Design method of fractional order PID sliding-mode observer suitable for magnetic suspension spherical motor

文档序号:1601083 发布日期:2020-01-07 浏览:50次 中文

阅读说明:本技术 适用于磁悬浮球形电机的分数阶pid滑模观测器设计方法 (Design method of fractional order PID sliding-mode observer suitable for magnetic suspension spherical motor ) 是由 杨东升 熊浩杰 马占超 肖军 周博文 孙维东 高筱婷 王昕� 于 2019-09-24 设计创作,主要内容包括:本发明提供一种适用于磁悬浮球形电机的分数阶PID滑模观测器设计方法,涉及无位置传感器技术领域。该方法首先采集磁悬浮球形电机三相电流值和三相电压值,进而构建滑模观测器的数学模型;利用构建的滑模观测器数学模型计算磁悬浮球形电机在两相静止坐标系下的反电动势和定子电流估计值;同时以定子电流估计值的误差作为滑模面,构造滑模观测器的切换函数,并采用Prelu函数作为滑模观测器开关函数;然后利用分数阶PID对滑模观测器的切换函数中的滑模增益进行参数调节和整定;并由计算得到的反电动势得到真实转子电角度和电角速度的估计值。本发明方法有效的抑制了磁悬浮球形电机滑模观测器的抖振,能够设计出稳定的滑模观测器。(The invention provides a design method of a fractional order PID sliding mode observer suitable for a magnetic suspension spherical motor, and relates to the technical field of no position sensor. Firstly, acquiring three-phase current values and three-phase voltage values of a magnetic suspension spherical motor, and further constructing a mathematical model of a sliding mode observer; calculating the back electromotive force and the stator current estimated value of the magnetic suspension spherical motor under a two-phase static coordinate system by utilizing the constructed mathematical model of the sliding-mode observer; meanwhile, taking the error of the estimated value of the stator current as a sliding mode surface, constructing a switching function of a sliding mode observer, and taking a Prelu function as a switching function of the sliding mode observer; then, parameter adjustment and setting are carried out on the sliding mode gain in the switching function of the sliding mode observer by utilizing the fractional order PID; and obtaining estimated values of the true rotor electrical angle and the electrical angular velocity from the calculated back electromotive force. The method effectively inhibits buffeting of the sliding mode observer of the magnetic suspension spherical motor, and can design a stable sliding mode observer.)

1. A design method of a fractional order PID sliding-mode observer suitable for a magnetic suspension spherical motor is characterized by comprising the following steps: the method comprises the following steps:

step 1: collecting three-phase current value i of magnetic suspension spherical motora、ib、icAnd three-phase voltage value ua、ub、ucClark conversion is carried out on the three-phase voltage value and the current value to obtain the voltage u under the two-phase static coordinate systemα、uβAnd current iαAnd iβ(ii) a Constructing a voltage equation under a two-phase static coordinate system, and transforming the voltage equation to obtain a current iαAnd iβThereby obtaining a mathematical model of the sliding-mode observer;

step 2: calculating the back electromotive force of the magnetic suspension spherical motor under a two-phase static coordinate system by utilizing the mathematical model of the sliding-mode observer constructed in the step 1

Figure FDA0002212426050000011

and step 3: constructing a transfer function of a fractional order PID, approximating the fractional order PID controller to a continuous high-order integer order PID controller by utilizing an improved Oustaloup approximation method, then constructing a fractional order differential integral operator model, and carrying out parameter regulation and setting on sliding mode gain in a switching function of a sliding mode observer;

and 4, step 4: back electromotive force calculated from step 2

Figure FDA0002212426050000013

And 5: by applying a counter electromotive force to the counter electromotive force obtained in step 4

Figure FDA0002212426050000016

step 6: utilizing the current estimated value of the magnetic suspension spherical motor in the step 2

Figure FDA00022124260500000110

2. The design method of the fractional order PID sliding-mode observer suitable for the magnetic suspension spherical motor according to claim 1 is characterized in that: the specific method of the step 1 comprises the following steps:

clark conversion is carried out on the three-phase voltage value and the current value of the collected magnetic suspension spherical motor to obtain the voltage u under a two-phase static coordinate systemα、uβAnd current iαAnd iβThe following formula shows:

Figure FDA0002212426050000021

Figure FDA0002212426050000022

the voltage equation under the two-phase static coordinate system of the structure is shown as the following formula:

wherein R issIs stator resistance, LsFor stator inductance, p is the differential operator, ω is the electrical angular velocity of the rotor,. psifThe magnetic flux linkage is formed by the permanent magnet and the stator, and theta is the rotor electrical angle;

the voltage equation is deformed to obtain the current i under a two-phase coordinate systemαAnd iβThe equation of equilibrium of (a) is shown as follows:

Figure FDA0002212426050000024

the equilibrium equation is simplified to:

pis=A·is+B·vsf·vi

wherein isIs composed of

Figure FDA0002212426050000025

further simplifying to obtain a mathematical model of the sliding-mode observer, wherein the following formula is shown:

Figure FDA00022124260500000210

wherein the content of the first and second substances,

Figure FDA00022124260500000211

3. The design method of the fractional order PID sliding-mode observer suitable for the magnetic suspension spherical motor according to claim 2 is characterized in that: the specific method of the step 2 comprises the following steps:

using current i in a two-phase coordinate systemαAnd iβThe balance equation of (2) obtains the back electromotive force under a two-phase static coordinate system

Figure FDA00022124260500000214

Figure FDA00022124260500000215

wherein t is time;

the switching function of the sliding mode observer is constructed by utilizing the mathematical model of the sliding mode observer, and the following formula is shown:

wherein the content of the first and second substances,

Figure FDA0002212426050000032

Figure FDA0002212426050000034

Wherein, aiIs a fixed parameter of (1, + ∞).

4. The design method of the fractional order PID sliding-mode observer suitable for the magnetic suspension spherical motor according to claim 3 is characterized in that: the specific method of the step 3 comprises the following steps:

step 3.1: constructing a transfer function of the fractional order PID controller, wherein the transfer function is shown as the following formula:

Figure FDA0002212426050000035

wherein G is1(s) is the transfer function of the fractional order PID controller, kp、ki、kdThe controller is a proportional, integral and differential link of a fractional order PID controller, lambda and mu are integral order and differential order, and s is a frequency domain variable;

step 3.2: constructing a differential equation of the fractional order PID controller, wherein the equation is as follows:

u(t)=kp·e(t)+ki·D·e(t)+kd·Dμ·e(t)

wherein u (t) is the output of the fractional order PID controller, e (t) is the error input of the fractional order PID controller, and D is the calculus operator;

step 3.3: an improved Oustaloup approximation method is used as a filter, and the fractional order PID controller is approximated to a continuous high-order integer order PID controller;

the transfer function for constructing the improved Oustaloup approximation is shown as follows:

Figure FDA0002212426050000036

wherein, alpha, d and b are constants, omegab、ωhThe upper limit cut-off frequency and the lower limit cut-off frequency of the filter are respectively;

and (3) expanding k(s) Taylor, eliminating higher-order terms, and simplifying the transfer function of the constructed improved Oustaloup approximation continuous filter, wherein the transfer function is shown as the following formula:

Figure FDA0002212426050000037

wherein G is2(s) to improve the transfer function of the Oustaloup approximation continuous filter,

Figure FDA0002212426050000041

step 3.4: fitting the transfer function to a new low-pass filter by using the improved Oustaloup approximation

Figure FDA0002212426050000043

step 3.5: a fractional order differential integral operator model in the step 3.4 is built in numerical simulation software Matlab/simulink, and a sliding mode gain k in a switching function of a sliding mode observer is usedswAnd the fractional order differential integral operator model is used as an input of the fractional order differential integral operator model, and parameter setting is carried out on the fractional order differential integral operator model.

5. The design method of the fractional order PID sliding-mode observer suitable for the magnetic suspension spherical motor according to claim 4 is characterized in that: the specific method of the step 4 comprises the following steps:

step 4.1: back electromotive force calculated from step 2Constructing a counter electromotive force model, wherein the following formula is shown:

Figure FDA0002212426050000045

estimated value of rotor electrical angle calculated by back electromotive force modelAs shown in the following equation:

Figure FDA0002212426050000047

step 4.2: and (3) compensating and deforming the rotor electrical angle obtained in the step (4.1) to obtain a real rotor electrical angle, wherein the formula is as follows:

Figure FDA0002212426050000048

wherein, thetaefThe method comprises the steps of collecting phase delay errors generated when three-phase current and voltage of a magnetic suspension spherical motor pass through a low-pass filter;

step 4.3: obtaining rotor flux linkage from back electromotive force model

Figure FDA0002212426050000049

Figure FDA00022124260500000410

6. the design method of the fractional order PID sliding-mode observer suitable for the magnetic suspension spherical motor according to claim 5 is characterized in that: the specific method of the step 6 comprises the following steps:

constructing a Lyapunov function, wherein the formula is as follows:

Figure FDA00022124260500000411

wherein the content of the first and second substances,

Figure FDA0002212426050000051

according to the Lyapunov theorem of stability when

Figure FDA0002212426050000053

Technical Field

The invention relates to the technical field of position-free sensors, in particular to a design method of a fractional order PID sliding mode observer suitable for a magnetic suspension spherical motor.

Background

In recent years, with the development of science and technology, the degree of social industrialization is higher and higher, and the motor is subjected to stricter requirements as a supporting type machine for mutual conversion between mechanical energy and electric energy. The traditional mechanical bearing motor is not suitable for occasions with high rotating speed, high precision and low loss requirements. When a traditional motor runs at a high speed, the friction between a mechanical bearing and a shaft of the traditional motor has large resistance, and the friction causes vibration, abrasion and noise, so that the motor is hot, the service life is greatly reduced, and the maintenance cost is increased.

The magnetic suspension bearing technology supports the rotor of the motor to suspend by generating suspension magnetic force, so that the motor is separated from the bearing. The magnetic bearing has the advantages of no need of lubrication, no friction, long service life and the like, and is applied to the fields of aerospace, robots, machining and the like. It has certain advantages over conventional mechanical bearings, but also has some problems. The use of magnetic bearings for suspension in the motor requires three bearings, two radial bearings and one axial bearing, which limits the space usage of the motor and affects the critical rotational speed of the motor. In order to solve the problem, a torque winding of the motor is added with a winding of a radial bearing, so that the function of the motor for rotating and suspending simultaneously is realized, and the motor can be called as a bearingless motor.

For a long time, people have conducted extensive research on single-degree-of-freedom motors, and along with the development of multi-degree-of-freedom complex motion precision devices such as mechanical arms, multi-degree-of-freedom motor systems are more and more emphasized by people. The magnetic suspension spherical motor is based on a magnetic suspension technology and a motor technology, generates a suspension magnetic force to support a motor rotor to suspend, and generates a magnetic torque to directly drive the rotor to rotate. Since the rotor is spherical, a magnetically levitated spherical motor combines a torque winding and a levitation winding, also known as a bearingless motor.

In order to perform high-precision control on the magnetic suspension spherical motor, a position sensor is usually used for detecting the position of a rotor, so that the volume of a system and the rotational inertia of the rotor are increased, the cost of the system is increased, and the reliability of the system is reduced. Therefore, there is a need to develop a position sensorless technique.

At present, two methods for estimating the position and the speed of a rotor applied to a motor are available, one is to estimate the position of the rotor by using back electromotive force or flux linkage, and the common methods are a Longeberg observer, a sliding mode observer and an extended Kalman filter observer. And the other is a high-frequency signal injection method utilizing the salient pole effect of the motor. The Sliding Mode Observer (SMO) method is favored for its strong robustness, simple computation, and convenience for engineering application and digital implementation, but has the problem of low-speed buffeting.

Disclosure of Invention

The invention aims to solve the technical problem of the prior art, and provides a design method of a fractional order PID sliding mode observer suitable for a magnetic suspension spherical motor, which eliminates low-speed buffeting of a magnetic suspension spherical motor system, enhances the robustness of the system, and improves the anti-interference capability and the dynamic performance of a traditional control system.

In order to solve the technical problems, the technical scheme adopted by the invention is as follows: the design method of the fractional order PID sliding mode observer suitable for the magnetic suspension spherical motor comprises the following steps:

step 1: collecting three-phase current value i of magnetic suspension spherical motorα、ib、icAnd three-phase voltage value uα、ub、ucClark conversion is carried out on the three-phase voltage value and the current value to obtain the voltage u under the two-phase static coordinate systemα、uβAnd current iαAnd iβ(ii) a Constructing a voltage equation under a two-phase static coordinate system, and transforming the voltage equation to obtain a current iαAnd iβThereby obtaining a mathematical model of the sliding-mode observer;

performing Clark conversion on the three-phase voltage value and the current value to obtain a voltage u under a two-phase static coordinate systemα、uβAnd current iαAnd iβThe following formula shows:

Figure BDA0002212426060000021

Figure BDA0002212426060000022

Figure BDA0002212426060000023

the voltage equation under the two-phase static coordinate system of the structure is shown as the following formula:

Figure BDA0002212426060000024

wherein R issIs stator resistance, LsFor stator inductance, p is the differential operator, ω is the electrical angular velocity of the rotor,. psifThe magnetic flux linkage is formed by the permanent magnet and the stator, and theta is the rotor electrical angle;

the voltage equation is deformed to obtain the current i under a two-phase coordinate systemαAnd iβThe equation of equilibrium of (a) is shown as follows:

Figure BDA0002212426060000025

the equilibrium equation is simplified to:

pis=A·is+B·vsf·vi

wherein isIs composed of

Figure BDA0002212426060000026

a is

Figure BDA0002212426060000027

B is

Figure BDA0002212426060000028

vsIs composed of

Figure BDA0002212426060000029

viIs composed of

Figure BDA00022124260600000210

E is a 2 x 2 identity matrix;

further simplifying to obtain a mathematical model of the sliding-mode observer, wherein the following formula is shown:

Figure BDA0002212426060000031

wherein the content of the first and second substances,

Figure BDA0002212426060000032

in order to differentiate the stator current estimate,

Figure BDA0002212426060000033

as stator current estimate, kswIn order to obtain the gain of the sliding mode,

Figure BDA0002212426060000034

is a switching function;

step 2: calculating the back electromotive force of the magnetic suspension spherical motor under a two-phase static coordinate system by utilizing the mathematical model of the sliding-mode observer constructed in the step 1And stator current estimate

Figure BDA0002212426060000036

Error of stator current estimated valueConstructing a switching function of the sliding mode observer as a sliding mode surface, and adopting a Prelu function as a switching function of the sliding mode observer;

using current i in a two-phase coordinate systemαAnd iβThe balance equation of (2) obtains the back electromotive force under a two-phase static coordinate systemAs shown in the following equation:

Figure BDA0002212426060000038

wherein t is time;

the switching function of the sliding mode observer is constructed by utilizing the mathematical model of the sliding mode observer, and the following formula is shown:

Figure BDA0002212426060000039

wherein the content of the first and second substances,

Figure BDA00022124260600000310

Figure BDA00022124260600000311

for rotor electrical angle estimation, Prelu is a parametrically modified linear unit of formula

Figure BDA00022124260600000312

Wherein, aiIs a fixed parameter of (1, + ∞);

and step 3: constructing a transfer function of the fractional order PID, approximating the fractional order PID controller to a continuous high-order integer order PID controller by utilizing an improved Oustaloup approximation method, then constructing a fractional order differential integral operator model, and performing sliding mode gain k in the switching function of the sliding mode observer obtained in the step 2swAdjusting and setting parameters;

step 3.1: constructing a transfer function of the fractional order PID controller, wherein the transfer function is shown as the following formula:

Figure BDA00022124260600000313

wherein G is1(s) is the transfer function of the fractional order PID controller, kp、ki、kdThe controller is a proportional, integral and differential link of a fractional order PID controller, lambda and mu are integral order and differential order, and s is a frequency domain variable;

step 3.2: constructing a differential equation of the fractional order PID controller, wherein the equation is as follows:

u(t)=kp·e(t)+ki·D·e(t)+kd·Dμ·e(t)

wherein u (t) is the output of the fractional order PID controller, e (t) is the error input of the fractional order PID controller, and D is the calculus operator;

step 3.3: an improved Oustaloup approximation method is used as a filter, and the fractional order PID controller is approximated to a continuous high-order integer order PID controller;

the transfer function for constructing the improved Oustaloup approximation is shown as follows:

Figure BDA0002212426060000041

wherein, alpha, d and b are constants, omegab、ωhThe upper limit cut-off frequency and the lower limit cut-off frequency of the filter are respectively;

and (3) expanding k(s) Taylor, eliminating higher-order terms, and simplifying the transfer function of the constructed improved Oustaloup approximation continuous filter, wherein the transfer function is shown as the following formula:

Figure BDA0002212426060000042

wherein G is2(s) to improve the transfer function of the Oustaloup approximation continuous filter,

Figure BDA0002212426060000044

n is the filter order;

step 3.4: fitting the transfer function to a new low-pass filter by using the improved Oustaloup approximation

Figure BDA0002212426060000045

Packaging the obtained product into a fractional order differential integral operator model;

step 3.5: a fractional order differential integral operator model in the step 3.4 is built in numerical simulation software Matlab/simulink, and a sliding mode gain k in a switching function of a sliding mode observer is usedswThe fractional order differential integral operator model is used as input of the fractional order differential integral operator model, and parameter setting is carried out on the fractional order differential integral operator model;

and 4, step 4: back electromotive force calculated from step 2

Figure BDA0002212426060000046

Constructing a back electromotive force model, and calculating to obtain an estimated value of the rotor electrical angle by the back electromotive force model

Figure BDA0002212426060000047

Compensating the electrical angle of the rotor to obtain a real rotor electrical angle theta; and obtaining rotor flux linkage from the back electromotive force model

Figure BDA0002212426060000048

Step 4.1: back electromotive force calculated from step 2

Figure BDA0002212426060000049

Constructing a counter electromotive force model, wherein the following formula is shown:

Figure BDA0002212426060000051

estimated value of rotor electrical angle calculated by back electromotive force modelAs shown in the following equation:

Figure BDA0002212426060000053

step 4.2: and (3) compensating and deforming the rotor electrical angle obtained in the step (4.1) to obtain a real rotor electrical angle, wherein the formula is as follows:

wherein, thetaefThe method comprises the steps of collecting phase delay errors generated when three-phase current and voltage of a magnetic suspension spherical motor pass through a low-pass filter;

step 4.3: obtaining rotor flux linkage from back electromotive force model

Figure BDA0002212426060000055

As shown in the following equation:

Figure BDA0002212426060000056

and 5: by applying a counter electromotive force to the counter electromotive force obtained in step 4

Figure BDA0002212426060000057

And rotor flux linkage

Figure BDA0002212426060000058

Calculating to obtain an estimated value of the electrical angular velocity of the rotor

Figure BDA0002212426060000059

As shown in the following equation:

Figure BDA00022124260600000510

step 6: utilizing the current estimated value of the magnetic suspension spherical motor in the step 2

Figure BDA00022124260600000511

Constructing a Lyapunov function with the current actual value, and performing stability analysis on the designed sliding mode observer;

constructing a Lyapunov function, wherein the formula is as follows:

Figure BDA00022124260600000512

wherein the content of the first and second substances,

Figure BDA00022124260600000513

Figure BDA00022124260600000514

omega is an estimated value and an actual value of the rotor electrical angular velocity respectively;

according to the Lyapunov theorem of stability when

Figure BDA00022124260600000515

And (4) judging that the sliding mode observer is stable.

Adopt the produced beneficial effect of above-mentioned technical scheme to lie in: the invention provides a design method of a fractional order PID sliding-mode observer suitable for a magnetic suspension spherical motor, which comprises the following steps:

(1) the sign function is replaced by the parameterized modified linear unit Prelu, the buffeting phenomenon is weakened, the calculation speed and the convergence speed of the parameterized modified linear unit Prelu are higher than those of a common sigmod function and a common tanh function, and the parameterized modified linear unit Prelu has stronger robustness.

(2) An improved Oustaloup approximation method is adopted to approximate the fractional order controller into a continuous high-order integer order system, and the defect that the boundary fitting effect of the Oustaloup approximation method at a frequency band endpoint is not ideal is overcome. The sliding mode gain in the switching function of the sliding mode observer is set by utilizing the fractional order PID, and the buffeting of the sliding mode observer of the magnetic suspension spherical motor is effectively inhibited.

(3) And the feedforward control is utilized to perform phase compensation on the rotor electrical angle, so that the influence of system errors on the observation result is reduced.

Drawings

FIG. 1 is a schematic diagram of a magnetic levitation spherical motor suitable for use in accordance with an embodiment of the present invention;

fig. 2 is a flowchart of a design method of a fractional order PID sliding-mode observer suitable for a magnetic levitation spherical motor according to an embodiment of the present invention;

FIG. 3 is a system diagram for designing a sliding-mode observer according to an embodiment of the present invention;

FIG. 4 is a functional block diagram of a fractional order PID controller provided by an embodiment of the invention;

FIG. 5 is a diagram illustrating a fractional order differential-integral operator model provided by an embodiment of the present invention;

FIG. 6 is a diagram of an implementation of a fractional order PID controller provided by an embodiment of the invention;

fig. 7 is a system diagram for integrally controlling a magnetic levitation spherical motor by using the sliding mode observer designed by the method of the present invention according to the embodiment of the present invention.

In the figure: 1. a rotor shaft; 2. a permanent magnet; 3. a spherical rotor; 4. a stator; 5. a torque winding; 6. a radial winding; 7. a support sheet; 8. an axial winding; 9. a base.

Detailed Description

The following detailed description of embodiments of the present invention is provided in connection with the accompanying drawings and examples. The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention.

The magnetic suspension spherical motor is shown in figure 1, wherein 1 is a rotor rotating shaft and is driven by a spherical rotor 3, a radial winding 6 and a torque winding 5 are jointly embedded on a stator and provide torque and radial suspension force simultaneously, and a supporting sheet 7 of a protection device is additionally arranged at the bottom of the stator and has the function of buffering the falling of the rotor when the motor stops rotating. The axial windings 8 provide an axial suspension force, so that there is no contact and no friction between the rotor and the stator 4.

In the embodiment, a three-phase current and voltage of the magnetic levitation spherical motor are collected to construct a sliding mode observer mathematical model, current deviation is used as a sliding mode surface to construct a switching function, fractional PID is used for setting sliding mode gain of the sliding mode observer, the position of a rotor is compensated to obtain an electrical angle and an electrical angular velocity of the rotor, and design of the fractional PID sliding mode observer suitable for the magnetic levitation spherical motor is achieved. The design method of the fractional order PID sliding-mode observer suitable for the magnetic suspension spherical motor comprises the following steps as shown in FIGS. 2 and 3:

step 1: collecting three-phase current value i of magnetic suspension spherical motorα、ib、icAnd three-phase voltage value uα、ub、ucClark conversion is carried out on the three-phase voltage value and the current value to obtain the voltage u under the two-phase static coordinate systemα、uβAnd current iαAnd iβ(ii) a Constructing a voltage equation under a two-phase static coordinate system, and transforming the voltage equation to obtain a current iαAnd iβThereby obtaining a mathematical model of the sliding-mode observer;

performing Clark conversion on the three-phase voltage value and the current value to obtain a voltage u under a two-phase static coordinate systemα、uβAnd current iαAnd iβThe following formula shows:

Figure BDA0002212426060000071

Figure BDA0002212426060000072

the voltage equation under the two-phase static coordinate system of the structure is shown as the following formula:

Figure BDA0002212426060000073

wherein R issIs stator resistance, LsFor stator inductance, p is the differential operator, ω is the electrical angular velocity of the rotor,. psifThe magnetic flux linkage is formed by the permanent magnet and the stator, and theta is the rotor electrical angle;

the voltage equation is deformed to obtain the current i under a two-phase coordinate systemαAnd iβThe equation of equilibrium of (a) is shown as follows:

Figure BDA0002212426060000074

the equilibrium equation is simplified to:

pis=A·is+B·vsf·vi

wherein isIs composed of

Figure BDA0002212426060000075

A is

Figure BDA0002212426060000076

B is

Figure BDA0002212426060000077

vsIs composed of

Figure BDA0002212426060000078

viIs composed ofE is a 2 x 2 identity matrix;

further simplifying to obtain a mathematical model of the sliding-mode observer, wherein the following formula is shown:

wherein the content of the first and second substances,in order to differentiate the stator current estimate,

Figure BDA00022124260600000712

as stator current estimate, kswIn order to obtain the gain of the sliding mode,

Figure BDA00022124260600000713

is a switching function;

step 2: calculating the back electromotive force of the magnetic suspension spherical motor under a two-phase static coordinate system by utilizing the mathematical model of the sliding-mode observer constructed in the step 1

Figure BDA00022124260600000714

And stator current estimate

Figure BDA00022124260600000715

Meanwhile, taking the error of the estimated value of the stator current as a sliding mode surface, constructing a switching function of a sliding mode observer, and taking a Prelu function as a switching function of the sliding mode observer;

using current i in a two-phase coordinate systemαAnd iβThe balance equation of (2) obtains the back electromotive force under a two-phase static coordinate system

Figure BDA0002212426060000081

As shown in the following equation:

Figure BDA0002212426060000082

wherein t is time;

the switching function of the sliding mode observer is constructed by utilizing the mathematical model of the sliding mode observer, and the following formula is shown:

Figure BDA0002212426060000083

wherein the content of the first and second substances,

Figure BDA0002212426060000084

Figure BDA0002212426060000085

for rotor electrical angle estimation, Prelu is a parametrically modified linear unit of formula

Wherein, aiIs a fixed parameter of (1, + ∞);

and step 3: constructing a transfer function of the fractional order PID, and approximating the fractional order PID controller by using an improved Oustaloup approximation method as shown in FIG. 4A continuous high-order integer order PID controller is formed, a fractional order differential integral operator model is constructed, and the sliding mode gain k in the switching function of the sliding mode observer obtained in the step 2 is subjected toswAdjusting and setting parameters;

step 3.1: constructing a transfer function of the fractional order PID controller, wherein the transfer function is shown as the following formula:

Figure BDA0002212426060000087

wherein G is1(s) is the transfer function of the fractional order PID controller, kp、ki、kdThe controller is a proportional, integral and differential link of a fractional order PID controller, lambda and mu are integral order and differential order, and s is a frequency domain variable;

step 3.2: constructing a differential equation of the fractional order PID controller, wherein the equation is as follows:

u(t)=kp·e(t)+ki·D·e(t)+kd·Dμ·e(t)

wherein u (t) is the output of the fractional order PID controller, e (t) is the error input of the fractional order PID controller, and D is the calculus operator;

step 3.3: an improved Oustaloup approximation method is used as a filter, and the fractional order PID controller is approximated to a continuous high-order integer order PID controller;

the transfer function for constructing the improved Oustaloup approximation is shown as follows:

Figure BDA0002212426060000091

wherein, alpha, d and b are constants, omegab、ωhThe upper limit cut-off frequency and the lower limit cut-off frequency of the filter are respectively;

and (3) expanding k(s) Taylor, eliminating higher-order terms, and simplifying the transfer function of the constructed improved Oustaloup approximation continuous filter, wherein the transfer function is shown as the following formula:

Figure BDA0002212426060000092

wherein G is2(s) to improve the transfer function of the Oustaloup approximation continuous filter,

Figure BDA0002212426060000093

Figure BDA0002212426060000094

n is the filter order;

step 3.4: fitting the transfer function to a new low-pass filter by using the improved Oustaloup approximation

Figure BDA0002212426060000095

Packaging into a fractional order differential integral operator model as shown in FIG. 5;

step 3.5: building the fractional order differential integral operator model in the step 3.4 in the numerical simulation software Matlab/simulink, and as shown in fig. 6, obtaining a sliding mode gain k in the switching function of the sliding mode observerswThe fractional order differential integral operator model is used as input of the fractional order differential integral operator model, and parameter setting is carried out on the fractional order differential integral operator model;

and 4, step 4: back electromotive force calculated from step 2

Figure BDA0002212426060000096

Constructing a back electromotive force model, and calculating to obtain an estimated value of the rotor electrical angle by the back electromotive force model

Figure BDA0002212426060000097

Compensating the electrical angle of the rotor to obtain a real rotor electrical angle theta; and obtaining rotor flux linkage from the back electromotive force model

Figure BDA0002212426060000098

Step 4.1: back electromotive force calculated from step 2

Figure BDA0002212426060000099

Constructing a counter electromotive force model, wherein the following formula is shown:

Figure BDA00022124260600000910

estimated value of rotor electrical angle calculated by back electromotive force model

Figure BDA00022124260600000911

As shown in the following equation:

Figure BDA00022124260600000912

step 4.2: and (3) compensating and deforming the rotor electrical angle obtained in the step (4.1) to obtain a real rotor electrical angle, wherein the formula is as follows:

Figure BDA0002212426060000101

wherein, thetaefThe method comprises the steps of collecting phase delay errors generated when three-phase current and voltage of a magnetic suspension spherical motor pass through a low-pass filter;

step 4.3: obtaining rotor flux linkage from back electromotive force model

Figure BDA0002212426060000102

As shown in the following equation:

Figure BDA0002212426060000103

and 5: by applying a counter electromotive force to the counter electromotive force obtained in step 4

Figure BDA0002212426060000104

And rotor flux linkage

Figure BDA0002212426060000105

Calculating to obtain an estimated value of the electrical angular velocity of the rotor

Figure BDA0002212426060000106

As shown in the following equation:

Figure BDA0002212426060000107

step 6: utilizing the current estimated value of the magnetic suspension spherical motor in the step 2

Figure BDA0002212426060000108

Constructing a Lyapunov function with the current actual value, and performing stability analysis on the designed sliding mode observer;

constructing a Lyapunov function, wherein the formula is as follows:

Figure BDA0002212426060000109

wherein the content of the first and second substances,

Figure BDA00022124260600001010

Figure BDA00022124260600001011

omega is an estimated value and an actual value of the rotor electrical angular velocity respectively;

according to the Lyapunov theorem of stability when

Figure BDA00022124260600001012

And (4) judging that the sliding mode observer is stable.

In this embodiment, a constructed stable sliding-mode observer is added to a magnetic suspension spherical motor control system, and as shown in fig. 7, a current i in a two-phase stationary coordinate system is addedα、iβAnd voltage uα、uβAs input and output position angle of sliding mode observerTo Park converters, speed of rotation

Figure BDA00022124260600001014

The output after PI control is sent to an SVPWM controller, and pulse waves are output to a three-phase inverter, so that the magnetic suspension spherical control is controlledAn electric motor.

Finally, it should be noted that: the above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some or all of the technical features may be equivalently replaced; such modifications and substitutions do not depart from the spirit of the corresponding technical solutions and scope of the present invention as defined in the appended claims.

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种交流伺服系统及位置环的扰动抑制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!