气体生产系统

文档序号:1602555 发布日期:2020-01-07 浏览:25次 >En<

阅读说明:本技术 气体生产系统 (Gas production system ) 是由 广濑健二 富田伸二 于 2018-05-18 设计创作,主要内容包括:一种气体生产系统,该气体生产系统能够连续供应通过对气源进行精馏而获得的作为产物气体的液化气体,其具有较高热效率、不使用如泵等具有污染风险的机器。一种气体生产装置(100),包括:单个压力装置(30),该单个压力装置具有单个加压容器(31)、压力管线以及第二热交换单元(32),从精馏单元中提取的液化气体被供应到该单个加压容器,该压力管线用于提取和蒸发该加压容器(31)中的一部分液化气体并且使该部分液化气体返回到该加压容器(31),该第二热交换单元布置在该压力管线中;以及液化气体存储单元(41),该液化气体存储单元存储从该加压容器(31)中导出的液化气体。(A gas production system capable of continuously supplying a liquefied gas obtained by rectifying a gas source as a product gas with high thermal efficiency without using a machine having a risk of contamination such as a pump. A gas production apparatus (100) comprising: a single pressure device (30) having a single pressurized vessel (31) to which the liquefied gas extracted from the rectification unit is supplied, a pressure line for extracting and evaporating a portion of the liquefied gas in the pressurized vessel (31) and returning the portion of the liquefied gas to the pressurized vessel (31), and a second heat exchange unit (32) arranged in the pressure line; and a liquefied gas storage means (41) that stores the liquefied gas derived from the pressurized container (31).)

气体生产系统

本发明涉及一种气体生产系统,该气体生产系统供应通过对气源进行精馏而获得的作为产物气体的液化气体。例如,列举了液氧、液氮、液氩等作为液化气体。

列举了US 5596885和WO 2014/173496作为从空气中生产液氮的普通空气分离装置。US 5,596,885中的空气分离装置将所生产的高纯度液氧在低压精馏塔的压力(例如,大约1.5barA)下储存在空气分离装置外部的高纯度液氧罐中。高纯度液氧通过使用高纯度液氧泵来增加压力,通过在空气分离装置的主热交换器中与空气源等进行热交换而蒸发,并且作为高压气体氧来供应。

进一步地,WO 2014/173496中的空气分离装置将所生产的高纯度液氧填充在压力装置中。压力装置包括两个或更多个高纯度液氧加压容器以及蒸发器,该蒸发器通过蒸发密封的加压容器中的一部分高纯度液氧的来对高纯度液氧进行加压。在压力装置中,一系列基本操作是包括以下相应步骤的分批式循环:用高纯度液氧填充加压容器,加压,供应高纯度液氧以及减压。

因此,不能用单个加压容器来连续供应高纯度液氧,而是通过使两个或更多个加压容器组合并切换这些加压容器来实现高度纯氧气的连续供应。

然而,在US 5,596,885中,泵用于增加高纯度液氧的压力。

由于泵的结构,有可能在氧中包含杂质,并且最重要的是污染对于增加高度纯氧压力的影响引起了极大的忧虑。进一步地,在WO 2014/173496中,通过使用液体压头将高纯度液氧从制氧塔供应到加压容器,使得需要将加压容器放置在空气分离装置冷箱中以及制氧塔的下部处,并且因此使加压容器受到容量限制的影响。

进一步地,通过放置两个或更多个加压容器,冷箱变得巨大,因为需要多个开关阀来切换两个或更多个加压容器而使设施成本变得很高,并且存在由于来自环境的热穿透而使热效率降低的问题。

不仅在高纯度液氧生产的情况下,而且在供应例如液氮和液氩等其他低温液化气体的情况下,也指出了由于使用增压泵而导致的类似问题。

鉴于前述情况,本发明的目的是提供一种气体生产系统,该气体生产系统能够连续供应通过对气源进行精馏而获得的作为产物气体的液化气体,其具有较高热效率、不使用比如泵等具有污染风险的机器。

本发明是一种气体生产系统,包括第一热交换单元和精馏单元,该第一热交换单元对从外部取入的气源进行冷却,该精馏单元具有用于通过对液化气源(液态)进行精馏来获得液化气体的一个或两个或更多个精馏塔,该液化气源是通过在该第一热交换单元中进行冷却来获得的,并且该精馏塔包括:

-单个压力装置,该单个压力装置具有单个加压容器、压力管线以及第二热交换单元(例如,蒸发器或压力调节阀),从该精馏单元中提取的液化气体被供应到该单个加压容器,该压力管线用于提取和蒸发该加压容器中的一部分液化气体并且使该部分液化气体返回到该加压容器,该第二热交换单元布置在该压力管线中;

-液化气体储存单元,该液化气体储存单元储存从该压力装置的加压容器中导出的液化气体;以及

-产物气体提取管线,用于通过使液化气体从该液化气体储存单元穿过该第一热交换单元并且与该气源进行热交换来升高温度以供应该液化气体作为产物气体。

在本发明中,该气体生产系统可以进一步包括:

-气源供应管线,该气源供应管线经由第一热交换单元向该精馏单元供应气源;

-该气源供应管线的气源流速测量单元,该气源流速测量单元安装在该第一热交换单元的上游侧;

-第一控制阀,该第一控制阀安装在该气源供应管线的上游并且基于由该气源流速测量单元所测量的流速来控制该气源的供应量;

-该产物气体提取管线的产物气体测量单元,该产物气体测量单元安装在该第一热交换单元的下游侧并且测量与产物气体相关的值;以及

-第二控制阀,该第二控制阀安装在该产物气体提取管线中并且基于由该产物气体测量单元所测量的结果来控制该产物气体的提取量。

例如,该产物气体测量单元可以是对产物气体的流速进行测量的流速测量单元、对产物气体的压力进行测量的压力测量单元以及对产物气体的预定气体浓度进行测量的浓度测量单元或者它们中的一个或多个的组合中的任一个的单个部件。

在本发明中,该气体生产系统可以进一步包括:

-精馏塔的再循环气源压缩机,该再循环气源压缩机对从精馏塔中的位于最上游侧的精馏塔的上塔部中提取的废气(再循环气源)进行压缩;

-膨胀涡轮,该膨胀涡轮包括油压制动器,该膨胀涡轮使从位于最上游侧的精馏塔的上塔部中提取的废气或从与该废气的提取位置不同的位置提取的废气膨胀;以及

-控制单元,该控制单元根据产物气体提取量的变化来控制被提供给该第一热交换器的冷量。

本发明的一个实施例进一步包括布置在最上游侧的精馏塔的上塔部中的第一冷凝器以及布置在该第一冷凝单元附近的较低位置处的第二冷凝器,

-其中,该再循环气源压缩机可以对从第一冷凝器的特定位置(例如,其上部空间)提取的废气(再循环气源)进行压缩,并且

-包括油压制动器的膨胀涡轮可以使从第二冷凝器的特定位置(例如,其上部空间)提取的废气膨胀。

本发明的一个实施例可以被构造成进一步包括单个冷凝器,该单个冷凝器布置在位于最上游侧的精馏塔的上塔部中,

-其中,该再循环气源压缩机对从该冷凝器的特定位置提取的废气进行压缩,并且

-包括油压制动器的膨胀涡轮使从冷凝器的特定位置提取的废气膨胀。

本发明的一个实施例可以被构造成进一步包括引入管线,该引入管线在精馏塔的上塔部中引入液氮或液氧。

根据该配置,储存在外部罐中的液氮或液氧可以被引入到精馏塔中,使得可以处理更大的负载变化。当精馏塔的下部中的富氧液化气体减少时,被送入布置在精馏塔的塔顶部中的冷凝器的富氧液化气体也减少。在与此类似的情况下,储存在外部罐中的液氮或液氧被引入到精馏塔的塔顶部中,由此可以保持冷凝功能。在本发明中,通过在第一热交换器中对从液化气体储存单元中提取的液化气体(例如,高纯度液氧)进行蒸发来回收冷度。结果,可以减少从精馏塔供应的作为冷源的液氮的量。

在本发明中,液化气体储存单元布置在冷箱外部。在冷箱中,可以布置至少第一热交换器、精馏塔、膨胀涡轮以及再循环气源压缩机。

在本发明中,再循环气源压缩机可以连接至包括油压制动器的膨胀涡轮,并且可以由膨胀涡轮驱动。

本发明的气体生产系统可以包括集成有膨胀涡轮的压缩机以及包括油压制动器的增压膨胀器。

在本发明中,该循环气源可以从精馏单元的塔顶(第一冷凝器的空气空间)送入再循环气源压缩机并且进行压缩,随后可以送入第一热交换器,并且然后可以返回到精馏塔的下部。

在本发明中,废气经由第一热交换器从精馏单元中的与第一冷凝器相比位于下部的第二冷凝器而送入膨胀涡轮并膨胀,并且随后被送入第一热交换器。其后可以将废气排放到大气中。

在本发明中,被引入第一热交换器中的气源可以通过压缩机被压缩到预定压力,或者可以是在被压缩之后通过去除装置从其中去除杂质(例如,水、二氧化碳等)的气源。

在本发明中,单个加压容器优选地安装在精馏塔下方。

在如本发明这样的气体生产系统中,通过液化气体储存单元的容量来调节产物气体的产量变化,并且例如,针对较大的产量变化,需要容量更大的液化气体储存单元。与此相反,在WO 2014/173496中,可以通过连续地对布置在冷箱中的两个加压容器进行分批式处理来响应生产变化,并且将加压容器安装在精馏塔下方而使得压力装置受到容量限制,或者冷箱变得庞大。

另一方面,在本发明中,液化气体储存单元不必安装在冷箱中,并且因此没有受到容量限制,气体生产系统中的冷箱的大小不受影响,并且冷箱不是很庞大。

此外,根据本发明,通过对气源进精馏而获得的液化气体能够作为产物气体而连续供应,其具有较高热效率而不使用如泵等具有污染风险的机器。

进一步地,在如本发明的气体生产系统中,需要调节冷度,并且重要的是供冷并且保持与热穿透到冷箱以及热交换器中的热损失有关的工艺热平衡。

根据本发明,有效地回收与液化气体(例如,高纯度液氧)的蒸发一起的冷度,可以降低气体生产系统(例如,空气分离系统)的功耗,并且可以执行适于产物气体(例如,高压、高纯度氧气)的产生量的变化的工艺控制。

进一步地,在本发明中,可以指定对与液化气体的蒸发量相关的空气源的限制。

在空气源的液化点低于液化气体的沸点的情况下(例如,在高纯度液氧的情况下),高纯度液氧以摩尔流速比大约2%进行蒸发是可能的。

为了蒸发该量或更多量的高纯度液氧,可以供应液化点高于液化气的沸点的处于高压下的空气源,并且为了获得高压,可以使用用于增加空气源压力的增压器。

在产物气体提取管线中,可以设置用于送入液化气体的自动开关阀。

加压容器可以设有测量其内部压力的压力计以及阀控制单元,该阀控制单元对布置在压力管线中的自动开关阀进行控制以将液化气体送入第二热交换器而使得压力计的压力值变成预定值。

储存液化气源的液化气源缓冲器可以包括在第一热交换单元的后续级处。

液体气源缓冲器可以安装在液化气源和循环气源被引入到其中的精馏塔的下部中。

根据以上配置,第一热交换器中液化气体(用于作为产物气体被提取的液化气体)的蒸发量可以与气源的消耗量的变化相关联地变化,并且关于这一点,热负荷变化对整个气体生产系统的影响可以通过在与气源(空气等)进行热交换的流体的线路上应用缓冲器(例如,液态空气缓冲器)来限制。

控制单元可以向第一控制阀给出指令并且控制气源的供应量。控制单元可以基于由气源流速测量单元所测量的流速而通过反馈控制来进行控制以减小供应量的变化。

控制单元可以基于流速值来控制气源的供应量,该流速值是通过测量压缩机中的再循环气源的流速获得的。

控制单元可以根据在产物气体流速测量单元中测量的产物气体的流速来计算在第一热交换器中回收的冷度,并且基于所计算的冷度来控制包括油压制动器的膨胀涡轮机。

根据该配置,根据产物气体(高度纯氧)的流速来计算可以回收的冷度,并且保持气体生产系统(空气分离功能单元)的热平衡所进一步需要的冷度由工艺平衡来确定。对冷源进行控制以获得所确定的冷度。在本发明中,冷源是包括油压制动器的膨胀涡轮。

控制单元可以根据冷量来控制膨胀涡轮的流速或者控制油压制动器上的负载。作为用于对包括作为冷源的油压制动器的膨胀涡轮进行控制的方法,例如,可以通过对用于制动的油流速进行控制来调节油压制动器。

油压制动器可以通过将热量排放到冷箱外部来执行供冷功能。进一步地,当包括发电机的膨胀涡轮用作冷源时,可以通过由发电机将热量回收作为电力来执行供冷功能。

对再循环气体的流速进行测量的流量计可以设在再循环气体管线中,该再循环气体管线是在精馏塔、再循环气源压缩机和第一热交换单元之间形成的。

该气体生产系统可以包括:

-分支管线,该分支管线在该产物气体提取管线的第一热交换单元的前一级处分支;

-闸阀(例如,一个或多个自动开关阀或分支阀),该闸阀安装在该分支管线中,并且切换将该液化气体送入该分支管线和/或该产物气体提取管线;

-提取控制单元,该提取控制单元控制该闸阀将该液化气体送入该分支管线和/或该产物气体提取管线;以及

-第三热交换单元(化油器或压力调节阀),该第三热交换单元布置在分支管线中。

分支管线的末端可以连接至产物气体提取管线。

提取控制单元可以基于由产物气体流速测量单元所测量的流速来控制该闸阀的打开和关闭以将液化气体送入分支管线。

当第一热交换单元停止时,提取控制单元可以控制闸阀的打开和关闭以将液化气体送入分支管线。

例如,气源是空气。

例如,气体生产系统是空气分离装置。

液化气体例如是液氧、高纯度液氧、液氮、高纯度液氮、液氩和高纯度液氩。

产物气体是例如氧气、氮气和氩气,并且可以是高压气体和/或高纯度气体。

气源是空气,

-精馏单元具有高压精馏塔和低压精馏塔,高压精馏塔对液态空气进行精馏,以及低压精馏塔从高压精馏塔中引出除去了高沸点组分(例如甲烷等)的粗氧以进一步对粗氧进行精馏;

-从低压精馏塔中提取的高度纯氧可以通过压力装置进行加压,并且可以被引入液化气体储存单元中。

高压精馏塔可以是氮气生产塔。可以从氮生产塔中提取氮气(N2)。

低压精馏塔可以是制氧塔。

相应元件可以通过管道连接,并且在管道或相应管线中可以设置自动开关阀、流速控制阀和压力调节阀中的任何一个或多个阀。

具体实施方式

图1是展示实施例1的气体生产系统的配置实例的图示;

图2是展示实施例2的气体生产系统的配置实例的图示;

图3是展示实施例3的气体生产系统的配置实例的图示;并且

图4是展示实施例4的气体生产系统的配置实例的图示。

下文将描述本发明的若干实施例。以下所述的实施例描述了本发明的实例。本发明不以任何方式限于以下实施例,并且还包括在不改变本发明要旨的范围内进行的多种改进的模式。以下所述的所有部件并不总是本发明的必要部件。

在本实施例中,如图1所展示的,气体生产系统100包括生产高纯度液氧的空气分离装置的相应元件。

气体生产系统100具有空气供应管线L1,用于经由第一热交换单元13将从外部取入的空气供应到高压精馏塔21。在第一热交换单元13中,空气变成被冷却的液化空气,并且被送入高压精馏塔21的下部。将除去了高沸点组分(例如甲烷等)的粗氧通过管线L2从高压精馏塔21送入低压精馏塔22的上部。

为了在低压精馏塔22中获得蒸汽流,液化空气通过管线L3以及从管线L3分出的分支管线L31而从高压精馏塔21中的液态空气源缓冲器211供应到安装在低压精馏塔22的下部中的作为热源的高纯度氧蒸发器224。液化空气其后通过管线L4并入管线L3,并且被引入第一蒸发器213中。

在低压精馏塔22中获得高纯度液氧,并且通过管线L5将其送入压力装置30的加压容器31。加压容器31中的高纯度液氧中的一部分通过压力管线L51被送入第二热交换单元32。在第二热交换器32中,高纯度液氧被蒸发,并且通过压力管线L51返回到加压容器31。注意,蒸发的高纯度液氧的一部分可以被构造成通过分支管线52返回到低压精馏塔22。

在本实施例中,在加压容器31中,可以设置压力计(未示出)和阀控制单元(未示出),该压力计对加压容器31的内部压力进行测量,该阀控制单元对布置在压力管线L51中的自动开关阀(未示出)进行控制以将高纯度液氧送入第二热交换器32而使得压力计的压力值变为预定值。

高纯度液氧通过管线L6从压力装置30的加压容器31被送入储存单元41并储存。高纯度液氧通过产物气体提取管线L7从储存单元41被送入第一热交换单元13,被蒸发成为高压高纯度氧气,并且作为产物气体送入。在产物气体提取管线L7中,在第一热交换单元13的下游侧设置对产物气体的流速进行测量的产物气体流速测量单元51以及基于由产物气体流速测量单元51所测量的流速来对产物气体的提取量进行控制的第二控制阀52。

进一步地,设置分支管线L71,该分支管线在产物气体提取管线L7中在上游侧从第一热交换单元13分出,并且其末端连接至产物气体提取管线L7。在分支管线L71中,设置了自动开关阀53。提取控制单元50控制自动开关阀53以将高纯度液氧送入分支管线L71和/或产物气体提取管线L7。在分支管线L71中设置第三热交换单元55。提取控制单元50可以基于由产物气体流速测量单元51所测量的流速来控制自动开关阀53的打开和关闭、开度等,以将高纯度液氧送入分支管线L71(例如,以便提取必要量的产物气体)。进一步地,使第一热交换单元13进入停止状态(在空气分离装置的功能停止的时候等),使第二控制阀52进入关闭状态,并且对自动开关阀53的打开和关闭、开度等进行控制以将高纯度液氧送入分支管线L71。被送入分支管线L71的高纯度液氧在第三热交换器55中被蒸发为高压高度纯氧气,并且作为产物气体来供应。

在本实施例中,储存单元41布置在冷箱外部,并且在冷箱中设置第一热交换单元13、高压精馏塔21、低压精馏塔22、膨胀涡轮151、再循环气源压缩机153以及压力装置30。

进一步地,在本实施例中,管线L3、L31和L4是液态空气管线,管线L2是粗氧管线,并且管线L5、L51、L52、L6、L7和L71是高纯度液氧管线。

根据产物气体提取量的变化的工艺控制方法

在气源供应管线L1中第一热交换单元13的上游侧设置气源流速测量单元11,并且在气源流速测量单元11的上游侧设置基于由气源流速测量单元11测量的流速而对空气源的供应量进行控制的第一控制阀12。进一步地,设置包括油压制动器152的膨胀涡轮151,该油压制动器使从高压精馏塔21的第二冷凝器214提取的废气膨胀。设置再循环空气压缩机153,该再循环空气压缩机对从高压精馏塔21的塔顶提取的再循环空气进行压缩。

从高压精馏塔21的第二冷凝器214提取的废气通过第一热交换器13被送入膨胀涡轮151,废气在膨胀涡轮151中膨胀以驱动涡轮并且其后穿过第一热交换器13而被排放到大气中。通过膨胀涡轮151的驱动,再循环空气压缩机153经由油压制动器152驱动。也就是说,经由油压制动器152从所连接的膨胀涡轮151供应压缩所需的动力。再循环空气从高压精馏塔21中的第一冷凝器213被送入再循环空气压缩机153以被压缩。接下来,再循环空气被送入第一热交换器13,并且随后返回到高压精馏塔21的下部。注意,液态空气从第一冷凝器213通过未示出的管线被送入第二冷凝器214。

控制单元60根据产物气体提取量的变化对包括油压制动器152的膨胀涡轮151进行控制,并且控制再循环空气的处理量。例如,控制单元60根据由产物气体流速测量单元51测量的产物气体的流速来计算通过第一热交换单元13回收的冷能(冷量),并且基于所计算的冷能(冷量)来控制冷源。在本实施例中,冷源是油压制动器152。

在本实施例中,与冷源相关的负载减少达到通过在第一热交换器13中蒸发(提取产物气体)高纯度液氧而回收的冷量(油压制动器152产生的冷度减少),由此被引入膨胀涡轮151中的废气(高压空气)的量减少。进一步地,从油压制动器152排放的冷度类似地减少,并且可以通过与膨胀涡轮151连接的再循环空气压缩机153进行回收的压缩动力增加,使得可以增加再循环空气的处理量,并且可以减少被再循环空气压缩机153消耗的能量。

进一步地,随着高纯度氧的消耗量的变化,通过高纯度液氧实现的装置(第一热交换单元13、高压精馏塔21等)的供冷量变化。例如,可以通过储存在空气分离装置(精馏塔等)中的液态空气量的变化来评估变化量。也就是说,当高纯度液氧的蒸发量增加时,液化空气量增加,而当蒸发量减少时,液化空气量减少,并且在装置(高压精馏塔)中设置液态空气源缓冲器211,使得液化空气量不会变得过多或不足。在本实施例中,在高压精馏塔21的下部内、在距引入空气源和再循环空气的位置的更低部分设置液态空气源缓冲器211。

控制单元60根据所计算的冷量来对油压制动器151上的负载进行控制。

在第一热交换单元13、压缩机15和高压精馏塔21中,形成再循环气体管线(R1,R2),并且使空气流动再循环。在再循环气体管线R2中,在第一热交换单元13的上游侧设置对再循环气体的流速进行测量的流量计155。流量计155的测量值被发送到控制单元60。控制单元60根据流量计155的测量值来对空气源的供应量进行控制。

进一步地,经由第一热交换单元13通过排放管线R3将高压精馏塔21引入膨胀涡轮机151中,并且经由第一热交换单元13通过排放管线R4将其排放到大气中。

将要描述根据高纯度氧的生产量变化(提取量变化)的工艺控制的实例。注意,对于高纯氮也可以采用类似的工艺控制,而不限于高纯度氧。

通过安装在产物气体提取管线L7中的产物气体流速测量单元51和第二控制阀52来控制高度纯氧的生产量变化。

控制单元60基于在产物气体流速测量单元51中所测量的产物气体的流速来计算被回收的冷能(冷量)、基于工艺平衡来确定保持气体生产系统(空气分离功能单元)的热平衡所进一步需要的冷能,并且控制冷源以获得所确定的冷能。进一步地,控制单元60还控制空气源的供应量。

例如,工艺控制如下执行。

确定通过第一热交换单元13中的液氧蒸发而给出的冷度,确定通过布置在膨胀涡轮151中并供冷的油压制动器152应该生成的冷量,并且确定例如对油压制动器152的负载进行调节的变量(例如油流速)。

在空气分离工艺中,再循环空气压缩机153由膨胀涡轮151驱动,并且循环空气压缩机153的处理量取决于油压制动器152上的负载。也就是说,当需要很多冷度时,循环空气的处理量在油压制动器152上的负载较高时减少,而循环空气的处理量在油压制动器上的负载较低时增加。

进一步地,为了保持高度纯氧的生产量,空气源和再循环空气的总量需要固定,并且空气源可以在再循环空气增加时减少。

因此,根据上述被确定的油压制动器151上的负载而唯一地确定再循环空气流速(通过流量计155测量),应当供应到第一热交换单元13、高压精馏塔21、膨胀涡轮151和循环空气压缩机153(空气分离功能单元)的空气总量之间的差被计算为空气源量。随后,基于来自控制单元60的指令,通过空气源流量计11和第一控制阀12来控制空气源量。

控制单元60和提取控制单元50可以通过包括处理器和储存器的计算机以及储存在储存器中的软件程序的协作来实现,或者可以通过专用电路、固件等来实现。进一步地,控制单元60可以包括输入/输出接口和输出单元。

图2中展示了实施例2的配置。气体生产系统200包括生产高纯度液氧的空气分离装置的相应元件。附图标记与实施例1和图1中的附图标记相同的元件具有相同的功能,并且因此可以省略其解释。

在实施例1中,在高压精馏塔21(最上游侧的精馏塔)的上塔部中包括第一冷凝器213和第二冷凝器214,而在实施例2中,高压精馏塔21中仅包括单个冷凝器213。从冷凝器213的特定位置提取的废气穿过废气管线R1,并且通过从废气管线R1分出的分支管线R11而从废气管线R1送入再循环气源压缩机153并被压缩。进一步地,废气通过从废气管线R1分出的分支管线R13被送入第一热交换器13并进行热交换,并且其后被送入包括油压制动器152的膨胀涡轮151,废气在此处膨胀。膨胀涡轮151和油压制动器152的功能以及控制单元60的功能类似于实施例1中的那些功能。

图3中展示了实施例3的配置。气体生产系统300包括生产高纯度液氧的空气分离装置的相应元件。附图标记与实施例1或实施例2和图1或图2中的附图标记相同的元件具有相同的功能,使得可以省略其解释。实施例1和实施例2各自包括具有油压制动器152的膨胀涡轮151以及再循环气源压缩机153,但是实施例3不包括它们中的任何一个,并且被配置为可替代地将液氮LN2储存在外部罐中。

在高压精馏塔21(最上游侧的精馏塔)的上塔部中包括引入液氮的引入管线L9。当高压精馏塔21中的液态空气源缓冲器211中的富氧液化气体减少时,被送入布置在高压精馏塔21的塔顶部中的冷凝器213的富氧液化气体也减少。因此,储存在外部罐中的液氮被引入高压精馏塔21中。

进一步地,从高压精馏塔21和低压精馏塔22的塔顶提取的废气穿过废气管线R1和R34并且被送入第一热交换器13。

注意,在高压精馏塔21的上塔部中,不仅可以进一步包括第一冷凝器213,而且还可以包括第二冷凝器214。

图4中展示了实施例4的配置。气体生产系统400包括生产高纯度液氧的空气分离装置的相应元件。附图标记与实施例1至实施例3和图1至图3中的附图标记相同的元件具有相同的功能,并且因此将省略解释。在实施例1和实施例2中包括具有油压制动器152的膨胀涡轮151以及循环气源压缩机153,而在实施例4中采用包括膨胀涡轮401的配置。

从低压精馏塔22提取的废气穿过废气管线R34,穿过第一热交换器13以进行热交换,并且被排放到大气中。进一步地,从高压精馏塔21的第一冷凝器213提取的废气通过第一热交换器13被送入膨胀涡轮401,废气在此处膨胀以驱动涡轮,并且其后穿过第一热交换器13以被排放到大气中。

注意,在高压精馏塔21的上塔部中,不仅可以进一步包括第一冷凝器213,而且还可以包括第二冷凝器214。

在本实施例中,控制单元根据在产物气体流量测量单元中所测量的产物气体的流速来计算通过第一热交换器13回收的冷量,并且基于所计算的冷量来控制膨胀涡轮401。根据产物气体(高度纯氧)的流速来计算可以回收的冷量,并且基于工艺平衡来确定保持气体生产系统(空气分离功能单元)的热平衡所进一步需要的冷量。

对冷源进行控制以获得所确定的冷量。冷源是膨胀涡轮401。

在上述实施例1至实施例4中,气体生产系统生产高纯度液氧,但是气体生产系统不限于此,并且可以生产高纯度液氮、高纯度液氩等。

在上述实施例1至实施例4中设置了分支管线L71和第三热交换器55,但是本发明不限于此,并且可以省略分支管线L71和第三热交换器55。

在上述实施例1至4中,产物气体流速测量单元51(对应于流速测量单元)被用作产物气体测量单元,但是本发明不限于此,并且可以使用对产物气体的压力进行测量的压力测量单元和/或对产物气体的预定气体浓度进行测量的浓度测量单元来代替产物气体流速测量单元51,或者除了产物气体流速测量单元51之外还可以使用对产物气体的压力进行测量的压力测量单元和/或对产物气体的预定气体浓度进行测量的浓度测量单元。在这种情况下,第二控制阀可以基于在上述产物气体测量单元中测量的结果来控制产物气体的提取量。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:热交换器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!