括:在发动机的尾气通路中设置有用于捕集尾气中的颗粒物的蜂窝状多孔过滤器。尾气从过滤器的流入侧孔道(12)通过该过滤器的隔壁(15)的微孔(16)向流出侧孔道(13)流动。由过滤器的构成流入侧孔道(12)的隔壁(15)的表面和微孔(16)的内表面负载催化剂(17)。由隔壁(15)的表面负载的催化剂(17)比由微孔(16)的内表面负载的催化剂(17)厚。(A honeycomb porous filter for trapping particulate matter in exhaust gas is provided in an exhaust passage of an engine. The exhaust gas flows from the inlet-side cells (12) of the filter to the outlet-side cells (13) through the micropores (16) of the partition walls (15) of the filter. A catalyst (17) is supported on the surfaces of partition walls (15) constituting the inflow side cells (12) of the filter and the inner surfaces of the micropores (16). The catalyst (17) supported by the surface of the partition wall (15) is thicker than the catalyst (17) supported by the inner surface of the micropores (16).)

发动机的尾气处理装置及其制造方法

技术领域

本发明涉及发动机的尾气处理装置及其制造方法。

背景技术

从发动机排出的尾气中除了含有HC(烃)、CO(一氧化碳)以及NOx(氮气氧化物)外,还含有以碳为主要成分的颗粒物(ParticulateMatter,以下称为“PM”)。该PM也会成为大气污染的原因,因此已经在加强限制对HC、CO、NOx等有害气体成分与该PM的排出。

在专利文献1中记载有,为了避免尾气处理装置的大型化,通过由捕集PM的过滤器负载催化剂,来捕集PM且实现尾气的净化。该过滤器是具有贯通轴向的开放孔道和上游端堵塞的堵塞孔道的蜂窝状构造体,由多孔陶瓷制成。在该蜂窝状构造体的尾气流动方向的下游侧部分,催化剂由孔道壁负载,在蜂窝状构造体的上游侧部分,催化剂未由孔道壁负载。

在上述过滤器的情况下,在蜂窝状构造体的上游侧部分,尾气从开放孔道通过孔道壁的微孔向堵塞孔道流动,由此PM被微孔捕集,在蜂窝状构造体的下游侧部分,由孔道壁负载的催化剂会促进尾气的净化。

专利文献1:日本公开专利公报特开2017-20442号公报

发明内容

-发明要解决的技术问题-

在专利文献1的情况下,为了避免通过阻力的增大,在蜂窝状构造体的上游侧的孔道壁没有负载催化剂。因此,在该上游侧无法实现催化剂对尾气的净化。如果为了提高对尾气的净化性能而增加蜂窝状构造体的下游侧的催化剂负载量,下游侧的孔道壁的微孔便会被催化剂堵塞。其结果是,尾气的通过阻力增大,发动机的换气性降低。

因此,本发明的目的在于:既抑制发动机的换气性降低又提高对尾气的净化性能。

-用以解决技术问题的技术方案-

本发明为了解决上述问题,让催化剂较厚地负载在对尾气中的PM进行捕集的多孔过滤器的表面,让催化剂较薄地负载在该过滤器的微孔内表面。

此处公开的发动机的尾气处理装置在发动机的尾气通路中设置有对尾气中的PM进行捕集的多孔过滤器,

所述尾气从所述过滤器的表面通过该过滤器的细孔而被排出,

在所述过滤器表面和所述微孔内表面负载有尾气净化用催化剂,该发动机的尾气处理装置的特征在于:

由所述过滤器表面负载的所述催化剂比由上述微孔内表面负载的所述催化剂厚。

该尾气处理装置通过让过滤器表面负载的催化剂较厚,而让微孔内表面负载的催化剂较薄,因此容易避免催化剂堵塞微孔,从而确保催化剂容易通过微孔。也就是说,通过由过滤器负载催化剂而能够避免过滤器导致排气压力损失增大,换言之,能够避免在发动机的排气冲程中换气效率降低。

另外,过滤器表面负载的催化剂较厚,因此容易对尾气进行净化。而且,温度因过滤器表面的催化剂反应热而升高的尾气会通过微孔。这样一来,尽管在微孔内表面负载的催化剂较薄,但由于通过微孔的尾气温度较高故催化剂对尾气的净化会高效地进行下去。

在一实施方式中,所述过滤器表面每单位面积的所述催化剂的负载量在所述微孔内表面每单位面积的所述催化剂的负载量的50倍以上且500倍以下。这样一来,既更加有利于抑制发动机的换气性降低,又更加有利于提高尾气的净化性能。

在一实施方式中,在所述尾气通路中且所述过滤器的上游侧设置有对所述尾气进行净化的催化转换器。

据此,尾气也能够由上游侧的催化转换器加以净化,因此能够使所述过滤器中的催化剂负载量较少,从而有利于抑制排气压力损失的增大。由于利用上游侧的催化转换器和所述过滤器中的催化剂对尾气进行净化,因此也能够将催化转换器的容量抑制得较低。也就是说,根据该实施方式,作为整个尾气处理装置,既容易抑制大型化和排气阻力的增大,又容易确保所期望的尾气净化性能。

在一实施方式中,所述催化转换器包括对碳个数为6~9的不饱和烃(以下称为“不饱和高HC”)的氧化反应显示活性的催化剂,

所述过滤器中的所述催化剂对碳个数为5以下的饱和烃(以下称为“饱和低HC”)的氧化反应显示活性。

此处已知:与不饱和烃相比,饱和烃难燃(不易氧化分解)。

在上述实施方式中,尾气中的不饱和高HC由上游侧的催化转换器中的催化剂氧化而被净化,尾气温度因该催化剂反应热而升高。下游侧的过滤器的温度伴随于此而上升。因此,尽管尾气中的饱和低HC比较难燃,但过滤器的温度如上所述会升高,因此该过滤器所负载的催化剂容易高效地对该饱和低HC的净化发挥作用。这样一来,在尾气温度较低的情况下,所述不饱和高HC和所述饱和低HC也能够被高效地净化。

另外,催化转换器中的催化剂会导致不饱和高HC裂解,不饱和高HC裂解而会生成饱和低HC,该饱和低HC向位于催化转换器的下游侧的过滤器流动。由该过滤器负载的催化剂对不饱和低HC的净化显示活性,故由于上述裂解而生成的饱和低HC也会被该过滤器中的催化剂高效地净化。

此处公开的发动机的尾气处理装置的制造方法的特征在于,包括第一工序、第二工序以及第三工序,

在上述第一工序中,将具有供发动机的尾气通过的微孔的多孔过滤器浸渍在分散有尾气净化用催化剂的第一催化剂浆液中,而由所述过滤器的微孔内表面负载该催化剂,

在所述第二工序中,将经过所述第一工序后的所述过滤器浸渍在分散有所述催化剂的第二催化剂浆液中,而使所述过滤器的表面负载的所述催化剂的厚度比所述微孔内表面负载的所述催化剂的厚度厚,

在所述第三工序中,将经过所述第二工序后的所述过滤器设在所述发动机的尾气通路中。

采用该方法,在不同的工序中进行催化剂在过滤器的微孔内表面的负载和催化剂在过滤器表面的负载,并且先在过滤器的微孔内表面负载催化剂,因此容易使过滤器表面负载的催化剂比微孔内表面负载的催化剂厚。

在一实施方式中,所述第一催化剂浆液的催化剂和所述第二催化剂浆液的催化剂成分相同。

在一实施方式中,在所述第一工序与所述第二工序之间具有对使由所述过滤器的微孔内表面负载的所述催化剂进行干燥的工序,

在所述第二工序与所述第三工序之间具有对所述过滤器的表面负载的所述催化剂和所述微孔内表面负载的所述催化剂进行焙烧的工序。

因为让由过滤器的微孔内表面负载的催化剂干燥,所以在第二工序中,由过滤器的表面负载催化剂时,能够避免微孔内表面的催化剂流失。

-发明的效果-

在本发明中,过滤器的表面负载的尾气净化用催化剂比过滤器的微孔内表面负载的尾气净化用催化剂厚,换言之,过滤器的微孔内表面负载的催化剂较薄。因此根据本发明,能够抑制发动机的换气性降低(降低发动机的油耗),并提高尾气的净化性能。

附图说明

图1是示出发动机的尾气处理装置的立体图。

图2是示出该装置的主要部分的俯视图。

图3是示出GPF装置的示意图。

图4是示出GPF装置的带催化剂的过滤器的示意主视图。

图5是示出该过滤器的纵向剖视示意图。

图6是示出该过滤器的一部分的横向剖视图。

图7是示出该过滤器的制造工序的图。

图8是示出流入各个实施例和各个比较例的各带催化剂的过滤器上的微孔的温度差的图表。

图9是示出实施例的排气压力损失的降低率的图表。

具体实施方式

下面,参照附图对本发明的实施方式进行说明。以下优选实施方式仅为从本质上说明本发明的示例而已,并没有限制本发明、本发明的应用对象或本发明的用途的意图。

<尾气处理装置>

在图1中,1表示汽车的直喷式汽油发动机,2表示发动机1的排气歧管。催化转换器3经由连结管4与排气歧管2的集合部2a结合在一起,GPF(汽油颗粒过滤器)装置5直接连结在排气流动方向上催化转换器3的下游侧。排气管6从GPF装置5向汽车后方延伸。

如图2所示,催化转换器3是将前级和后级这两个蜂窝状催化剂7、8前后排列着收纳在催化剂容器中的双床型转化器。前级蜂窝状催化剂7是蜂窝状载体负载第一催化剂而得到的。后级蜂窝状催化剂8是蜂窝状载体负载第二催化剂而得到的。作为蜂窝状载体,优选容量0.5~1.5L左右的蜂窝状载体。

第一催化剂在比第二催化剂低的温度下对甲苯等不饱和高HC的氧化反应显示活性。另一方面,第二催化剂在比第一催化剂低的温度下对异戊烷等饱和低HC的氧化反应显示活性。

GPF装置5是将带催化剂的过滤器10收纳在过滤器容器中而得到的。带催化剂的过滤器10是由堇青石、SiC、Si3N4、塞隆、AlTiO3等无机多孔材料制成的陶瓷过滤器主体负载所述第二催化剂而得到的。如图3到图5示意性所示,带催化剂的过滤器10呈蜂窝状构造,包括相互平行延伸的多个孔道12、13。下游端由栓14堵塞的流入侧孔道12和上游端由栓14堵塞的流出侧孔道13交替着设置。孔道12和孔道13由较薄的隔壁(尾气通路壁)15隔开。在图3中,附图标记11表示尾气通路。在图4中,标注阴影线的部分表示尾气流出通路13的上游端的栓14。

作为过滤器主体,优选采用容量为1.0~2.0L、孔道密度为200~300cpsi、隔壁15的厚度为150~250μm、隔壁15的孔隙率为40~60%、隔壁15的微孔容积为70~400cm3左右的过滤器主体。

如图5所示,尾气流入带催化剂的过滤器10的流入侧孔道12,如箭头所示,通过孔道12周围的隔壁15向相邻的流出侧孔道13流出。

如图6所示,隔壁15具有使孔道12与孔道13连通的微小的微孔16,尾气通过该微孔16。尾气中的PM主要附着并堆积在孔道12和微孔16的壁部。

第二催化剂17由构成流入侧孔道12的隔壁15的表面(过滤器表面)和微孔16的内表面负载。构成孔道12的隔壁15的表面负载的第二催化剂17比微孔16的内表面负载的第二催化剂17厚。优选,上述隔壁15的表面每单位面积的第二催化剂17的负载量在微孔16的内表面每单位面积的第二催化剂17的负载量的50倍以上且500倍以下。

因此,只要由构成流入侧孔道12的隔壁15的表面负载相对于过滤器主体的催化剂总负载量的一半以上即可。优选,构成流入侧孔道12的隔壁15的表面所负载的催化剂量为催化剂总负载量的65%以上且85%以下。

优选,隔壁15的表面和微孔16的内表面加起来,每一立升上述过滤器主体所负载的第二催化剂的负载量为20~100g/L左右。构成流入侧孔道12的隔壁15的表面所负载的第二催化剂的负载量例如相对于每一立升过滤器主体为15~75g即可,微孔16的内表面所负载的第二催化剂的负载量例如相对于每单位微孔容积为0.08~0.37g即可。

<第一催化剂和第二催化剂>

优选,对不饱和高HC的净化活性高的第一催化剂,含有使含4质量%的La2O3的活性氧化铝负载Pd而得到的负载有Pd且含有La2O3的氧化铝作为必要成分且含有CeZr类复合氧化物等OSC材料(氧吸收释放材料)与使该OSC材料负载Rh而得到的Rh催化剂。

优选,对饱和低HC的净化活性高的第二催化剂,含有使含4质量%的La2O3的活性氧化铝负载Pt而得到的负载Pt且含有La2O3的氧化铝作为必要成分,且含有上述OSC材料。

如上所述,催化转换器3的前级蜂窝状催化剂7含有会很好地将不饱和高HC净化的第一催化剂,因此尾气中的不饱和高HC由该第一催化剂氧化而净化,尾气温度由于此时所产生的催化剂反应热而升高。含有会很好地将饱和低HC净化的第二催化剂的后级蜂窝状催化剂8的温度伴随于此而升高。因此,尾气中的饱和低HC会被后级蜂窝状催化剂8的第二催化剂高效地净化。

并且,尾气的温度因伴随着蜂窝状催化剂7、8对HC净化所产生的催化剂反应热而升高,尾气向下游侧的带催化剂的过滤器10流动。因此,带催化剂的过滤器10的第二催化剂对饱和低HC的净化会高效地进行下去。

另外,催化转换器3的前级蜂窝状催化剂7会使不饱和高HC裂解,不饱和高HC裂解而会产生饱和低HC,该饱和低HC向后级蜂窝状催化剂8和带催化剂的过滤器10流动。后级蜂窝状催化剂8和带催化剂的过滤器10中的第二催化剂会很好地将不饱和低HC净化,故因上述裂解而生成的饱和低HC也会被该后级蜂窝状催化剂8和带催化剂的过滤器10的第二催化剂高效地净化。

在带催化剂的过滤器10中,构成流入侧孔道12的隔壁15的表面负载的第二催化剂较厚,微孔16的内表面负载的第二催化剂较薄。因此,尾气的净化在该隔壁15的表面很活跃,温度随之升高了的尾气会通过微孔16。因此,尽管微孔16的内表面所负载的第二催化剂较薄,但由于通过微孔16的尾气温度高,故该第二催化剂对尾气的净化会高效地进行下去。

<尾气处理装置的制造方法>

-让过滤器的微孔内表面负载催化剂(第一工序)-

如图7所示,将过滤器主体(未负载催化剂)21的一端部浸渍在贮存于第一容器22且与上述第二催化剂相关的催化剂浆液23中,然后捞上来。该过滤器主体21是交替设置有上述流入侧孔道12和流出侧孔道13的部件。

将过滤器主体21的上游端侧浸渍在催化剂浆液23中,然后捞上来。这样一来,催化剂浆液23就会附着在过滤器主体21的流入侧孔道12的上游端侧的内表面上。

接下来,将抽真空的泵24连接在过滤器主体21的下游端,让该泵24工作,使过滤器主体21的流出侧13为负压。该流出侧孔道13变为负压以后,附着于流入侧孔道12的上游端侧的催化剂浆液23就会被吸到该孔道12的下游侧,同时也会渗入隔壁15的微孔16内。这样一来,催化剂便会由过滤器21的微孔16的内表面负载。

此处,调节贮存于第一容器22中的催化剂浆液23的粘度,以便该催化剂浆液23容易渗入隔壁15的微孔16中。

-干燥-

将过滤器主体21加热,由此使附着于隔壁15的微孔16的内表面的催化剂干燥。该干燥,例如是通过在150℃的温度下将过滤器主体21保持2小时而进行的。

-让过滤器隔壁表面负载催化剂(第二工序)-

将上述干燥后的过滤器主体21的靠上游端侧的端部浸渍在贮存于第二容器25的上述第二催化剂的催化剂浆液26中,然后捞上来。这样一来,催化剂浆液26就会附着于过滤器主体21的流入侧孔道12的靠上游端侧的内表面。

将抽真空的泵24连接在过滤器主体21的下游端,让该泵24工作,使过滤器主体21的流出侧13为负压。该流出侧孔道13变为负压以后,附着于流入侧孔道12的上游端侧的催化剂浆液23就会被吸引到该孔道12的下游侧。这样一来,催化剂就被过滤器21的流入侧孔道12的内表面负载,即被隔壁15的表面负载。

此处,使贮存于第二容器25的催化剂浆液26的粘度比第一容器22的催化剂浆液23的粘度高,以便抑制在抽真空的泵24进行吸引时该贮存于第二容器25的催化剂浆液26渗入隔壁15的微孔16内。

需要说明的是,在催化剂浆液26已由隔壁15的表面负载以后,一部分微孔16会被堵塞,但隔壁15的表面所负载的催化剂浆液26通过之后的焙烧而成为多孔催化剂层,故尾气能够通过该催化剂层流入微孔16。

-焙烧-

通过对经过上述第二工序后的过滤器主体21进行加热,对附着于过滤器主体21的隔壁15的表面上的催化剂和附着于微孔16的内表面的催化剂进行焙烧。该焙烧,例如通过在500℃的温度下将过滤器主体21保持2小时来进行。根据需要,在该焙烧前加入干燥工序(在150℃的温度下将过滤器主体21保持2小时)。

按以上所述,即能够得到第二催化剂由过滤器主体21的流入侧孔道12的隔壁15的表面和微孔16的内表面负载带催化剂的过滤器10。

-装配(第三工序)-

将在过滤器容器中收纳有带催化剂的过滤器10的GPF装置5与在催化剂容器中收纳有蜂窝状催化剂7、8的催化转换器3结合起来,经由连结管4将催化转换器3与排气歧管2连接起来,将GPF装置5与排气管6接合起来。由此便能够得到发动机的尾气处理装置。

<实施例和比较例>

准备了容量1.3L的堇青石过滤器作过滤器主体21用。其孔道密度为250cpsi、隔壁厚度为200μm、隔壁的孔隙率为50%、隔壁的微孔容积约为100cm3

在实施例中,通过使该过滤器主体21的微孔内表面负载15g/L(上述第一工序中的负载量)的第二催化剂,使构成流入侧孔道12的隔壁面负载45g/L(上述第二工序中的负载量)的第二催化剂,由此而得到了带催化剂的过滤器。

过滤器主体21的构成流入侧孔道12的隔壁面的总面积为1.82m2,根据水力直径的概念计算出的过滤器主体21的微孔内表面的总面积为258.09m2。因此,构成流入侧孔道12的隔壁面(过滤器表面)每单位面积的催化剂负载量为24.73g/m2,微孔内表面每单位面积的催化剂负载量为0.058g/m2。由此,构成流入侧孔道12的隔壁面每单位面积的催化剂负载量为微孔内表面每单位面积的催化剂负载量的约426倍。

在比较例中,使该过滤器主体21的微孔内表面负载60g/L的第二催化剂,由此而得到了带催化剂的过滤器。使构成流入侧孔道12的隔壁面的催化剂负载量为零。微孔内表面每单位面积的催化剂负载量为0.23g/m2

[升温特性]

让作为模拟尾气的甲烷气体(过滤器入口处的气体温度300℃、CH4浓度160ppmC)流入各个实施例和各个比较例的带催化剂的过滤器,尝试性地计算了此时流入微孔的气体温度。

根据CH4浓度、气体流量10g/秒以及气体流动时间60秒,求取了流入过滤器的CH4总量(0.06mol)。在实施例的过滤器中,假设CH4总量的75%被由流入侧孔道12的隔壁面负载的第二催化剂净化,根据过滤器的热容量736J/kg·K、重量0.45kg以及CH4的下述燃烧热,求取了气体此时的上升温度。在比较例的过滤器中,流入侧孔道的CH4净化率为零。结果在表1和图8中示出。

CH4+2O2→CO2+2H2O+891kJ/mol

[表1]

Figure BDA0002298842330000101

可知,如实施例那样,当由构成流入侧孔道12的隔壁面负载催化剂时,流入微孔的尾气的温度会由于催化剂反应热而升高,有利于用微孔内表面负载的催化剂对尾气净化。

[排气压力损失]

各个实施例和各个比较例的催化剂负载量相等,皆为60g/L。比较例中,该催化剂全部由微孔内表面负载。相对于此,实施例中,由构成流入侧孔道12的隔壁面负载催化剂总量的3/4,由此而使微孔内表面的催化剂负载量为15g/L。因此,与比较例过滤器相比,在实施例的过滤器中,隔壁的孔隙率增大5.4%左右。

假设带催化剂的过滤器引起的发动机的排气压力损失仅取决于孔隙率,计算出了实施例的以比较例为基准(100%)的排气压力损失的下降率。在该计算中,尾气流量为0.15g/s,尾气温度为550℃。结果示于图9。

与比较例相比,实施例中排气压力损失在93%左右。由此可知,当如实施例那样,由构成流入侧孔道的隔壁面负载催化剂的一部分时,排气压力损失会减小,有利于提高发动机的换气性,甚至会有利于降低油耗。

-符号说明-

1 汽油发动机

2 排气歧管

3 催化转换器

5 GPF装置

7 前级蜂窝状催化剂

8 后级蜂窝状催化剂

10 带催化剂的过滤器

12 流入侧孔道

13 流出侧孔道

14 栓

15 隔壁

16 微孔

17 第二催化剂

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:喷射装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!