具有高光稳定性的经涂覆的粉末

文档序号:1602219 发布日期:2020-01-07 浏览:22次 >En<

阅读说明:本技术 具有高光稳定性的经涂覆的粉末 (Coated powder with high light stability ) 是由 H.W.萨卡斯 A.R.霍伯 N.H.霍夫曼 于 2018-04-10 设计创作,主要内容包括:经涂覆的粉末包括:(a)颗粒,和(b)在颗粒的表面上的涂层,其包括(1)二氧化硅部分、(2)选自单有机氧基硅烷部分、双有机氧基硅烷部分和三有机氧基硅烷部分的有机氧基硅烷部分以及(3)聚(二烷基)硅氧烷部分。有机氧基硅烷部分和二氧化硅部分的以SiO&lt;Sub&gt;2&lt;/Sub&gt;当量计的重量量为总的经涂覆的粉末的重量的至少0.0625%,基于每m&lt;Sup&gt;2&lt;/Sup&gt;/g的待涂覆的颗粒的比表面积。(The coated powder comprises: (a) a particle, and (b) a coating on a surface of the particle comprising (1) a silica moiety, (2) an organoxysilane moiety selected from a monoorganoxysilane moiety, a diorganoxysilane moiety, and a triorganoxysilane moiety, and (3) a poly (dialkyl) siloxane moiety. Of organooxysilane moieties and silica moieties with SiO 2 The equivalent amount by weight is at least 0.0625% of the total coated powder weight, based on the weight per m 2 Per g of the specific surface area of the particles to be coated.)

具有高光稳定性的经涂覆的粉末

背景技术

添加颗粒以增强和改性许多不同类型的组合物和产品的性质。实例包括紫外光线(UV)吸收颗粒、颜料、着色剂、填料、消光剂、光学扩散颗粒、耐磨颗粒、粘度调节剂、磁性颗粒和反射颗粒。

包含氧化物的颗粒特别适合作为添加剂,尤其是含有氧化锌、氧化钛、氧化硅、氧化铝、氧化铁和/或稀土金属氧化物的颗粒。这些氧化物是热力学稳定的,通常不能与环境中普遍存在的氧反应,并且与许多其他氧化物和非氧化物材料相比,与水的反应性较低。这些氧化物材料已经用作颜料和磨料数百年。

由某些金属氧化物(最著名的是氧化钛)组成的颗粒特别引人关注,因为它们通常是无色的且对可见光透明,并且提供了针对暴露于UV光的保护;但是,由于这些氧化物的光催化行为,它们倾向于具有较差的光稳定性。暴露于UV辐射的金属氧化物产生自由基的增加。这些自由基可导致制剂本身不稳定。此外,自由基可导致形成已知会引起接触性皮炎和严重的过敏反应的氢过氧化物和其他过氧化物自由基。这些自由基还会触发链反应,从而产生活性氧物质(ROS)。这些高反应性衍生物与包括脂质膜在内的细胞组分反应,并且被认为是会在以后的生活中出现的光老化和皮肤癌的源头。ROS耗尽并破坏非酶和酶抗氧化剂防御系统,并且造成永久性基因损伤。化妆品组合物中的其他组分也可能具有低光稳定性,从而在皮肤表面上产生另外的自由基。

已经发现涂覆颗粒改进了颗粒的光稳定性。经涂覆(经包覆)的粉末用于制备应用于皮肤的化妆品组合物,例如用于保护皮肤免受UV辐射的组合物(例如防晒剂)。

可对颗粒进行涂覆以产生具有化学稳定性、光稳定性和形成具有低粘度的高重量负载分散体的能力的经涂覆的粉末。例如,发现涂层(包覆层)产生了化学稳定性、光稳定性,并且这种经涂覆的颗粒可用于形成具有低粘度的高重量负载分散体。该涂层包含(1)二氧化硅部分、(2)选自单有机氧基硅烷部分、双有机氧基硅烷部分和三有机氧基硅烷部分的有机氧基硅烷部分以及(3)聚(二烷基)硅氧烷部分。参见,例如,U.S.专利No.9,139,737。

通常用于化妆品护肤产品中的抗氧化剂在UV辐射下会经历氧化过程,从而失去其有效性。添加会阻断和吸收UV辐射的经涂覆的粉末可减少由UV辐射引起的抗氧化剂的氧化。然而,许多UV阻断颗粒表现出光催化活性,例如氧化锌和氧化钛,并且可导致在化妆品组合物内部产生过氧化物自由基。由于抗氧化剂和自由基或由自由基产生的产物之间的迅速反应,这可能损害抗氧化剂的稳定性和功效。

发明内容

在第一方面,本发明是经涂覆的粉末,其包括:(a)颗粒,和(b)在颗粒的表面上的涂层,其包括(1)二氧化硅部分、(2)选自单有机氧基硅烷部分、双有机氧基硅烷部分和三有机氧基硅烷部分的有机氧基硅烷部分以及(3)聚(二烷基)硅氧烷部分。有机氧基硅烷部分和二氧化硅部分的以SiO2当量计的重量量为总的经涂覆的粉末的重量的至少0.0625%,基于每m2/g的待涂覆的颗粒的比表面积。

在第二方面,本发明是分散体,其包含(1)经涂覆的粉末、(2)流体和(3)抗氧化剂。

在第三方面,本发明是制备经涂覆的粉末的方法,包括通过使组合物聚合来用聚合物涂覆颗粒,所述组合物包括:(i)颗粒,(ii)选自四烷氧基硅烷、聚(四烷氧基硅烷)及其混合物的第一烷氧基硅烷,(iii)选自单有机烷氧基硅烷、双有机烷氧基硅烷、三有机烷氧基硅烷及其混合物的有机烷氧基硅烷,和(iv)选自聚(二烷基)硅氧烷及其混合物的第二烷氧基硅烷。有机氧基硅烷部分和二氧化硅部分的以SiO2当量计的重量量为总的经涂覆的粉末的重量的至少0.0625%,基于每m2/g的待涂覆的颗粒的比表面积。

在第四方面,本发明是超光稳定的经涂覆的粉末。

在第五方面,本发明是保护皮肤免受光的方法,其包括用包含经涂覆的粉末的组合物涂覆皮肤。

在第六方面,本发明是保护角蛋白材料的方法,其包括用包含经涂覆的粉末的组合物涂覆角蛋白材料。

在第七方面,本发明是保护皮肤免受光的方法,其包括用分散体涂覆皮肤。

在第八方面,本发明是抑制脂质过氧化的方法,其包括向皮肤施用包含经涂覆的粉末的组合物。

在第九方面,本发明是防止或减少皮肤上的皱纹和褶皱的方法,其包括向皮肤施用包含经涂覆的粉末的组合物。

在第十方面,本发明是防止皮肤弹性损失的方法,其包括向皮肤施用包含经涂覆的粉末的组合物。

在第十一方面,本发明是防止皮肤变薄的方法,其包括向皮肤施用包含经涂覆的粉末的组合物。

定义

术语“纳米颗粒”意指粒度为至多999nm的颗粒。优选地,纳米颗粒的粒度为10nm至500nm。

术语“微颗粒”意指粒度为1μm至100μm的颗粒。

除非另有说明,否则术语“粒度”意指通过电子显微镜观察的颗粒图像的平均直径。术语“平均粒度”意指颗粒集合的粒度的平均值。

“高固体含量”或“高重量负载”意指所涉及的组合物具有至少50重量%的固体颗粒。

“烷基”(或烷基-(alkyl-)或烷-(alk-))是指取代或未取代的直链、支链或环状烃链,优选含有1至22个碳原子。更优选的烷基是低级烷基,例如,含有1至10个碳原子的烷基。优选的环烷基在其环结构中具有3至10个、优选3至6个碳原子。未取代的烷基的合适实例包括甲基、乙基、丙基、异丙基、环丙基、丁基、异丁基、叔丁基、仲丁基、环丁基、戊基、环戊基、己基和环己基。

“烯基”是指取代或未取代的直链、支链或环状不饱和烃链,其含有至少一个双键,并且优选具有2至22个、更优选2至6个碳原子。示例性的未取代的烯基包括乙烯基(或乙烯基(vinyl))(-CH=CH2)、1-丙烯基、2-丙烯基(或烯丙基)(-CH2-CH=CH2)、1,3-丁二烯基(-CH=CHCH=CH2)、1-丁烯基(-CH=CHCH2CH3)、己烯基、戊烯基和1,3,5-己三烯基。优选的环烯基含有5至8个碳原子和至少一个双键。环烯基的实例包括环己二烯基、环己烯基、环戊烯基、环庚烯基、环辛烯基、环己二烯基、环庚二烯基和环辛三烯基。

“炔基”是指取代或未取代的直链、支链或环状不饱和烃链,其含有至少一个三键,并且优选具有2至22个、更优选2至6个碳原子。

“芳基”是指任何芳族碳环或杂芳族基团,优选具有3至10个碳原子。芳基可为环状的(例如苯基(或Ph))或多环的(例如萘基),并且可为未取代或取代的。优选的芳基包括苯基、萘基、呋喃基、噻吩基、吡啶基、吲哚基、喹啉基或异喹啉基。

“杂环基团”是指稳定的、饱和的、部分不饱和的或芳族环,优选含有5至10个、更优选5或6个原子。该环可被取代基取代1次或更多次(优选1、2、3、4或5次)。环可为单环、双环或多环的。杂环基团由碳原子和1至3个独立地选自氮、氧和硫的杂原子组成。杂原子可为受保护的或未受保护的。有用的杂环基团的实例包括取代或未取代的吖啶、苯并噻唑啉、苯并咪唑、苯并呋喃、苯并噻吩、苯并噻唑、苯并噻吩基、咔唑、噌啉、呋喃、咪唑、1H-吲唑、吲哚、异吲哚、异喹啉、异噻唑、吗啉、噁唑、吩嗪,吩噻嗪,吩噁嗪,酞嗪,哌嗪,蝶啶,嘌呤,吡嗪,吡唑,哒嗪,吡啶,嘧啶,吡咯,喹唑啉,喹啉,喹喔啉,噻唑,1,3,4-噻二唑,噻吩,1,3,5-三嗪和***

“取代的”意指该部分含有至少一个、优选1-3个取代基。合适的取代基包括氢(H)和羟基(-OH)、氨基(-NH2)、氧基(-O-)、羰基(-CO-)、巯基、烷基、烯基、炔基、烷氧基、卤素、腈、硝基、芳基和杂环基团。

二氧化钛(TiO2)的光稳定性使用下述测试来测量。该测试称为“TiO2光稳定性测试”。首先,制备25%间苯二酚在乙醇中的储备溶液。将8.9g(±0.01g)的Finsolv TN和0.1g(±0.005g)的Hostaphat KW 340D添加至玻璃闪烁瓶。然后将加盖的瓶放入50℃的烘箱中,直到Hostaphat KW 340D溶解并且溶液均匀为止(大约15分钟)。在将瓶从烘箱中取出之后,将1.0g(±0.01g)的经涂覆的二氧化钛粉末添加至溶液。将溶液置于超声浴中并且超声处理15分钟。将1.0g(±0.01g)的来自第一步的在乙醇中的25%间苯二酚添加至闪烁瓶,并且用手充分混合直至均匀。向石英比色皿装填混合物,并且用Teflon盖盖上。然后使用MiltonRoy Color Mate Colorimeter或合适的等效色度计测试混合物。在测试混合物之前,使用白砖校准标准物校准色度计。在记录“预辐照样品”的结果之后,将含有样品的比色杯置于QUV老化测试仪中。然后在Q-Labs QUV老化测试仪中使用UVB灯泡以1.23Wm-2s-1在50℃的恒定温度下使混合物精确暴露于UV光15分钟。然后移出测试混合物,以在色度计中立即进行颜色测量。光稳定性可表示为对于规定的UV暴露时间而言相对于标准物的总颜色变化(在L*a*b*颜色空间中的ΔE)。ΔE由以下表达式计算,根据CIE76定义:

Figure BDA0002289486420000051

其中

Figure BDA0002289486420000052

是辐照后的测试混合物的颜色坐标,而其中

Figure BDA0002289486420000055

并且

Figure BDA0002289486420000056

并且对应于白色参考砖的颜色坐标。如果在以上光稳定性测试中ΔE≤15,则经涂覆的TiO2颗粒是“超光稳定的”。

为了测试除TiO2之外的大多数组合物(组分)的光稳定性,例如氧化锌(ZnO),可使用以下测试。该测试称为“DPPH光稳定性测试”。首先,将0.025g±0.001g的经涂覆的ZnO粉末添加至四个50mL一次性塑料烧杯。在BCS(乙二醇丁基醚)溶液中制备0.0125%DPPH(二(苯基)-(2,4,6-三硝基苯基)亚氨基铵(氮鎓)(di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium),也称为二苯基苦基肼基;CAS号1898-66-4)。将19.975g±0.001的在BCS溶液中的0.0125%DPPH添加至每个含有经涂覆的粉末的烧杯。将其用玻璃搅拌棒充分混合,并且将每个烧杯超声处理20秒,确保粉末在整个溶液中良好分散。在超声处理之后,将样品转移至标记的闪烁瓶。在校准的Milton Roy Color Mate Colorimeter或合适的等效色度计上测量预辐照样品。在进行测量之后,辐照样品。然后在Q-Labs QUV老化测试仪中使用UVA或UVB灯泡以0.35Wm-2s-1在50℃的恒定温度下使测试混合物精确暴露于UV光10分钟。UVA灯泡用于测试过滤UVA辐射的颗粒,而UVB灯泡用于测试过滤UVB辐射的颗粒。最后,在色度计上测量辐照后的样品。在这种情况下,由于染料在520nm处的吸收带,UV暴露之后的光稳定性通过紫色的持续存在来指示。光稳定性可表示为对于规定的UV暴露时间而言相对于标准物的总颜色变化(在L*a*b*颜色空间中的ΔE)。ΔE由以下表达式计算,根据CIE76定义:

Figure BDA0002289486420000057

其中

Figure BDA0002289486420000058

Figure BDA0002289486420000059

是辐照后的测试混合物的颜色坐标,而其中

Figure BDA00022894864200000510

Figure BDA00022894864200000511

是辐照前的测试混合物的初始颜色坐标。数据以四个样品的平均ΔE值报告。如果在以上光稳定性测试中ΔE≤4.5,则经涂覆的颗粒是“超光稳定的”。

使用前述测试的修改版本来测量经涂覆的效果颜料的光稳定性。该测试称为“效果颜料光稳定性测试”。为了消除比色法测量中由干扰颜料本身在样品中的反射率引起的噪音这种修改是必要的。该测试描述如下。在BCS(乙二醇丁基醚)溶液中制备0.0125%DPPH(二(苯基)-(2,4,6-三硝基苯基)亚氨基铵(氮鎓),也称为二苯基苦基肼基;CAS号1898-66-4)。将20ml DPPH溶液的等分试样转移至标记的闪烁瓶。在校准的Milton Roy Color MateColorimeter或合适的等效色度计上测量该样品。接下来,将0.025g±0.001g的经涂覆的效果颜料粉末添加至四个50mL一次性塑料烧杯。将19.975g±0.001的在BCS溶液中的0.0125%DPPH添加至每个含有经涂覆的粉末的烧杯。将其用玻璃搅拌棒充分混合,并且将每个烧杯超声处理20秒,确保粉末在整个溶液中良好分散。在超声处理之后,将各样品转移至标记的闪烁瓶。然后在Q-Labs QUV老化测试仪中使用UVB灯泡以0.35Wm-2s-1在50℃的恒定温度下使测试混合物精确暴露于UV光10分钟。然后,通过合适的1μm过滤器过滤辐照后的样品,以移出效果颜料,其可干扰颜色测量。最后,在色度计上测量经过滤的辐照后的样品。如前所述,由于染料在520nm处的吸收带,UV暴露之后的光稳定性通过紫色的持续存在来指示。光稳定性可表示为对于规定的UV暴露时间而言相对于标准物的总颜色变化(在L*a*b*颜色空间中的ΔE)。ΔE由以下表达式计算,根据CIE76定义:

Figure BDA0002289486420000061

其中

Figure BDA0002289486420000062

Figure BDA0002289486420000063

是辐照后的测试混合物的颜色坐标,而其中是所制成的DPPH溶液的初始颜色坐标。数据以四个样品的平均ΔE值报告。如果在以上光稳定性测试中ΔE≤1.15,则经涂覆的颗粒是“超光稳定的”,其表示基于CIE76的最小可觉差值的一半。

化学反应性使用以下化学反应性测试来测量。向20g玻璃瓶装填4.5g的5%没食子酸正丙酯(3,4,5-三羟基苯甲酸丙酯,Aldrich)在异丙醇中的储备溶液。将一克的待评估的粉末的一半添加至玻璃瓶。然后搅动玻璃瓶,例如通过将其置于浴超声仪中30秒。将混合物静置30分钟。然后使用移液器将样品轻轻混合,并且转移至光程为1cm的比色皿(聚碳酸酯、聚苯乙烯或玻璃)。然后使用Data Color-International Spectraflash SF3000Colorimeter针对工厂白色标准物测量总颜色变化(ΔE)。化学反应性表示为总颜色变化(ΔE)。如果化学反应性测试导致出现棕黄色且伴随大于20的ΔE值,则认为粉末在应用中具有化学反应性。

使用以下疏水性测试来测量疏水性(该测试是在化妆品工业中通常使用的可见水漂浮测试,并且描述于U.S.专利No.4,454,288)。将约30mL的去离子水放入玻璃罐中。将约3.0g±0.30g的待测试的粉末添加至玻璃罐中。将玻璃罐紧紧密封,并且使样品旋转约4至5次,并且剧烈摇动4至5次,从而实现使水和粉末之间的紧密接触。如果粉末有浮力(漂浮在水的表面上)并且在15分钟之后水是澄清的,则认为该粉末是疏水的。如果粉末没有浮力但是在15分钟之后水是澄清的,或者如果粉末有浮力但是在15分钟之后水不是澄清的,则样品是略微疏水的。

粉末的分散体的流动性使用以下流出(run-off)距离测试来测量。在苯甲酸乙基己酯(

Figure BDA0002289486420000074

EB,Innospec)中以50%固体物制备分散体。将来自移液管的三滴(75mg)的分散体放置到干净的玻璃板基底上,同时表面处于水平位置。然后将玻璃基底以90度角保持直立120秒,以使分散体流动。分散体的流动性表示为分散体从原点流动的距离。(该测试仅在初始筛选期间使用;所测量的从原点的流出距离为164±10mm(以标准误差报告),其对应于在20s-1的剪切速率下的粘度为145±25cP(以标准误差报告)。如果在苯甲酸乙基己酯分散体中在50%固体物下经涂覆的粉末显示出流动距离超过100mm,则认为经涂覆的粉末产生了可倾倒分散体。

粉末的分散体的粘度使用以下粘度测试来测量。除非另有说明,在癸酸/辛酸甘油三酯(

Figure BDA0002289486420000071

MCT Special KFG,Lonza,CAS号73398-61-5)、苯甲酸乙基己酯(

Figure BDA0002289486420000072

EB,Innospec)和苯甲酸直链烷基酯(TN C12-15Alkyl Benzoate CAS No.:68411-27-8)中以50重量%固体物制备粉末的分散体。使用带有CP52转子的Brookfield DVIII+Ultra Rheometer在25℃下测量每种分散体的粘度。在0.1s-1至100s-1的剪切速率下进行测量。

颗粒的比表面积以m2/g计量,并且使用Brunauer–Emmett–Teller(BET)方法测定。

SiO2当量意指在将涂层中的所有硅都转化为SiO2之后存在的SiO2的重量。例如,部分的“以SiO2当量计的重量量”意指将形成涂层的所有硅都转化为SiO2并测量,以测定经涂覆的粉末中的每种部分的百分比。

抗氧化能力(AP)使用由Gematria实验室(Berlin,DE)开发的AP方法来测量。通过用电子自旋共振(ESR)光谱法监测针对稳定测试自由基——DPPH的还原活性,该方法提供了测定活性成分(即植物提取物、维生素等)的总体抗氧化能力。AP方法利用众所周知的DPPH方法,主要区别在于抗氧化能力和抗氧化活性都用于表征所测试的抗氧化剂。为此目的,通过ESR光谱法实时分析不同浓度的活性成分,并且对于每组相应地跟踪测试自由基自旋的降低。通过这种创新技术,另外获得了重要的动力学信息,这被大多数其他测试系统完全忽略。因此,抗氧化剂的反应时间和还原电位都有助于AP的计算。

AP=(RA×N自旋)/(wc×tr)

AP可由以上等式表示,其中RA是恒定的还原幅度(1/e2),N自旋是由DPPH的自由电子(自旋)表征的还原的自由基的量,wc是抗氧化剂产物的特征重量并且tr是还原时间(Junget al.,2006)。所得的AP以抗氧化单位(AU)表示,其中1AU对应于作为基准的1ppm的纯维生素C(抗坏血酸)的溶液的活性。这种方法允许使用一种快速且普遍适用的技术来为一系列非常不同类别的物质测量AP。

附图说明

图1是随着UV辐射时间的变化,自由基的相对百分比的图。

图2是当与具有辛基三乙氧基硅烷涂层的ZnO或具有多功能涂层的ZnO组合时,各种抗氧化剂在UV辐射之后的相对AP值的图。

具体实施方式

TiO2和其他所选择的金属氧化物的经涂覆的粉末对于用于UV保护局部皮肤组合物和其他UV保护涂层将是期望的。然而,为了是在商业上期望的,这种经涂覆的粉末需要(a)光稳定的,使得其在暴露于UV光期间不会显著改变颜色;(b)不具有化学反应性,使得其在储存期间不与组合物发生反应或使组合物变色;(c)可形成高重量负载分散体,其允许高SPF值同时载流流体的引入最少,以及允许成本有效的运输和储存,但是其粘度足够低以在制备消费组合物时容易处理和混合。

尽管在US专利No 9,139,737中描述的多功能的经涂覆的粉末和高分散体固体物相对于其他现有的经涂覆的粉末而言是显著的改进,但是可通过提高经涂覆的粉末的光稳定性来进一步将其改进。此外,向UV保护组合物添加抗氧化剂将减少由UV辐射暴露引起的诱导自由基的量。

除了化学上稳定和具有形成高重量负载分散体的能力之外,本申请利用了具有优异的光稳定性的经涂覆的粉末。经涂覆的粉末是超光稳定的。经涂覆的粉末可用于形成含有抗氧化剂的组合物,并且其在暴露于光时减少了抗氧化剂损失。

经涂覆的粉末是涂覆有聚合物的颗粒,其通过使组合物聚合来制备,所述组合物含有颗粒和至少三种组分:(A)选自四烷氧基硅烷、聚(四烷氧基硅烷)及其混合物的第一烷氧基硅烷,(B)选自单有机烷氧基硅烷、双有机烷氧基硅烷、三有机烷氧基硅烷及其混合物的有机烷氧基硅烷,和(C)选自聚(二烷基)硅氧烷及其混合物的第二烷氧基硅烷。

形成的涂层含有对应于三种组分中的每一种的部分:(A)二氧化硅部分,(B)选自单有机氧基硅烷部分、双有机氧基硅烷部分和三有机氧基硅烷部分的有机氧基硅烷部分,和(C)聚(二烷基)硅氧烷部分。经涂覆的粉末可用于在化妆品可接受的流体中形成分散体,其具有高固体(高固体物)和低粘度。

当来自所有硅烷中的至少特定量的Si(以SiO2重量当量计量)存在于涂层中时,发现其具有优异的光稳定性。每种组分的组成范围均基于SiO2当量。源自所有硅烷部分(即二氧化硅部分和有机氧基硅烷部分)的SiO2必须大于或等于总的经涂覆的粉末的重量的至少0.0625%,基于每m2/g的待涂覆的颗粒的比表面积。硅烷部分可为单、双、三和四官能的。

经涂覆的粉末可用于在流体中形成具有高固体和低粘度的分散体。该分散体可用于制备应用于皮肤的化妆品组合物,例如用于保护皮肤免受UV辐射的组合物(例如防晒剂)。被认为是化妆品可接受的材料是所列出的INCI(化妆品成分国际命名法(International Nomenclature of Cosmetic Ingredients))的那些材料。化妆品可接受的流体的实例是苯甲酸乙基己酯(EB)、苯甲酸直链烷基酯(LAB)、辛酸/癸酸甘油三酯(CCT)、角鲨烷、天然产物油和多种硅酮流体。天然产物油是源自种子、豆类、水果、花、皮、树叶等的油,包括其衍生物。天然产物油的实例是橄榄油和大豆油。

经涂覆的粉末以及经涂覆的粉末的分散体可用于各种产品中。可将其添加至皮肤病学组合物,以向皮肤提供UV保护,尤其是在含TiO2和ZnO的经涂覆的粉末的情况下;经涂覆的粉末也可添加至诸如无机颜料的组合物。经涂覆的粉末还可添加至洗发剂、洗剂、凝胶、发胶、气溶胶泡沫乳膏或乳液,用于洗涤、染色和定型头发,同时还向头发提供UV保护。可将其添加至漆、密封剂和用于木材、塑料和其他建筑材料的其他涂料;同样,在含TiO2和ZnO的经涂覆的粉末的情况下,提供了UV保护。还可将其添加至树脂、填充聚合物和塑料以及墨。当金属氧化物是磁性的时,可制备磁性流体,例如在某些铁氧化物和稀土氧化物的情况下。

颗粒优选包含金属氧化物,例如氧化锌、氧化钛、氧化硅、氧化铝、氧化铁、氧化铋、氧化铈、稀土氧化物、吸收红外光的二元和三元混合金属氧化物以及其混合物。实例包括ZnO,TiO2,SiO2,Al2O3,Fe2O3,CeO2,SnO2,锆-铈氧化物,含有铈的混合锆-稀土氧化物,铝硅酸盐(包括无定形铝硅酸盐、结晶铝硅酸盐和浮石)和其他硅酸盐,包括氧化铝在内的铝氧化铝,铝硅酸盐,镁铝氧化物(例如尖晶石),掺杂有三价金属阳离子的氧化锌(包括铝掺杂的ZnO),氧化锑锡(ATO),氧化铟锡(ITO),氟掺杂的氧化锡和掺杂的氧化钨。还可使用氧化物矿物,例如云母和天然矿物氧化物。还可使用金属,其他陶瓷组合物,包括碳化物和氮化物以及其混合物,以及与氧化物的混合物。

颗粒可为效果颜料。效果颜料通常是涂覆有具有较高折射率的第二材料的薄层的板或板状颜料颗粒。底层板的组成通常是云母、合成云母、二氧化硅或氧化铝。涂层通常是二氧化钛(通常为锐钛矿形式)、氧化铁或氧氯化铋。颜料的颜色由涂层的厚度控制。效果颜料的尺寸通常为1-100μm。该颜料也称为珠光颜料和干涉颜料。这些材料是可商购的(来自EMD Performance Materials的

Figure BDA0002289486420000101

Figure BDA0002289486420000102

产品系列,来自BASF的

Figure BDA0002289486420000103

珠光颜料,以及来自Eckart的

Figure BDA0002289486420000104

Figure BDA0002289486420000105

效果颜料)。

优选地,颗粒的粒度为至多999nm,包括粒度为至多100、200和500nm,更优选粒度为10nm至500nm,最优选粒度为15nm至250nm,例如20、30、40、50、60、70、80、90和100nm。优选地,颗粒的平均粒度为至多999nm,包括平均粒度为至多100、200和500nm,更优选平均粒度为10nm至500nm,最优选平均粒度为15nm至250nm,例如20、30、40、50、60、70、80、90和100nm。或者,颗粒的粒度可为1μm至100μm。优选地,颗粒的平均尺寸为1至10μm。

颗粒可通过使组合物聚合来涂覆,优选在没有溶剂的情况下并且组合物的至少一些在气相中。组合物包括(A)选自四烷氧基硅烷、聚(四烷氧基硅烷)及其混合物的第一烷氧基硅烷,(B)选自单有机烷氧基硅烷、双有机烷氧基硅烷、三有机烷氧基硅烷及其混合物的有机烷氧基硅烷,和(C)选自聚(二烷基)硅氧烷及其混合物的第二烷氧基硅烷。

优选地,第一烷氧基硅烷的存在量为经涂覆的粉末的0.1至8重量%,更优选经涂覆的粉末的0.5重量%至7重量%,并且最优选经涂覆的粉末的1.0至5重量%,包括1.5、2、2.5、3、3.5、4和4.5%。优选地,有机烷氧基硅烷的存在量为经涂覆的颗粒的0.01至5重量%,更优选经涂覆的粉末的0.05至3重量%,并且最优选经涂覆的粉末的0.1至1重量%,包括0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8和0.9%。优选地,第二烷氧基硅烷的存在量为经涂覆的粉末的0.1至10重量%,更优选经涂覆的粉末的0.5至5重量%,并且最优选经涂覆的粉末的0.75至2.5重量%,包括1.0、1.25、1.5、1.75、2.0和2.25%。

第一烷氧基硅烷可为四烷氧基硅烷、聚(四烷氧基硅烷)或其混合物。四烷氧基硅烷是式(RaO)4Si的化合物,其中每个Ra是可相同或不同的有机基团,并且每个Ra优选为具有1至22个碳原子的烷基,更优选1至10个碳原子,包括2、3、4、5、6、7、8和9个碳原子,包括甲基、乙基和丙基。一个实例是四乙氧基硅烷(TEOS)。聚(四烷氧基硅烷)是通过部分水解形成的一种或多种四烷氧基硅烷的低聚物。优选地,聚(四烷氧基硅烷)含有2至14个单体单元,更优选地4至10个单体单元,包括5、6、7、8和9个。

第一烷氧基硅烷可含有二氧化硅部分。二氧化硅部分是与4个原子键合的Si(O)4基团,并且还可以簇(cluster)存在,例如[OSi(O2)]nO,其中n为2至14,更优选4至10,包括5、6、7、8和9。

有机烷氧基硅烷选自单有机烷氧基硅烷、双有机烷氧基硅烷、三有机烷氧基硅烷及其混合物。有机烷氧基硅烷是式R1 nSi(ORb)4-n的化合物,其中n是1、2或3。R1是有机基团,例如烷基(例如,直链烷基、支链烷基、环状烷基、环氧丙氧基烷基、甲基丙烯酰氧基烷基和氨基烷基)、芳基、乙烯基和杂芳基。R1的实例包括甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基和十八烷基。优选地,R1含有1至22个碳原子,更优选1至10个碳原子,包括2、3、4、5、6、7、8和9个碳原子。每个Rb是可相同或不同的有机基团,并且每个Rb优选为具有1至22个碳原子的烷基,更优选1至10个碳原子,包括2、3、4、5、6、7、8和9个碳原子,包括甲基、乙基和丙基。有机烷氧基硅烷的实例是三乙氧基辛基硅烷。

有机烷氧基硅烷可含有有机氧基硅烷部分。有机氧基硅烷部分是与“4-n”个其他原子键合的R1 nSi(O)4-n基团,其中n是1、2或3的整数。R1是有机基团,例如烷基(例如,直链烷基、支链烷基、环状烷基、环氧丙氧基烷基、甲基丙烯酰氧基烷基和氨基烷基)、芳基、乙烯基和杂芳基。R1的实例包括甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基和十八烷基。优选地,R1含有1至22个碳原子,更优选1至10个碳原子,包括2、3、4、5、6、7、8和9个碳原子。有机氧基硅烷部分的实例是辛基硅烷。

第二烷氧基硅烷选自聚(二烷基)硅氧烷及其混合物。聚(二烷基)硅氧烷优选为式RcO(SiR2 2)(R2 2SiO)n(SiR2 2)ORc的低聚物,其中n为2至14的整数,优选4至10,包括5、6、7、8和9。每个R2是有机基团,例如甲基、乙基或苯基,并且每个Rc是封端基团,例如烷基,包括甲基、乙基和丙基以形成烷氧基,或H以形成羟基;羟基和烷氧基均为反应性基团。还可能的是1至3个R2基团是羟基和/或烷氧基。R2和Rc各自独立地优选含有1至22个碳原子,更优选1至10个碳原子,包括2、3、4、5、6、7、8和9个碳原子。优选地,聚(二烷基)硅氧烷是聚二甲基硅氧烷或聚二乙基硅氧烷。优选地,聚(二烷基)硅氧烷的重均分子量为200至10,000,更优选500至5,000。

第二烷氧基硅烷可含有聚(二烷基)硅氧烷部分。聚(二烷基)硅氧烷部分是与其他原子键合的O(SiR2 2)(R2 2SiO)n(SiR2 2)O或O(SiR2 2)(R2 2SiO)n(SiR2 2)ORc基团,其中n为2至14的整数,优选4至10,包括5、6、7、8和9。每个R2独立地为有机基团,例如甲基、乙基或苯基,并且每个Rc是封端基团,例如烷基,包括甲基、乙基和丙基以形成烷氧基,或H以形成羟基;羟基和烷氧基均为反应性基团。还可能的是1至3个R2基团是羟基和/或烷氧基。R2和Rc各自独立地优选含有1至22个碳原子,更优选1至10个碳原子,包括2、3、4、5、6、7、8和9个碳原子。优选地,聚(二烷基)硅氧烷部分是聚二甲基硅氧烷部分或聚二乙基硅氧烷部分。

通常,将颗粒和组合物的三种组分充分混合在一起,然后放入密封容器中。然后将容器排空并且加热至至少两种组分形成蒸气的温度。将温度保持足够的时间以允许聚合和在颗粒上形成涂层,优选在聚合过程期间连续混合。以较长持续时间进行聚合反应允许颗粒表面的更完全覆盖。然后用惰性气体物流充注容器,其允许除去挥发性副产物,例如醇,并且随后允许冷却至室温。形成的聚合物涂层含有三种硅烷中的每一种的部分:(1)二氧化硅部分,(2)选自单有机氧基硅烷部分、双有机氧基硅烷部分和三有机氧基硅烷部分的有机氧基硅烷部分,和(3)聚(二烷基)硅氧烷部分。

优选地,聚合的温度为80℃至120℃,更优选90℃至110℃,包括92、94、96、98、100、102、104、106和108℃。聚合的时间优选为0.5至10小时,更优选为1至6小时,包括2、3、4和5小时。

在聚合过程之后,将经涂覆的粉末加热至120℃,以蒸发任何挥发性化合物。这种干燥减轻了非常少量的重量。为了测定涂层中的硅的SiO2当量的量,将经涂覆的粉末加热至600℃至800℃的温度。该过程可在热重装置或其他装置中进行。在空气中燃烧至600℃或800℃会将经涂覆的粉末中的所有含硅部分转化为SiO2。点燃的粉末的组成可通过多种分析方法来确认。

多种技术可用于分析本发明的经涂覆的粉末。可将无机氧化物颗粒用各种酸溶解,测定聚合物和无机氧化物的相对量,然后可使用FTIR(傅立叶变换红外光谱法)检查剩余的聚合物涂层,以确定不同部分的存在和每个部分的相对量。还可使用其他技术,例如质谱法、TGA(热重分析)或ICP(电感耦合等离子体光谱法)来建立相对单体单元的比。可通过使用已知组成的标准物来建立基线。

还可通过固态NMR分析经涂覆的粉末,检查13C和29Si NMR信号以确定不同部分的存在和每个部分的相对量。此外,可将无机氧化物颗粒用各种酸溶解,并且可通过NMR分析剩余的聚合物涂层,检查13C和29Si NMR信号以确定不同部分的存在和每个部分的相对量。可通过使用已知组成的标准物来建立基线。

可使用光稳定性测试、化学反应性测试和疏水性测试来检查经涂覆的粉末的性质。如果经涂覆的粉末的光稳定性为ΔE≤15,优选ΔE=1至14,包括ΔE=2、3、4、5、6、7、8、9、10、11、12和13,则在TiO2光稳定性测试下经涂覆的粉末是超光稳定的。如果经涂覆的粉末的光稳定性为ΔE≤4.5,优选ΔE=1至4,包括ΔE=4.0、3.5、3.0、2.5、2.0、1.5和1.0,则在DPPH光稳定性测试下经涂覆的粉末是超光稳定的。如果经涂覆的粉末的光稳定性为ΔE≤1.15,优选ΔE=0.5至1.0,包括1.05、0.95、0.85、0.75、0.65和0.55,则在效果颜料光稳定性测试下经涂覆的粉末是超光稳定的。优选地,经涂覆的粉末的化学反应性为ΔE=0至20,更优选ΔE=0至17,最优选为ΔE=0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16。经涂覆的粉末优选为疏水的或略微疏水的,最优选是疏水的。

经涂覆的粉末可用于与非极性液体形成分散体,优选化妆品油,例如癸酸/辛酸甘油三酯、苯甲酸直链烷基酯、苯甲酸乙基己酯、天然产物油和硅油。优选地,分散体含有至少40重量%的经涂覆的粉末(固体),更优选至少50重量%的经涂覆的粉末(固体),包括至少55重量%的经涂覆的粉末(固体),至少60重量%的经涂覆的粉末(固体),以及至少65重量%的经涂覆的粉末(固体),例如50-65重量%的经涂覆的粉末(固体)和55-60重量%的经涂覆的粉末(固体)。这样的分散体可通过多种常规混合方法来制备,包括用转子-定子机器混合、行星式混合、高压均化器、超声混合和介质研磨。分散体中可包括辅助乳化剂或分散剂。实例包括固体物为5-15重量%的tricereareth-4磷酸酯(Hostaphat KW 340D;Clariant)。

出人意料地,经涂覆的粉末的高固体分散体具有相对较低的粘度。优选地,粘度为至多60,000cP,更优选至多30,000cP,最优选至多6,000cP。实例包括粘度为1,000至50,000cP和5,000至30,000cP。

本发明的一个优选的方面包括向含有经涂覆的粉末的分散体添加抗氧化剂。当暴露于UV辐射时,抗氧化剂被氧化,导致抗氧化能力下降。另外,氧化锌和其他金属氧化物是光反应性的,并且在UV辐射暴露下会产生自由基。与单独的抗氧化剂相比,金属氧化物,与抗氧化剂相组合,具有更大的AP损失。然而,通过将经涂覆的粉末与抗氧化剂组合,分散体的相对AP值保持高于单独的抗氧化剂的相对AP值。因为经涂覆的粉末是超光稳定的,所以经涂覆的粉末和抗氧化剂的组合物一起表现出协同作用。抗氧化剂之所以能够有效,是因为UV辐射被颗粒阻挡或吸收,从而保持了AP值。

分散体可含有一种或多种抗氧化剂。抗氧化剂可包括维生素、抗氧化剂矿物质、抗氧化剂蛋白质、抗氧化剂酶和辅酶、植物营养素、抗氧化剂激素、类菌胞素氨基酸(MAA)、源自海藻的抗氧化剂以及其他类型的抗氧化剂。抗氧化剂可为水溶性的、脂溶性的或脂和水溶性的。合适的维生素包括维生素A(包括维甲酸和类胡萝卜素)、维生素C(抗坏血酸)、维生素E(生育酚)和维生素K。合适的类维生素包括视黄醇、视黄酸(维甲酸)、视黄醛(retinal)和棕榈酸视黄基酯。合适的矿物质包括铜、锰、碘化物和锌。合适的酶和辅酶包括褪黑激素、超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶。合适的植物营养素包括类胡萝卜素、类黄酮、酚酸和非类黄酮酚。合适的类胡萝卜素包括α-胡萝卜素、视黄醇、虾青素、β-胡萝卜素、角黄素、叶黄素、番茄红素和玉米黄质。合适的类黄酮包括受阻酚、芹菜素、木犀草素、橘皮黄酮、异鼠李素、山奈酚、杨梅酮、原花色素、槲皮素、圣草酚、橙皮素、柚皮素、儿茶素、没食子儿茶素、表儿茶素、表没食子儿茶素、茶红素、大豆苷元、染料木黄酮、黄豆黄素、白藜芦醇、紫檀芪、花青色素、花翠素、锦葵色素、天竺葵色素和矮牵牛色素。合适的酚酸包括酚、多酚、烷基化酚和受阻酚。合适的酚包括丁基化羟基茴香醚、丁基化羟基甲苯、***素、辣椒素、香芹酚、甲酚、***、丁子香酚、没食子酸、愈创木酚、百里酚、酪氨酸和芝麻酚。没食子酸包括没食子酸的盐和酯,也称为没食子酸酯(盐)。合适的非类黄酮酚包括姜黄素、类黄酮木脂素、氧杂蒽酮和丁子香酚。合适的类菌胞素氨基酸(MAA)包括单取代的MAA,例如菌胞素-甘氨酸和菌胞素-牛磺酸,二取代的MAA,例如palythenic酸和shinorine,以及衍生化的MAA,例如,palythine-苏氨酸硫酸盐和palythine-苏氨酸糖苷。合适的MAA的实例可见于Wada et al.(2015)。源自海藻的抗氧化剂包括抗坏血酸盐、谷胱甘肽、褐藻多酚、鹅掌菜酚(eckol)、eckstolonol、异戊二烯基甲苯醌、四异戊二烯基甲苯醌、sargothunbergol A、fucodiphlorethol、萜类、藻青蛋白、藻胆青素、岩藻黄质、褐藻多酚(phlorotannin)和叶黄素。其他潜在的有机抗氧化剂包括胆红素、柠檬酸、草酸、植酸、正乙酰半胱氨酸、尿酸、绿茶、羟基-酪醇、二氢-槲皮素、泛醌、谷胱甘肽、α-硫辛酸、叶酸、鞣花酸、咖啡酸和植物***。以上抗氧化剂还包括抗氧化剂的任何盐、酯或酸形式。

分散体可含有一种或多种植物提取物。“植物提取物”是从植物获得的物质。优选地,植物提取物赋予了颜色。植物提取物必须与非水性组合物相容;在空气中稳定;不沾污皮肤;使用量对皮肤无刺激;以及使用量无毒。植物提取物的纯度水平为至少95%。合适的植物提取物的实例包括姜黄素、番茄红素、β-胡萝卜素、叶黄素、玉米黄质、中玉米黄质和花青素。姜黄素的来源包括姜黄。番茄红素的来源包括甜菜、樱桃、枸杞、粉红葡萄柚、石榴、覆盆子、红甘蓝、红洋葱、草莓、西红柿和西瓜。β-胡萝卜素的来源包括杏、哈密瓜、胡萝卜、桔子、木瓜、桃、柿子、南瓜、西葫芦、红薯、笋瓜和山药。叶黄素、玉米黄质和中玉米黄质的来源包括鳄梨、西兰花、球芽甘蓝、羽衣甘蓝、青豆、绿叶蔬菜、橙椒、豌豆、菠菜、黄玉米和密生西葫芦。花青素的来源包括甜菜、黑加仑、蓝莓、樱桃、茄子、无花果、葡萄、李子、梅干、红甘蓝和红加仑。植物提取物可通过水解、氢化、酯化或皂化进行化学改性。如果通常赋予颜色的植物提取物已经过化学改性,则其可能不再赋予颜色。例如,姜黄素赋予黄色,但是已经氢化的四氢姜黄素是无色的。

分散体可含有一种或多种植物生物提取物。“植物生物提取物”是提供香味并且还可提供颜色的植物的天然提取物。植物生物提取物必须与非水性组合物相容;在空气中稳定;不沾污皮肤;使用量对皮肤无刺激;以及使用量无毒。植物生物提取物的合成形式不在术语“植物生物提取物”的范围之内。合适的植物生物提取物的实例包括山金车提取物(Arnica montana)、罗勒提取物(Ocimum basilicum)、乳香提取物(Boswellia sacra)、金盏花提取物(Calendula officinalis)、甘菊提取物(Anthemis nobilis)、肉桂油(Cinnamomum verum)、丁香油(Syzygium aromaticum)、黄连提取物(Coptisaspleniifolia)、紫锥菊提取物(Echinacea purpurea)、桉树油(Eucalyptusoccidentalis)、姜根提取物(Zingiber officinale)、葡萄籽提取物(Vitis vinefera)、绿茶提取物(Camilia sinensis)、古古耳树脂提取物(Commiphora wightii)、七叶树种子提取物(Aesculus hippocastanum)、日本虎杖提取物(Polygonum cuspidatum)、甘草提取物(Glycyrrhiza glabra)、苦楝叶提取物(Azadirachta indica)、橄榄果和橄榄叶提取物(Olea europaea)、番木瓜提取物(Carica papaya)、秘鲁香脂(Myroxylon balsamum)、菠萝提取物(Ananas comosus)、石榴提取物(Punica granatum L.)、迷迭香提取物(Rosmarinusofficinalis)、鼠尾草提取物(Salvia officinalis)、檀香木提取物(Santalum album)、姜黄提取物(Curcuma longa)和金缕梅提取物(Hamamelis japonica)。所有以上实例都可包括相同植物属的不同物种。例如,金缕梅提取物可获自日本金缕梅(Hamamelis japonica)、椭圆形金缕梅(Hamamelis ovalis)、金缕梅(Hamamelis mollis)或北美金缕梅(Hamamelisvirginiana)。

组合物任选地包括植物提取物。可选择植物提取物以提供颜色。不赋予颜色的植物提取物也可包括在组合物中。植物提取物必须与非水性组合物相容;在空气中稳定;不沾污皮肤;使用量对皮肤无刺激;以及使用量无毒。植物提取物的纯度水平为至少95%。合适的植物提取物的实例包括姜黄素、番茄红素、β-胡萝卜素、叶黄素、玉米黄质、中玉米黄质和花青素。姜黄素的来源包括姜黄。番茄红素的来源包括甜菜、樱桃、枸杞、粉红葡萄柚、石榴、覆盆子、红甘蓝、红洋葱、草莓、西红柿和西瓜。β-胡萝卜素的来源包括杏、哈密瓜、胡萝卜、桔子、木瓜、桃、柿子、南瓜、西葫芦、红薯、笋瓜和山药。叶黄素、玉米黄质和中玉米黄质的来源包括鳄梨、西兰花、球芽甘蓝、羽衣甘蓝、青豆、绿叶蔬菜、橙椒、豌豆、菠菜、黄玉米和密生西葫芦。花青素的来源包括甜菜、黑加仑、蓝莓、樱桃、茄子、无花果、葡萄、李子、梅干、红甘蓝和红加仑。植物提取物可通过水解、氢化、酯化或皂化进行化学改性。如果通常赋予颜色的植物提取物(例如姜黄素)已经过化学改性,则其可能不再赋予颜色,例如四氢姜黄素是无色。组合物可含有0.01%至5.0%的植物提取物,优选0.01%至1.0%的植物提取物,包括0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.10%、0.11%、0.12%、0.13%、0.14%、0.15%、0.16%、0.17%、0.18%、0.19%和0.20%的植物提取物。

组合物任选地包括植物生物提取物。植物生物提取物提供香味并且还可提供颜色。植物生物提取物必须与非水性组合物(例如亲脂性的或疏水性的)相容;在空气中稳定;不沾污皮肤;使用量对皮肤无刺激;以及使用量无毒。合适的植物生物提取物的实例包括山金车提取物(Arnica montana)、罗勒提取物(Ocimum basilicum)、乳香提取物(Boswelliasacra)、金盏花提取物(Calendula officinalis)、甘菊提取物(Anthemis nobilis)、肉桂油(Cinnamomum verum)、丁香油(Syzygium aromaticum)、黄连提取物(Coptisaspleniifolia)、紫锥菊提取物(Echinacea purpurea)、桉树油(Eucalyptusoccidentalis)、姜根提取物(Zingiber officinale)、葡萄籽提取物(Vitis vinefera)、绿茶提取物(Camilia sinensis)、古古耳树脂提取物(Commiphora wightii)、七叶树种子提取物(Aesculus hippocastanum)、日本虎杖提取物(Polygonum cuspidatum)、甘草提取物(Glycyrrhiza glabra)、苦楝叶提取物(Azadirachta indica)、橄榄果和橄榄叶提取物(Olea europaea)、番木瓜提取物(Carica papaya)、秘鲁香脂(Myroxylon balsamum)、菠萝提取物(Ananas comosus)、石榴提取物(Punica granatum L.)、迷迭香提取物(Rosmarinusofficinalis)、鼠尾草提取物(Salvia officinalis)、檀香木提取物(Santalum album)、姜黄提取物(Curcuma longa)和金缕梅提取物(Hamamelis japonica)。分散体可任选地包括来自藻类物种的提取物。这些物种包括Hijikia fusiformis、钝顶螺旋藻(Spirulinaplatensis)、束丝藻(Aphanizomenon)、极大螺旋藻(Spirulina maxima)、Sargassumkjellamanianum、S.siliquastrum、松节藻(Rhodomela confervoides)、鸭毛藻(Symphjocladia latiuscula)、卡帕藻(Kappaphycus alvarezzi)、布朗葡萄藻(Botryococcus braunii)、杜氏盐藻(Dunaliella salina)、Cystoseira crinite、黑藻(Ecklonia stolonifera)、鼠尾藻(Sargassum thunbergii)、S.thunbergii和褐藻苷苔(Ecklonia cava)。组合物可含有0.10%至10.0%的植物生物提取物,优选2.0%至6.0%的植物生物提取物,包括2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%、3.1%、3.2%、3.3%、3.4%、3.5%、3.6%、3.7%、3.8%、3.9%和4.0%的植物生物提取物。

组合物任选地包括油溶性抗氧化剂。当存在抗氧化剂时,抗氧化剂与植物提取物不同。合适的抗氧化剂的实例包括胡萝卜素、儿茶素、番茄红素、白藜芦醇、维生素E或维生素A。“维生素E”可指构成维生素E化合物家族的任何生育酚或生育三烯酚化合物,例如α-生育酚和γ-生育三烯酚。组合物可含有0.01%至5.0%的抗氧化剂,优选0.1%至3.0%的抗氧化剂,包括0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%和2.0%的抗氧化剂。

分散体可含有一种或多种原生生物提取物。“原生生物提取物”是从原生生物获得的物质。原生生物包括不是动物、植物或真菌的真核生物。优选地,原生生物提取物是虾青素含量高的物质。合适的原生生物提取物的实例包括浮游生物提取物和藻类提取物,特别是红藻提取物。

分散体可任选地包括原生生物提取物。优选地,原生生物提取物是虾青素含量高的物质。合适的原生生物提取物的实例包括浮游生物提取物和藻类提取物,特别是红藻提取物。分散体可含有0.01%至5.0%的原生生物提取物,优选0.1%至3.0%的原生生物提取物,包括0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%和2.0%的原生生物提取物。化妆品和皮肤病学制剂可包括化妆品成分、助剂和/或添加剂,例如,助乳化剂、脂肪和蜡、稳定剂、增稠剂、生物活性成分、成膜剂、香料、染料、珠光剂、防腐剂、颜料、电解质和pH调节剂。合适的助乳化剂优选为已知的W/O以及O/W乳化剂,例如聚甘油酯、脱水山梨糖醇酯或部分酯化的甘油酯。脂肪的典型实例是甘油酯;蜡,例如蜂蜡、石蜡或微晶蜡,任选地与亲水蜡组合。稳定剂包括脂肪酸的金属盐,例如硬脂酸镁、硬脂酸铝和/或硬脂酸锌。增稠剂的实例包括交联的聚丙烯酸及其衍生物,多糖,例如黄原胶,瓜耳胶,琼脂,藻酸盐和侵填体(tyloses),羧甲基纤维素和羟乙基纤维素,以及脂肪醇,单甘油酯和脂肪酸,聚丙烯酸酯,聚乙烯醇和聚乙烯吡咯烷酮。生物活性成分包括植物提取物、蛋白质水解物和维生素复合物。常规成膜剂包括例如水胶体,例如壳聚糖,微晶壳聚糖或季壳聚糖(壳聚糖季铵盐),聚乙烯吡咯烷酮,乙烯基吡咯烷酮/乙酸乙烯酯共聚物,丙烯酸系列的聚合物和季纤维素(纤维素季铵盐)衍生物。防腐剂的实例包括对羟基苯甲酸酯、重氮烷基脲、碘丙炔基丁基氨基甲酸酯和山梨酸。珠光剂的实例包括二醇二硬脂酸酯,例如乙二醇二硬脂酸酯,脂肪酸和脂肪酸单二醇酯。可使用的染料是适合并批准用于化妆品目的的物质。还可包括抗氧化剂,例如氨基酸、视黄醇、类黄酮、多酚、维生素C和生育酚。

化妆品和皮肤病学制剂可为溶液、分散体或乳液的形式;例如,防晒制剂可呈液体、糊料或固体形式,例如作为油包水乳膏、水包油乳膏和洗剂、气溶胶泡沫乳膏、凝胶、油、记号笔、粉末、喷雾剂或酒精-水性洗剂。这些组合物的溶剂包括:水;油,例如癸酸或辛酸的甘油三酯,以及蓖麻油;脂肪,蜡和其他天然和合成脂肪物质,脂肪酸与低碳数的醇的酯,例如与异丙醇、丙二醇或甘油的酯,或脂肪醇与低碳数的烷酸或脂肪酸的酯;低碳数的多元醇、醇或二醇,及其醚,优选乙醇、异丙醇、丙二醇、甘油、乙二醇、乙二醇单乙基或单丁基醚、丙二醇单甲基、单乙基或单丁基醚、二乙二醇单甲基或单乙基醚。其他实例包括肉豆蔻酸异丙酯、棕榈酸异丙酯、硬脂酸异丙酯、油酸异丙酯、硬脂酸正丁酯、己二酸二异丙酯、月桂酸正己酯、油酸正癸酯、硬脂酸甘油酯、硬脂酸异辛酯、硬脂酸异壬酯、异壬酸异壬酯、棕榈酸2-乙基己酯、月桂酸2-乙基己酯、硬脂酸2-己基癸酯、棕榈酸2-辛基十二烷基酯、油酸油基酯、芥酸油基酯、油酸芥酯和芥酸芥酯。

化妆品和皮肤病学制剂可为固体棒的形式,并且可包括天然或合成蜡,脂肪醇或脂肪酸酯,液体油例如石蜡油,蓖麻油,肉豆蔻酸异丙酯,半固体成分例如凡士林,羊毛脂,固体成分,例如蜂蜡,纯地蜡和微晶蜡和地蜡,以及高熔点蜡,包括巴西棕榈蜡和小烛树蜡。

化妆品制剂可为凝胶的形式,并且优选包括水,有机增稠剂,例如***胶,黄原胶,藻酸钠,纤维素衍生物例如甲基纤维素,羟甲基纤维素,羟乙基纤维素,羟丙基纤维素,羟丙基甲基纤维素和无机增稠剂例如硅酸铝,例如膨润土,或聚乙二醇和聚乙二醇硬脂酸酯或二硬脂酸酯的混合物。

经涂覆的粉末和分散体还可包含在漆、密封剂和其他涂料中,它们也可含有粘合剂,例如聚丙烯酸酯、聚氨酯、聚醇酸、聚环氧化物、聚硅氧烷、聚丙烯腈和/或聚酯。还可存在有机溶剂,包括乙醇、乙酸丁酯、乙酸乙酯、丙酮、丁醇、烷烃、甲醇、丙醇和戊醇;醚/缩醛,例如四氢呋喃和1,4-二噁烷;酮,例如双丙酮醇和甲基乙基酮;以及多元醇衍生物,例如乙二醇、丙二醇和二乙二醇或其混合物。这些组合物可用于涂覆各种基底,包括木材、PVC(聚氯乙烯)、塑料、钢、铝、锌、铜、MDF(中密度纤维板)、玻璃和混凝土。根据所包括的经涂覆的粉末,组合物向基底提供可为透明的、耐UV的涂层和/或提供更大的耐刮擦性。

可将经涂覆的粉末和分散体与树脂共混,以提供有机聚合物复合材料。树脂的实例包括聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二酯、AS(丙烯腈苯乙烯)树脂、ABS(丙烯腈丁二烯苯乙烯)树脂、AES(丙烯腈乙烯苯乙烯)树脂、聚偏二氯乙烯、甲基丙烯酸类树脂、聚氯乙烯、聚酰胺、聚碳酸酯、聚烯丙基酯、聚酰亚胺、聚缩醛、聚醚酮、聚醚砜、聚苯醚和聚苯硫醚以及其混合物。这些组合物中还可存在着色剂、荧光剂和添加剂,例如抗氧化剂、抗老化剂、UV吸收剂、润滑剂、抗静电剂、表面活性剂、填料(经涂覆的粉末和分散体也可用作填料)、增塑剂、稳定剂、发泡剂、膨胀剂、导电粉、导电短纤维、除臭剂、软化剂、增稠剂、减粘剂、稀释剂、憎水剂、憎油剂、交联剂和固化剂。这些有机聚合物组合物可通过多种技术成型,包括注塑、吹塑、挤出模塑、压延模塑、流动模塑、压缩模塑、熔喷模塑和纺粘法,由此可制备赋形产品例如纤维、线、膜、片、带,和注塑产品以及成型体例如中空线、管和瓶子。或者,可使组合物经历通常应用于热塑性树脂的二次模塑方法,例如真空成形、气压成形和层压模塑。

实施例

TiO2、DPPH和效果颜料光稳定性测试是定制测试。不同的色度计光稳定性测试设计为向各种材料提供高水平的灵敏度。每种材料具有不同的吸收带和反应性,因此需要不同的测试来准确测量在UV辐射暴露下的颜色变化。例如,通常不使用DPPH测试TiO2,因为TiO2与DPPH的反应性非常强。通过将样品中的颜色变化与标准物进行比较,可快速且容易地进行三种色度计测试。可通过使用其他测试方法(例如电子自旋共振(ESR)光谱法)来验证测试结果。

实施例1:

可使用上述的TiO2光稳定性测试来测量经涂覆的粉末的改进的光稳定性。在该测试中,基于分光光度测试的经验,通过条件为ΔE≤15,该分光光度测试包括所选择的抗氧化剂和基于ESR的方法。以下表1中的数据基于恒定的40m2/g(35nm)金红石相TiO2颗粒。由于涂层表面覆盖率是基于表面积的,所以涂层组分的质量分数应与基础颗粒的比表面积是成比例的(scaled)。对响应进行建模表明,对于以下情况,当A+B超过2.5%时通过/失败条件会变换。由于在这种情况下,共同的基础颗粒为40m2/g,对于所有颗粒类型,通过/失败边界表示为0.0625%/m2/g。如以下表1所示,所有符合标准的组合物的ΔE≤15。

表1:光稳定性测试结果

Figure BDA0002289486420000211

由于涂层仅由残留物的交联聚合物组成,所以涂料组分以总粉末(无机基底加涂料)每个部分相对于反应物量的重量%表示。并非所有的成分材料都会与颗粒表面反应,因此更准确的是测量在点燃(ignition)之后涂层中的每个部分中存在的SiO2的重量百分比。

实施例2:

使用以下的自由基电势(RP)方法分析含有物理UV过滤器(150nm氧化锌)的W/O制剂的关于可UV诱导的自由基的量。

将半稳定的自旋探针PCA(2,2,5,5-四甲基吡咯烷N-氧基)添加至测试产品,将样品***毛细管石英管中,并且在限定的UV辐射剂量之前和之后通过ESR光谱法监测自旋标记物的浓度。PCA自旋探针是光稳定的,并且耐受抗氧化剂,但是它会迅速与样品内部的UV产生的自由基(主要是脂质过氧化物和脂质自由基)反应。可从校准曲线中定量检测UV产生的自由基的量。

材料与方法

将自旋阱(PCA)的水/EtOH溶液添加至W/O乳液,以获得0.01mM PCA的最终浓度。在开始ESR测量和UV辐射之前,将样品***到ESR毛细管石英管(40μL)中。

用UV太阳能模拟器300W Oriel(Newport)进行样品的UV辐射。作为在光谱范围内的积分值的辐射度为E(UVB=280-320)=23.5W/m2和E(UVA=320-400nm)=180W/m2。为了测试不同UV剂量的效果,改变辐照时间。在每次测量之前都控制发光强度。用市售的高灵敏度X波段台式电子自旋共振谱仪MiniScope MS300,(Magnettech GmbH,Berlin,Germany)进行测量。

结果与讨论

测量了化妆品制剂内部的UV诱导的自由基的量。已知样品内的自旋阱PCA的浓度(0.01mM),可计算还原的PCA的量。由于还原1个PCA分子需要一个电子,所以可使用校准曲线来计算样品内部的自由基浓度。与每种产品相对应的诱导的自由基的百分比示于表2。

表2:自由基的相对量和绝对量

Figure BDA0002289486420000231

测试了用于ZnO涂层的两种不同的涂覆技术。对于未涂覆的材料,在具有由辛基三乙氧基硅烷形成的涂层的样品中未见到保护作用。相反,在含有具有多功能涂层的ZnO的样品中,自由基形成减少至小于3%。图1示出了随着UV辐射时间的变化,不同产品的诱导的自由基的百分比的变化。用于形成多功能涂层组分的材料和单体示于以下表3。

表3:多功能涂层的成分

组分 重量%
丙基硅烷部分 5.5%
硅酸盐部分(来自四官能硅烷) 0.8%
聚二甲基硅氧烷部分 0.9%
150nm ZnO 92.8%

实施例3:

在所提出的测试设计中,已将不同的对光不稳定的抗氧化剂添加至含有具有不同涂覆技术的ZnO的制剂。在UV辐射制剂之前和之后,使用AP方法测定这些制剂的抗氧化活性。

已根据以下标准选择抗氧化剂:(1)所使用的抗氧化剂适合用于化妆品制剂,以及(2)5种原材料代表具有不同分子机理、亲水性和亲脂性特征的不同类别的抗氧化剂。基于原材料的抗氧化能力来选择每种抗氧化剂的最终浓度。基于EU指南,所有浓度均保持在建议使用的范围内。

当暴露于UV辐射时,抗氧化剂会被氧化,导致抗氧化能力(AP)降低。以下表4显示在暴露于UV辐射时AP降低。在UV辐射暴露(其相当于2.4MED(最小红热剂量))10分钟之后收集“UV之后”列的信息。虽然抗氧化剂会减少自由基的数量,但暴露于UV辐射会大大降低抗氧化剂的AP。

表4:UV辐射暴露的AP的损失。

Figure BDA0002289486420000241

材料和方法

抗氧化剂能力和反应性的测量通过使用ESR光谱法进行。由于这种光谱技术能够量化自由基,并且由于适用于不透明、粘稠和有色样品,所以其特别适合用于分析化妆品中的抗氧化剂。使用X波段ESR光谱仪Miniscope MS 300(Magnettech,Germany)和以下技术参数进行测量:60G扫描宽度,100增益,1G调制幅度,7mW衰减,3365G中心场,0.14sec时间常数。抗氧化能力(AP)是能够量化抗氧化剂的反应能力和速度的参数。测试自由基DPPH(2,2-二苯基-1-苦基-肼基,Sigma-Aldrich,Munich,Germany)用作检测剂分子。制备至少3种浓度的测试样品并且添加至DPPH,以获得0.1mM的初始自由基浓度。在反应期间在不同的时间间隔记录每种浓度的测试样品的信号强度衰减,直到达到饱和并且所有抗氧化剂活性分子都已经与测试自由基反应为止。

由这些强度,获得每个浓度组的一级动力学。动力学参数用于计算反应时间(tr),并且静态参数用于计算特征重量(wc)。

为了直接比较不同的抗氧化剂,将AP方法标准化为维生素C的活性(抗坏血酸,由Sigma-Aldrich,Munich,Germany供应,纯度级别最高)。将1ppm维生素C的溶液的抗氧化活性定义为抗氧化单位(AU)。对于每种制剂,测定在暴露于UV辐射之前和之后的AP值。

结果

将300mg的每种制剂施加在玻璃板(显微镜载玻片)上,并且使用阳光模拟器(

Figure BDA0002289486420000252

SOL 2阳光模拟器)暴露于UV辐射10分钟(22.7J/cm2)。从载玻片上收集产物并且测定AP。对于每个样品,控制在UV暴露之前和之后的样品重量。对于所有样品,由于水蒸发导致的重量损失均低于5%。

含有ZnO的制剂,独立于涂层,在相对较低的UV辐射下显示出保护作用。因此,使用空白对照将含有10%的ZnO的产品稀释4倍。因此,以下实验是用含有2.5%的ZnO的制剂进行的。由于UV散射作用,含有2.5%ZnO的制剂对于大多数的所使用的抗氧化剂都显示出光保护作用。

然而,两种ZnO制剂之间存在显著差异:与具有多功能涂层的ZnO相比,抗氧化剂在含有具有由辛基三乙氧基硅烷形成的涂层的ZnO的制剂中较不稳定。

对于两种含ZnO的制剂,评估了可UV诱导的自由基的产生(参见以上实施例2)。具有多功能涂层的颗粒没有显示出自由基产生,而在含有具有由辛基三乙氧基硅烷形成的涂层的ZnO的制剂中,观察到高的光催化活性。这种光催化活性将导致产生氢过氧化物,主要是羟基自由基,其迅速与抗氧化剂反应,导致氧化并因此导致其AP降低。图2显示,多功能涂层比由辛基三乙氧基硅烷形成的涂层在UV辐射之后的相对AP值更大。显示多功能涂层比由辛基三乙氧基硅烷形成的涂层在UV辐射之后的相对AP值更大的数据可见于表5。

表5:在UV辐射之前和之后的抗氧化能力。

实施例4:

该实施例说明了经涂覆的纳米结晶TiO2粉末。经涂覆的粉末是来自表1的经涂覆的粉末(i)。按重量百分比计,经涂覆的粉末含有92.7%的TiO2、4.7%的来自丙基硅烷部分的SiO2,0.149%的来自硅酸盐部分的SiO2和2.5%的来自聚二甲基硅氧烷的的SiO2。根据光稳定性测试,该样品的ΔE为14.4。使用诸如X射线荧光(XRF)、电感耦合等离子体光谱法(ICP)等的分析,可测定被点燃的粉末的每种组分的重量百分比。使用反应物的制剂重量与SiO2的制剂重量的比,可计算点燃期间的重量损失量。

实施例5:(预言)

该实施例说明了经涂覆的纳米结晶ZnO粉末。纳米结晶ZnO(比表面积=17m2/g,相应的平均粒度=63nm)用丙基硅烷部分、硅酸盐部分和聚二甲基硅氧烷部分涂覆。ZnO颗粒以与实施例4中相同的相对比例用多种部分涂覆。将混合物均质化30秒,然后转移至玻璃容器,随后密封。然后将密封容器转移至烘箱,在其中加热至100-110℃的温度并且保持1.5小时。然后,通过解封容器并将容器放回至同一烘箱(在其中将其在100-110℃的温度下保持1.5小时)来干燥所得的经涂覆的粉末。所得的经涂覆的粉末是高度疏水的,并且是超光稳定的。该实施例的经涂覆的粉末和相应的分散体适合用于化妆品防晒制剂。

实施例6:(预言)

该实施例说明了经涂覆的粉末的高固体分散体,其适合用于添加至化妆品制剂。将460g的苯甲酸乙基己酯(

Figure BDA0002289486420000272

EB;Innospec)和40g的乳化剂添加至带夹套的钢容器中,该容器保持在30℃的恒定温度下。乳化剂tricereareth-4phosphate(Hostaphat KW340D;Clariant)是蜡状固体,阴离子型O/W乳化剂,其被设计用于需要一定水平粘度的制剂,例如乳膏制剂。在温和的混合条件下,使用考尔斯(Cowels)锯齿高剪切叶轮将容器中的内容物预混合5分钟,直到混合物是均匀的。在该实施例中使用的配置中,叶轮叶片直径为容器直径的1/3,并且放置在距离容器的底部1个叶片直径的位置。在温和的混合下将500g的实施例4的经涂覆的TiO2粉末添加至液体内容物,直到所有粉末均被润湿。然后将混合器速度增加至2500rpm持续15分钟。所得的分散体是可倾倒的。

实施例7:(预言)

该实施例说明了含有仅无机UV屏蔽剂的油包水乳液化妆品防晒制剂。将以下油相成分添加至加热的容器,并且在80℃下以低强度混合直到澄清。

表6:乳液成分

Figure BDA0002289486420000271

Figure BDA0002289486420000281

然后将油相混合物冷却至60℃,并且与实施例4的经涂覆的TiO2粉末(12.0重量份)混合,然后通过高剪切混合器直到混合物均匀。然后将该混合物冷却至45℃。

将以下水相成分在单独的容器中合并。

表7:水相成分

成分 重量份
去离子水 56.5
防腐剂(Germaben II;ISP) 1.0
氯化钠 0.5

将均匀的油相混合物和水相混合物混合,直到形成均匀的乳液。注意,可用任选的香料(0.2重量份)代替等量的去离子水。

实施例8:(预言)

该实施例说明了包含实施例5的经涂覆的粉末和抗氧化剂例如羟基酪醇的组合物。将0.05%的羟基酪醇与2.5%的ZnO组合。该组合物保持较高的AP水平,因为经涂覆的粉末阻挡了UV辐射使抗氧化剂氧化,而抗氧化剂提高了组合物的光稳定性。

实施例9:(预言)

该实施例说明了包含实施例4的经涂覆的粉末和生育酚的组合物。该组合物保持较高的AP水平,因为经涂覆的粉末阻挡了UV辐射使抗氧化剂氧化,而抗氧化剂提高了组合物的光稳定性。

实施例10:(预言)

该实施例说明了本发明的可UV固化的涂料组合物的实施例。将以下成分混合直至均匀。

表8:组合物的成分

Figure BDA0002289486420000291

可使用绕线棒或喷枪将该实施例的组合物作为湿膜施加至基底,随后使用UV辐射固化以产生UV保护硬涂层。

实施例11:

该实施例说明了包含效果颜料的组合物。效果颜料通常是涂覆有具有较高折射率的第二材料的薄层的板或板状颜料颗粒。底层板的组成通常是云母、合成云母、二氧化硅或氧化铝。涂层通常是二氧化钛(通常为锐钛矿形式)、氧化铁和氧氯化铋。

表9:效果颜料

Figure BDA0002289486420000292

在0.125重量%DPPH在丁氧基乙醇中的溶液中以0.125重量%效果颜料的浓度进行测试。将样品以0.35W/m2的UVA辐射辐照20分钟。每个样品准备四份。D-50以微米为计量。在表9中,当t-测试为1.53或更大时,ΔE是显著的。

表10:效果颜料尺寸

Figure BDA0002289486420000301

Figure BDA0002289486420000311

US 5,993,967

US 6,022,404

US 6,045,650

US 6,086,668

US 6,214,106

US 6,500,415

US 7,182,938

US 7,438,836

WO 2009/131910

WO 95/23192

Jung K,Richter J,Kabrodt K,Lucke IM,Schellenberg I,Herrling T.Theantioxidative power AP--A new quantitative time dependent(2D)parameter forthe determination of the antioxidant capacity and reactivity of differentplants.Spectrochim Acta A Mol Biomol Spectrosc.63(2006):846-50.

Jung K,Sacher M,Blume G,Janβen F,Herrling T.How Active areBiocosmetic Ingredients?

Figure BDA0002289486420000321

-Journal 133 1/2–2007.

Andersch

Figure BDA0002289486420000322

Y(1),Hagvall L,Siwmark C,Niklasson B,Karlberg AT,

Figure BDA0002289486420000323

Christensson J.Air-oxidized linalool elicits eczema in allergicpatients-a repeated open application test study.Contact Dermatitis.2014Mar;70(3):129-38.

Jung K,Heinrich U,Tronnier H,Schnyder M,Herzog B,Herrling Th.Highlevels of free radicals in suncare products induce Acne Aestivalis insensitive subjects.(2016):2-8.

Wlaschek M et al.Solar UV irradiation and dermal photoaging.JPhotochem Photobiol B.2001 Oct;63(1-3):41-51.

Wada et al.,Mycosporine-Like Amino Acids and Their Derivatives asNatural Antioxidants.Antioxidants 2015,4,603-646.

Varahalaroa Vadlapudi,Antioxidant activities of marine algae:Areview.Medicinal Plants as Antioxidant Agents:Understanding Their Mechanismof Action and Therapeutic Efficacy,2012:189-203 ISBN:978-81-308-0509-2.

29页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于石墨烯生产的微波系统和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!