感应加热方法及装置

文档序号:1618823 发布日期:2020-01-10 浏览:40次 >En<

阅读说明:本技术 感应加热方法及装置 (Induction heating method and apparatus ) 是由 斯科特·莱贝尔特 保罗·韦尔哈根 安东尼·萨利士 于 2018-05-23 设计创作,主要内容包括:公开了用于感应加热的方法和装置。示例感应加热电缆组件包括:基本上平行延伸的一根或多根第一组电缆;基本平行延伸的一根或多根第二组电缆,第一组电缆与第二组电缆平行;绝缘层,其被配置为将第一组电缆和第二组电缆绝缘以防止电接触,绝缘层被配置为将第一组电缆分组,将第二组电缆分组并在第一组电缆和第二组电缆之间延伸,其中第一组电缆,第二组电缆和绝缘层是可适形的,以使感应加热电缆组件能够与通过感应加热电缆组件加热的工件相适形。(Methods and apparatus for induction heating are disclosed. An example induction heating cable assembly includes: one or more first set of cables extending substantially in parallel; one or more second set of cables extending substantially parallel, the first set of cables being parallel to the second set of cables; an insulating layer configured to insulate the first set of cables and the second set of cables from electrical contact, the insulating layer configured to group the first set of cables and group and extend the second set of cables between the first set of cables and the second set of cables, wherein the first set of cables, the second set of cables, and the insulating layer are conformable to enable the induction heating cable assembly to conform to a workpiece heated by the induction heating cable assembly.)

感应加热方法及装置

相关申请的交叉引用

本国际申请要求享有2017年5月26日提交的序列号为15/606,537,名为“感应加热方法及装置(Induction Heating Methods and Apparatus)”的美国专利申请的优先权。序列号为15/606,537的美国专利申请的所有内容将完全被援引于此以作参考。

发明背景

本公开总体涉及到焊接型系统,并且更具体地涉及到感应加热的方法及装置。

感应加热是一种在易感金属物体上的局部区域内产生热量的方法。感应加热涉及将AC电信号施加到加热回路或线圈,该加热回路或线圈布置在靠近待加热的金属物体上或周围的特定位置。回路中变化或交变的电流会在待加热金属内产生变化的磁通。磁通在金属中感应出电流,从而加热金属。感应加热可用于许多不同目的,包括固化粘合剂,金属硬化,钎焊,软焊和其他制造过程,在这些过程中,加热是必需的或期望的因素。

发明内容

提供了用于感应加热方法及装置的方法和系统,基本上由至少一个附图示出并结合至少一个附图进行了描述,如在权利要求中更完整的阐述。

附图说明

图1示出了根据本公开的方面的示例性感应加热系统。

图2是根据本公开的方面的被配置为具有多匝的电感器的示例性导体组的立体图,其用作感应加热毯。

图3示出了根据本公开的方面的在安装在待感应加热的工件周围之前的示例感应加热组件。

图4A和4B示出了在用于感应加热具有不同直径的管道的不同配置中图3的感应加热组件。

图5是安装在管道周围的图3的示例感应加热组件的立体图。

图6是安装在管道周围的图3的示例感应加热组件的平面图。

图7是图3的示例护套的剖视图。

图8A和8B示出了图3所示的匝连接器的立体图。

图9示出了图3的示例性匝连接器和示例性电流路径的横截面平面图,该电流路径以电串联连接的方式配置感应加热毯的多个物理上平行的导体以形成多个匝。

图10是围绕管道安装的另一示例感应加热组件的平面图,其中,匝连接器连接多个物理上分开的导体以形成感应线圈的多个匝。

图11A,11B,11C和11D是包括多组导体的示例感应加热毯的横截面,其可用于实现图2的多组导体。

图12是示例调节夹具的更详细的视图。

图13是图12的示例性调节夹具的视图,该调节夹具包括感应加热毯的第一部分。

图14是图12的示例性调节夹具的侧视图,其中调节夹具夹住感应加热毯以使感应加热毯中的导体与工件相适形。

图15A和图15B示出了被布置为同时感应加热多个工件的一个或多个感应加热毯的示例性构造。

图16A和图16B示出了布置成感应加热工件的感应加热毯的另一示例构造的视图。

图17示出了安装在管道的内表面上的用于感应加热管道的图3的感应加热组件。

图18是表示根据本公开的方面的使用感应加热毯和感应加热电力供应器来加热工件的示例性方法的流程图。

这些附图不一定按比例绘制。在适当的地方,相似或相同的附图标记用于指代相似或相同的部件。

具体实施方式

感应加热通常用于在焊接或铜焊之前加热工件。例如,在通过焊接连接管道之前,可以对管道接头进行预热。用于加热管道的常规装置包括具有固定直径的加热工具,其要求用户具有多个不同尺寸的加热工具以对不同直径的管道进行加热操作。用于加热管道的其它常规装置包括一定长度的加热电缆,这要求操作员进行培训才能有效使用。此外,加热电缆的使用可能需要将电缆以期望的构造缠绕在工件周围,这需要操作者时间并且减少了焊接产量。

公开的示例感应加热方法和装置包括便携式感应加热工具,该工具是柔性的并且可以容纳多个管道直径。加热工具消除了应用定制感应电缆缠绕的需要,并大大简化了感应加热工具的安装,因此现场感应加热的应用不需要第三方承包商或大规模的操作人员培训。

公开的示例感应加热方法和装置是灵活的,以使得能够在不同尺寸的工件(例如,不同直径的管道)上使用。因此,公开的示例减少或消除了对具有具体直径的工具的需求,从而减少了加热不同直径的管道所需的工具的数量和/或投资。

公开的示例感应加热方法和装置比传统的加热电缆灵活并且易于安装和使用。单个感应加热组件可用于加热一定尺寸范围内的工件,并且不需要操作员对感应加热要求有深入的了解才能有效地进行操作。因为仅需要围绕工件的缠绕一次即可实现多匝螺旋线圈的多个匝,所公开的示例感应加热方法和装置能够实现快速安装。通过围绕工件延伸,所公开的螺旋线圈设计相比常规的煎饼式加热毯提高了功率传递效率,而无需额外的操作员设置时间。由于减少了预热工件所需的时间,安装的简便性和速度提高了焊工的生产率。

公开的示例感应加热方法和装置甚至可以比单个常规的具有固定直径的加热夹具更便宜。使多个常规的具有固定直径的加热夹具可供多种工件尺寸使用的必要性提高了成本节省,这可以使用示例感应加热方法和装置来实现。

如本文所用,术语“感应加热毯”是指包括用于传导感应加热电流的导体的装置,该导体能够安装在工件上,但不必包括诸如夹具或连接器之类的附接或安装硬件。例如,一组导体和外部绝缘或保护覆盖层在本文中被称为毯。

如本文所用,术语“感应加热组件”包括感应加热毯和用于安装在工件上的任何夹具或导体。例如,感应加热组件可以包括:感应加热毯(例如,包括导体以及外部绝缘和/或保护覆盖层),将多个单独的导体串联连接以形成感应线圈的多个匝的匝连接器,以及将毯物理上固定在位的夹子。然而,感应加热组件可以包括附加的或替代的部件。

如本文所用,术语“适形”和“相适形”是指另一物体对物理形状的物理匹配。例如,适形的导体至少在某一挠曲或变形的范围内(例如,不大于某一阈值角度或不小于某一阈值曲率半径)能够挠曲或产生其他变形,以匹配诸如管道的物体的物理形状。

公开的示例感应加热电缆组件包括基本平行延伸的一根或多根第一组电缆和基本平行延伸的一根或多根第二组电缆,其中第一组电缆与第二组电缆平行。感应加热电缆组件还包括绝缘层,以使第一组电缆和第二组电缆绝缘以防止电接触,其中绝缘层对第一组电缆,第二组电缆进行分组,并在第一组电缆和第二组电缆之间延伸。第一组电缆,第二组电缆和绝缘层可适形以使感应加热电缆组件与要通过感应加热电缆组件加热的工件相适形。

在一些示例中,第一组电缆中的每根电缆包括辫编线电缆。在一些示例中,第二组电缆中的每根电缆包括辫编线电缆。在一些示例中,第一组电缆中的每个辫编线电缆均具有圆形横截面。在一些示例中,第一组电缆中的每个辫编线电缆具有矩形横截面。

在一些示例中,第一组电缆,第二组电缆和绝缘层包括挤出物。在一些示例中,第一组电缆中的每根电缆包括内部绝缘层。在一些示例组件中,当感应加热电缆组件的位置与工件一致时,第一组电缆,第二组电缆和绝缘层将第一组电缆和第二组电缆中的每根电缆的位置确定为与工件相隔基本相同的距离。

在一些示例感应加热电缆组件中,第一组电缆,第二组电缆和绝缘层基本上同时定位成与工件相适形。在一些示例中,感应加热电缆组件在绝缘层与第一和第二组电缆中的各根电缆相邻的位置处具有第一厚度,并且在绝缘层在第一和第二组电缆之间延伸的位置处具有第二厚度。在一些示例组件中,第一和第二组电缆中的每根电缆与其他电缆电绝缘。

在一些示例中,第一组电缆包括第一多个具有护套的电缆,并且第二组电缆包括第二多个具有护套的电缆。一些示例感应加热电缆组件还包括基本平行于第一组电缆和第二组电缆延伸的第三组电缆,其中绝缘层使第三组电缆绝缘以免与第一和第二组以及工件电接触。在一些示例中,绝缘层保护第一组电缆和第二组电缆免受热。

公开的示例感应加热电缆组件包括:具有第一近端和第一远端的第一组的一根或多根电缆,以及具有与第一近端相邻的第二近端和与第一远端相邻的第二远端的第二组的一根或多根电缆。感应加热电缆组件还包括绝缘层,以使第一组电缆和第二组电缆绝缘以防止电接触,其中绝缘层对第一组电缆,第二组电缆进行分组,并在第一组电缆和第二组电缆之间延伸。在所公开的示例中,第一组电缆,第二组电缆和绝缘层是可适形的,以使得感应加热电缆组件能够与经由感应加热电缆组件加热的工件相适形。

在一些示例感应加热电缆组件中,第一组电缆和第二组电缆相对于感应加热电缆组件的横截面在第一方向上纵向延伸,并且第一组电缆和第二组电缆相对于感应加热电缆组件的横截面在第二方向上相邻。在一些这样的示例中,第一组电缆和第二组电缆相对于感应加热电缆组件的横截面在第三方向上偏移。

在一些示例中,第一组电缆中的每根电缆包括辫编线电缆。在一些示例中,绝缘层体保护第一组电缆和第二组电缆免受热。在一些示例中,第一组电缆,第二组电缆和绝缘层基本上同时与工件适形地定位。

图1示出了示例感应加热系统100。感应加热系统100包括配置为控制感应加热电力供应器104的控制电路102。感应加热系统100被配置为从感应加热电力供应器104向感应加热线圈106(例如,感应加热毯,感应加热组件)提供电力。感应加热线圈106与通过感应加热线圈106被加热的工件108磁耦合。在操作中,感应加热电力供应器104以一加热频率向感应加热线圈106输出功率,感应加热线圈106将功率传递到工件108以感应加热工件108。如图1所示,感应加热电力供应器104可以经由延长电缆110耦接到感应加热线圈106。

如下面更详细描述的,示例感应加热线圈106包括两个或更多个导体和匝连接器。导体(以及延伸地说,感应加热线圈106)可以被适形地缠绕在工件108周围,而导体没有串联电连接。匝连接器串联连接两个或更多个导体,以将第一和第二导体配置为具有两个或更多个匝的电感器。示例性感应加热线圈106可包括一个或多个电绝缘体和/或隔热体,以例如防止短路和/或保护导体免受在工件108中感应出的热。

图2是被配置为具有多个匝的电感器的示例性导体组200的立体图,其用作感应加热毯。图2的示例性导体200可以用于实现感应加热线圈106。导体200物理上并联布置,但是通过匝连接器并联电连接,以沿相同方向引导电流通过导体200。在图2中示出了电流线202以说明电流如何流过导体200。

图2的示例性导体200可以电连接成并联的多个组,以减少电阻损耗并改善导体200与工件108之间的磁耦合。例如,图2的导体200连接成四个组,每组三个导体。四个组中的每个组在匝连接器上使用相同的端接器端接,所述匝连接器连接到相邻的一组导体和/或感应加热电力供应器104。

图3示出了在待感应加热的工件周围之前的示例感应加热装置300。图4A和图4B示出了在用于感应加热具有不同直径的管402、404的不同的装置中的图3的感应加热装置300,。图5是安装在管道502周围的图3的示例感应加热装置300的立体图。图6是围绕管道502安装的图3和5的示例感应加热装置300的平面图。感应加热装置300是图1的感应加热线圈106的示例实施方式。示例性工件502是管道,但也可以是期望(或根据规章要求)感应加热的另一种类型的物体。

示例性感应加热装置300包括多个导体(例如,图2所示的导体200),其被护套302或其他类型的覆盖层覆盖。装置300还包括匝连接器304和调节夹具306。

护套302是柔性的隔热材料,其保护导体免受从工件辐射的热量和/或免受物理损坏。在一些示例中,护套302包括翼片,该翼片允许导体200被***护套302内和从护套302内移除。在某些应用场合中,护套302可能会遭受严重的物理磨损或损坏,因此当护套302不再能够为护套302内的导体200提供足够的保护时,可以更换护套302。

调节夹具306被配置为使导体200与工件相适形,以增加(例如,最大化)导体200与工件之间的磁耦合。因此,调节夹具306使得感应加热装置300能够用于加热不同尺寸的工件(例如,一定直径范围内的管道),同时提供可接受的磁耦合。图4A的示例性管道402具有第一直径(例如12英寸),而图4B的管道404具有第二直径(例如8英寸)。感应加热装置300可以适形地缠绕在每个管道402、404周围,并且调节夹具306将护套302夹紧在管道402、404附近,以将护套302和导体200紧靠管道402、404收紧,从而增加了护套302内的导体200与管道402、404之间的耦接。

因为需要较短长度的护套302和导体200来缠绕较小直径的管404,所以较长长度的护套302和导体200在调节夹具306和匝连接器304之间延伸。以这种方式,示例感应加热装置300可以用于一定范围的工件尺寸(例如,一定范围的管道直径)。然而,操作者将护套302和导体200缠绕在不同尺寸的工件周围,组装匝连接器304,并且以基本上相同的方式连接调节夹具306而不管工件的尺寸为何。

示例性感应加热装置300可以围绕工件定位,使得装置300的纵向中心在指定范围内的装置300(例如,基于连接到匝连接器304的导体200的长度)内对于所有工件尺寸来说都是接触点。一致的接触点使热电偶在毯上的布置具有一致的位置,因此,与每次安装时都需要确定热电偶的位置的情况相比,安装速度更快。一个或多个热电偶可以被嵌入在装置300内,例如被嵌入在毯的外部绝缘层内(如下文参考图11A-11D所述),嵌入在毯的外部和/或装置300上的任何其他位置。例如,一个或多个热电偶可以被配置为测量工件的温度(例如,在提供与工件一致的接触点的毯的纵向中心处)和/或一个或多个导体的温度。一个或多个热电偶具有引线,该引线可以在测量点附近离开毯和/或可以从测量点嵌入到毯中直至匝连接器304或匝连接器304附近。

图5还示出了示例性延长电缆504和供电连接器506,以将感应加热线圈106耦接至感应加热电力供应器104。示例性延长电缆504可以硬线连接至匝连接器304和/或可从匝连接器304拆卸,以使得能够替换延长电缆504,匝连接器304和/或感应加热线圈106。供电连接器506将延长电缆504连接至感应加热电力供应器104。

如图6所示,感应加热装置300可以定位在邻近待焊接的管道502中的接缝处。例如,焊接规章可能要求在焊接接头之前将管接头加热到特定温度范围。在图4A,图4B,图5和图6的例子中,感应加热装置300围绕管道502的圆周并且物理适形地(除了圆周上与调节夹具相邻的一小部分之外)定位。

图7是图3的示例护套302的剖视图。如图7所示,护套302包括具有翼片704的外覆盖层702,以使得能够将导体200***到外覆盖层702内的腔706中和将导体200从中移除。翼片704将导体200保持在腔706内,直到通过翼片704有意地将导体200移除。

在图7的示例中,护套302还包括位于腔706中的导体200与被加热的工件之间的隔热层708。隔热层708的厚度与导体200和工件之间的磁耦合成反比,并因此影响可以从导体200传递到工件的感应加热功率的量。尽管较薄的隔热层708改善了磁耦合和功率传输,但较薄的层也降低了到导体200的热传递的阻抗。隔热层708的最佳厚度取决于被传递到工件的感应加热功率,在外覆盖层702和/或隔热层708中使用的材料和/或用于构造和/或包裹导体200的材料。另外,目标工件温度影响隔热层708的选定厚度。使用较厚的隔热层708和/或通过使用导体200的液体冷却而不是空气冷却,可以实现较高的目标工件温度。

图8A和8B示出了图3的匝连接器304的立体图。示例性匝连接器304包括第一连接器802和第二连接器804。第一连接器802和第二连接器804可以连接以形成闭合回路,并且可以断开以断开回路。例如,第一连接器802和第二连接器804被断开以使用户能够将感应加热线圈106缠绕在工件周围。如图8A和8B所示,到线圈106的输入和输出电缆在相同的连接器(例如,第一连接器802)上,这使得与第一连接器802相反的线圈106端(例如,附接至第二连接器804的线圈106端)被绕制在工件上,而不必也将输入引线和/或输出引线绕在工件上。

取决于感应加热线圈106中的导体的数量和/或匝连接器304的构造,匝连接器304使用户能够通过在作为单个单元的工件周围缠绕感应加热线圈106而大致同时地将感应线圈的多个匝缠绕在工件周围。例如,操作员的单个动作或一系列动作导致导体和护套同时缠绕在工件周围。换句话说,导致导体和/或覆盖层之一缠绕在工件周围的动作也导致其他导体和/或覆盖层被缠绕在工件周围。

如图8A所示,第一连接器802包括电流传输连接器806a,806b,806c,806d,电流传输连接器806a,806b,806c电连接到感应加热线圈106中的相应组的导体200。如图8B所示,第二连接器804包括电流传输连接器808a,808b,808c,808d,电流传输连接器808a,808b,808c,808d电连接到前述相应组的导体200的与电流传输连接器806a,806b,806c,806d相对的端。当第一连接器802和第二连接器804被附接时,电流传输连接器808a,808b,808c,808d与电流传输连接器806a,806b,806c,806d接触,以形成与感应加热线圈106中的导体(或电气并联导体组)的数量对应的电感器的多个匝。在图8A和8B的例子中,存在四对电流传输连接器806a-806d,808a-808d以形成四个匝。

第一连接器802还包括对准柱810a,810b,810c。第二连接器804包括对应的对准柱812a,812b,812c。当第一连接器802联接至

第二连接器804时,对准柱810a-810c与对准柱812a-812c配合,并防止第一连接器802与第二连接器804之间的旋转。

图9示出了图3的示例性匝连接器304(例如,图8A和8B的第一连接器802和第二连接器804)的横截面平面图。第一连接器802和第二连接器804的一些部分被示出为从图9中移除,以示出在匝连接器304内的示例性导体组902、904、906、908的物理路径。

导体组902-908中的每组包括三根平行的辫编线电缆。使用平行的利茨电缆(例如,而不是一根较大的等效辫编线电缆)改善了导体组902-908与工件之间的磁耦合。辫编线电缆的使用可在所得电感器的匝之间保持一致的间距。

在一些其他示例中,将三根平行的辫编线电缆替换为具有矩形横截面的更多或更少的辫编线电缆,非辫编线电缆和/或能够磁耦合至工件的任何其他类型的电缆。

示例的导体组902-908中的每一个导体都在两端上端接(例如,使用端接器以使得能够连接到电流传输连接器806a-806d,808a-808d)。例如,导体组902通过连接到电流传输连接器806b的第一端接器910a端接在第一连接器802处,并且通过连接到电流传输连接器808a的第二端接器912a端接在第二连接器804处。导体组904通过连接到电流传输连接器806c的第一端接器910b端接在第一连接器802处,通过连接到电流传输连接器808b的第二端接器912b端接在第二连接器804处。导体组906通过连接到电流传输连接器806d的第一端接器910c端接在第一连接器802处,通过连接到电流传输连接器808c的第二端接器912c端接在第二连接器804处。导体组908通过第一端接器910d端接在第一连接器802处,并且通过连接到电流传输连接器808d的第二端接器912d端接在第二连接器804处。

第一连接器802还连接到供电电缆914、916,供电电缆914、916将来自感应加热电力供应器104的感应加热功率提供给导体组902-908。供电电缆914耦接到电流传输连接器806a,并且供电电缆916耦接到端接器910d。

在图9中示出了示例性电流路径918以示出当连接匝连接器304从而以电串联的方式配置感应加热毯的多个物理上平行的导体以形成多个匝时流过导体902-908的电流。在图9中以单向方式示出了电流路径918,然而电流可以是双向的(例如,使用AC电流)和/或在所示的电流路径918的相反方向上是单向的。如电流路径918所示,感应加热电流依次流过以下部件:供电电缆914,电流传输连接器806a,电流传输连接器808a,端接器912a,导体组902,端接器910a,电流传输连接器806b,电流传输连接器808b,端接器912b,导体组904,端接器910b,电流传输连接器806c,电流传输连接器808c,端接器912c,导体组906,端接器910c,电流传输连接器806d,电流传输连接器808d,端接器912d,导体组908,端接器910d和供电电缆916。

在一些其他示例中,代替连接到包括多组导体902-908的毯,匝连接器304可以用于连接多个物理上分离的导体(或物理上彼此分离的导体组)以形成多个匝。图10是围绕管道1002安装的另一示例感应加热组件1000的平面图,其中,匝连接器304连接多个物理上分开的导体以形成感应线圈的多个匝。代替包括多个导体的毯,示例组件1000包括物理上分开的导体1004a-1004d,这些导体1004a-1004d经由匝连接器304连接以形成感应加热线圈的多个匝。与上述示例感应加热装置300相似,示例组件1000的示例导体1004a-1004d可以比形成相同匝数的同等长度的单个导体更容易地围绕管道1002定位并从管道1002移除。示例性导体1004a-1004d可以被单独地绝缘和/或组合到相同的绝缘套中。

本文公开和描述了与匝连接器304一起使用的导体的示例性布置。然而,可以使用单个导体,导体组和/或毯的其他布置。

图11A,11B和11C是示例感应加热组件1102、1104、1106的横截面,其包括多组电缆,所述多组电缆可用于实现图2的多组导体200。在每个示例组件1102-1106中,电缆组基本在平行方向上延伸(例如,组件1102-1106中的所有电缆均沿同一平面平行延伸)。在图11A-11C(以及图2、8A,8B,9A和9B)的示例性平面取向中,每匝使用多个导体减小(例如,最小化)导体与部件之间的耦接距离,以增加(例如,最大化)工件中的热影响区域的宽度。

在图11A的示例中,感应加热组件1102包括多组电缆1108a,1108b,1108c,1108d。电缆1108a-1108d的每个示例组包括多根电缆。在一些示例中,绝缘体1110的内层在每个组1108a-1108d中的电缆之间提供电绝缘。例如,电缆可以是具有护套的电缆。另外,当一组电缆1108a-1108d中的各个电缆是辫编线电缆时,构成辫编线电缆的电缆的各个导体股线和/或各个导体股线的子组合是电绝缘的。

绝缘体的外层1112使电缆组1108a-1108d与(例如,与工件的)热接触和电接触绝缘。绝缘体1112的示例性外层可以被铸造在电缆组1108a-1108d上,和/或电缆组1108a-1108d可以被挤出穿过绝缘材料以形成绝缘体1112的外层。

在图11B的示例中,感应加热组件1104包括与图11A中类似的多组电缆1108a-1108d。与图11A的外部绝缘体1112相反,示例感应加热组件1104具有外部绝缘体1114,其更紧密地适形于各个电缆组1108a-1108d,并且在电缆组1108a-1108d之间延伸以形成单个组件(例如,而不是物理上分开的电缆和/或组)。结果,外部绝缘体1114在外部绝缘体1114与电缆组1108a-1108d相邻的位置处具有第一厚度,并且在外部绝缘体1114在电缆组1108a-1108d之间延伸的位置处具有第二厚度。

在图11C的示例中,感应加热组件1106包括具有比组件1102和1104中的电缆更扁平的横截面的电缆。图11C的电缆被布置成电缆组1116a-1116d。通过提供扁平横截面的电缆(其中对于每个单独的导体具有相同(或相似)的横截面面积),示例的电缆组1116a-1116d具有与工件的改善的磁耦合和改善的热传递。示例感应加热组件1106可在垂直于电缆和组件1106的平面的方向上具有较薄的轮廓,但在沿着方向1118的横截面上可具有较宽的轮廓。

如图11A-11C中的每一张图所示,多组电缆(或多根电缆)沿着同一平面1120延伸。通过使电缆沿着平面1120对准,当工件与平行于平面1120的组件1102、1104、1106相邻时,与当电缆与平面1120不对准时(例如,与工件相隔不同距离)相比,电缆具有更高的向工件的磁耦合和/或感应加热功率传递。

图11D是另一示例感应加热组件1122,其中导体组1124a-1124d在其布置上是物理上偏移的或非平面的。在图11D的示例中,一个或多个导体组1124a-1124d中的每一个均沿第一方向1126取向。导体组1124a-1124d在第二方向1128上与相邻组1124a-1124d具有偏移。根据导体的期望分组和组之间的偏移,在第一方向1126和第二方向1128上形成外部绝缘层1130。

与当使用毯1102-1106感应加热非平面表面(例如凸缘接头和/或T形接头)所能够获得的磁耦合相比,图11D的感应加热组件1122的布置可提供导体组1124a-1124d之间的改进的磁耦合。导体组1124a-1124d之间的偏移可以通过例如更容易弯曲和/或使接头几何形状与导体组1124a-1124d的布置更紧密地匹配来改善感应加热组件1122相对于非平面工件的适形性。

示例组件,绝缘体,以及导体的几何形状和分组在图11A-11D中示出。但是,可以改变任何其他外部绝缘几何形状,导体几何形状,导体分组(或没有分组),间距,尺寸和/或组件的任何其他方面。电缆可以具有较小或较大的横截面积(例如,使用带状辫编线电缆),以针对不同的工件尺寸(例如,不同的管径)改善感应加热组件的功率传输。示例性感应加热电缆组件包括:多组沿着一根平面基本平行延伸的一根或多根电缆,以及绝缘层,其既绝缘该组电缆,又在各组电缆之间延伸以形成单个组件。示例的电缆组1108a-1108d和/或外部绝缘体可以在垂直于与工件接触的平面的方向上堆叠电缆和/或电缆组(例如,背离工件堆叠)以使感应加热集中在较窄的加热区中。示例组件的构造(例如,电缆组和外部绝缘层)使电缆可以同时缠绕在工件周围(例如,通过围绕工件缠绕组件的两端来实现),而不是在工件周围多次缠绕单个导体。

电缆组中的电缆可以是辫编线电缆,非辫编线电缆或辫编线电缆与非辫编线电缆的组合。电缆组中的辫编线电缆和/或非辫编线电缆可以具有圆形横截面,矩形横截面(例如,其中较长尺寸平行于要与工件接触的表面延伸)和/或任何其他横截面形状。电缆和/或电缆组可以沿着相同的平面对齐,使得当组件与工件相适形时,组和/或组件中的每根电缆与工件相隔相同的距离。在一些示例中,电缆组沿着一平面延伸,并且从该平面移除组中的一根或多根电缆,使得当组件与工件相适形时,电缆与工件相隔不同的距离。

在一些示例中,电缆和/或绝缘层在电缆和/或绝缘体的横截面上被构造和/或组装有台阶,弯曲部和/或另一非平面几何形状。跨横截面的非平面几何形状可改善导体和/或绝缘层在待加热的非平面工件表面周围的适形性,例如用于锥形凸缘的台阶和/或用于凸缘面的弯曲部。

可以将电缆和外部绝缘体挤出,可以将电缆铸造到外部绝缘体中,和/或可以使用任何其他适当的构造方法。在一些示例中,外部绝缘体1112是硅树脂或同样适形于工件的另一种电绝缘和/或隔热(或导热)材料。

在图11A-11D的例子中,电缆组的近端彼此相邻,并且电缆组的远端彼此相邻。关于图11A-11D中所示的组件1102、1104、1106、1122的横截面,电缆组在第一方向上纵向延伸(例如,进入横截面和/或从横截面出来),并在第二方向上是相邻的(例如,横跨组件1102、1104、1106、1122的宽度)。另外,在图11D的示例中,导体组1124a-1124d在相对于组件1122的横截面的第三方向(例如,在所示的方向1128)上彼此偏移。

虽然图11A-11D示出了聚集在电缆组1108a-1108d内的电缆以及与相邻电缆组1108a-1108d隔开的不同组电缆,但在其他示例中,电缆组1108a-1108d中的各个电缆间隔得更远,与电缆组1108a-1108d间隔相同的距离,在组件1102-1106的整个横截面上均匀地间隔,和/或具有任何其他期望的间隔和/或偏移量。

在图11A-11D的每个附图中,示例性热电偶引线1132被示出在外部绝缘层1112、1114、1130内。附接到热电偶引线1132的热电偶可以测量一个或多个导体中的温度和/或工件的温度。

图12是图3的示例性调节夹具306的更详细的视图。图13是图12的示例性调节夹具306的视图,图13包括感应加热毯1302的第一部分。图13的感应加热毯1302包括在图3的护套302内的感应加热组件1304(例如,图11B的感应加热组件1104)。图14是图12的示例性调节夹具306的侧视图,其中调节夹具306夹持感应加热毯1302以使感应加热毯1302中的导体与工件相适形。

图12的示例性调节夹具306包括第一支架1202,第二支架1204,铰链1206和闩锁1208。

第一支架1202在沿着感应加热毯1302的长度的第一位置处保持感应加热毯1302。在图12的示例中,第一支架1202向感应加热毯1302施加轻微或中等的压力,以减少或防止第一支架1202沿着感应加热毯1302的长度的无意移动。在一些示例中,第一支架1202的材料和/或护套302的材料提供足够的摩擦系数,以减少第一支架1202和护套302之间的无意移动。第二支架1204是C形支架,感应加热毯1302的第二部分可以***其中(例如,在感应加热毯1302缠绕在工件周围之后)。在一些示例中,第一支架1202也是C形支架(例如,省略了图12所示的第一支架1202的翼)。

铰链1206可旋转地联接第一支架1202和第二支架1204。铰链1206使夹具306能够被打开以将毯1302的第二部分接纳在第二支架1204中。在图12的示例中,铰链1206和第二支架1204的尺寸被确定并联接到第一支架1202,使得当毯1302被放置在第二支架1204中并且夹具306闭合时,第一和第二支架1202、1204挤压第二支架1204中毯子1302的一部分,以将毯1302在工件周围夹紧在位。

闩锁1208构造成闩锁或以其他方式锁定夹具306,以将感应加热毯1302在工件周围保持在位。为了改善感应加热毯1302与工件之间的磁耦合,可以将夹具306和/或感应加热毯1302定位成将感应加热毯1302紧紧地挤压在工件周围(例如,通过将夹具306定位为尽可能地靠近工件或对于操作员而言实用)。示例性闩锁1208可以具有收紧特征,以使操作员能够首先将闩锁1208闭合(例如在钩1210周围),然后通过收紧闩锁1208来增加压力。

为了减少或防止由感应加热毯1302和夹具306之间的角度造成的对护套302的损坏,示例性的第一和第二支架1202、1204包括肩部1212(或其他特征),以避免从第一支架1202和第二支架1204上的边缘或外角对外层302的磨损。

图12-14的示例性闩锁1208可以用任何其他类型的消耗性和/或非消耗性紧固机构代替,例如扣环,棘轮,夹子,钩眼扣,拉链,皮带或绳索和防滑钉,以及/或任何其他紧固件。

图15A和图15B示出了被布置为同时感应加热多个工件的一个或多个感应加热毯的示例性构造。在图15A的示例中,使用延伸连接器1506和匝连接器1508(例如,图3,8A,8B,9A和9B的匝连接器304)将两个感应加热毯1502、1504耦接在一起。示例性延伸连接器1506将第一毯的导体或电缆连接到第二毯子的相应导体或电缆,以延长毯子的长度以同时装配多个工件1510。在感应加热毯1502、1504经由延伸连接器1506连接并缠绕在工件1510周围之后,可以固定调节夹具1512以将感应加热毯1502、1504保持在适当的位置以加热工件1510。在一些示例中,可以与调节夹1512相对地使用第二调节夹。

在图15B的示例中,感应加热毯1514缠绕在多个工件1516周围,并且两个调节夹具1518在感应加热毯1514和工件1516之间提供增加的磁耦合(例如,相对于图15A的示例中的磁耦合而言)。感应加热毯1514通过匝连接器1520连接以形成多个匝。

图16A和图16B示出了布置成感应加热工件1606的感应加热毯1602、1604的另一示例构造的视图。示例工件1606包括T形接头1608,其是非平面的接头。示例感应加热毯1602、1604结合使用以加热接头1608的两侧,相对于传统技术和/或相对于本文公开的单个感应加热毯,这可以提供改善的加热。

多个感应加热毯1602、1604通过匝连接器1610连接,以形成具有多个匝(例如,多达毯1602、1604中的导体总数)的单个电感器。匝连接器1610的第一部分1612连接到两个毯1602、1604。毯1602、1604中的每一个均设有单独的第二连接器1614a,1614b(例如,两个相同的连接器),使得毯1602、1604可以被包裹在接头1608的不同侧上并从接头1608移除。示例性第二连接器1614a,1614b中的每一个将相应的毯1602、1604的端部(例如,毯子1602、1604中的导体)连接到匝连接器1610的第一部分1612,从而以与前面参考图8A,8B,9A和9B描述的相似或相同的方式形成多个匝。示例性第一连接器802可以用于实现匝连接器1610的第一部分1612,而第二连接器1614a,1614b可以类似于第二连接器804的方式实现,以与第一部分1612形成接触。

图17示出了安装在管道1704的内表面1702上用于感应加热管道1704的图3的感应加热组件300。如图17所示,感应加热组件300可以被布置成与内表面1702适形,以将感应加热组件300磁性地耦合到管道1704。相同类型的感应加热组件300可以用于工件的内表面和外表面。

示例性感应加热组件300可以在支架1706或其他类型的装置的辅助下与管道1704(或其他类型的工件)适形地布置,以将抵靠内表面1702地保持导体。示例性支架1706可包括可充气坝,该可充气坝可被充气以将感应加热组件300的导体推向内表面1702。然而,可以使用其他类型的支架来支撑导体。

图18是表示使用感应加热毯和感应加热电力供应器来加热工件的示例方法1800的流程图。

在框1802,操作员与工件(例如,图1的工件108)适形地布置一个或多个导体。一个或多个导体可以包括物理上分开的导体(例如,图10的导体1004a-1004d),图11A-11C的感应加热组件1102-1106中的一个,和/或任何其他感应加热组件和/或导体的布置。参照图3的示例感应加热装置300,用户可以通过将护套302缠绕在工件108周围来同时将包围在护套302中的多个导体缠绕在工件108周围。在其他示例中,用户可以与工件108的内表面适形地同时布置包围在护套302中的多个导体。

在框1804,操作员附接调节夹具306以使导体与工件108相适形。在其中工件108的尺寸需要导体的完全长度(或几乎完全长度)的示例中,可以省略框1804。调节夹具306可将导体相对于工件108的外部收紧和/或将导体相对于工件108的内部推动。

在框1806,操作员在导体(例如,导体组902-908)的端部上连接匝连接器304的第一和第二连接器802、804,以将导体配置为具有多个匝的电感器。在图9A和9B的例子中,匝连接器304将导体配置为电感器的四个匝。

在框1808处,操作员将匝连接器304连接至感应加热电力供应器(例如,图1的电力供应器104)。

在框1810,操作员使感应加热电力供应器104能够向导体提供电力以加热工件108。在一些示例中,操作员可以指定用于加热工件108的温度或功率水平。附加地或替代地,感应加热电力供应器104可以检测感应加热线圈106的一个或多个特性(例如,电感,功率容量等)并基于所识别的特征控制被传递到感应加热线圈106的感应加热功率的一个或多个方面。示例方法1800然后可以结束。

如本文所利用的,术语“电路”和“线路”是指物理电子部件,任何模拟和/或数字部件,功率和/或控制元件,例如微处理器或数字信号处理器(DSP)等,包括分立和/或集成部件,或其部分和/或组合(即硬件)以及可以配置硬件,由硬件执行和/或以其它方式与硬件相关联的任何软件和/或固件(“代码”)。如本文所使用的,例如,特定处理器和存储器在执行第一一行或多行代码时可以构成第一“电路”,并且在执行第二一行或多行代码时可以构成第二“电路”。如本文所用,“和/或”是指由“和/或”连接列表中的任何一个或多个项。例如,“x和/或y”表示三元素集{(x),(y),(x,y)}中的任何元素。换句话说,“x和/或y”是指“x和y之一或两者”。作为另一个示例,“x,y和/或z”表示七元素集{(x),(y),(z),(x,y),(x,z),(y,z),(x,y,z)}中的任何元素。换句话说,“x,y和/或z”是指“x,y和z中的一个或多个”。如本文所使用的,术语“示例性”是指用作非限制性示例,实例或说明。如本文所使用的,术语“例如”和“比如”给出一个或多个非限制性示例,实例或说明。如本文所利用的,每当电路包括执行一项功能所需的硬件和代码(如果必要的话),该电路是“可操作的”以执行该项功能,而不管该功能的性能是否被禁用或未被启用(例如,通过用户可配置的设定,出厂调整等)。

尽管已经参考某些实施方式描述了本方法和/或系统,但是本领域技术人员将理解,在不脱离本方法和/或系统的范围的情况下,可以进行各种改变并且可以用等同物替代。例如,所公开示例的框和/或部件可以被组合,分割,重新布置和/或以其他方式修改。另外,在不脱离本发明范围的情况下,可以做出许多修改以使特定情况或材料适应本发明的教导。因此,本方法和/或系统不限于所公开的特定实施方式。相反,本发明的方法和/或系统将包括所有落入所附权利要求范围的实施方式,无论是从字面上还是在等同原则下。

28页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:感应加热烹调器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!