一种土壤薄膜水厚度的测试方法

文档序号:1626775 发布日期:2020-01-14 浏览:5次 >En<

阅读说明:本技术 一种土壤薄膜水厚度的测试方法 (Method for testing water thickness of soil film ) 是由 张志权 黄月 明心凯 井彦林 温馨 张旭彬 赵庄 于 2019-10-22 设计创作,主要内容包括:本发明公开了一种土壤薄膜水厚度的测试方法,本发明通过土壤的核磁共振试验得到其T&lt;Sub&gt;2&lt;/Sub&gt;谱曲线,结合相关的数值模型,反演土壤的孔隙分布,结合离心试验确定T&lt;Sub&gt;2&lt;/Sub&gt;截止值,从而得到岩土材料的孔隙分布、孔隙结构、流体性质等数据,利用相关的模型计算出土壤薄膜水厚度。本发明的有益效果是,公开了一种土壤薄膜水厚度的测试方法,为土壤薄膜水厚度的确定提供了一条新途径,可广泛应用于各类土壤的测试。(The invention discloses a method for testing the water thickness of a soil film, which obtains the T of the soil film through a nuclear magnetic resonance test of the soil 2 The spectral curve is combined with a relevant numerical model to invert the pore distribution of the soil, and the T is determined by combining a centrifugal test 2 And (4) cutting off the value so as to obtain data such as pore distribution, pore structure, fluid property and the like of the rock-soil material, and calculating the water thickness of the soil film by using a related model. The invention has the beneficial effects that the invention discloses a method for testing the water thickness of the soil film, provides a new way for determining the water thickness of the soil film, and can be widely applied to the test of various soils.)

一种土壤薄膜水厚度的测试方法

技术领域

本发明属于土壤微观结构及其渗透性测试领域,具体涉及一种土壤薄膜水厚度的测试方法。

背景技术

薄膜水是土颗粒表面的弱结合水,其厚度分布是土壤重要的物理特性,它对地下水资源的评价、水环境以及土体的强度、稳定性、土壤持水性能及农业生产等,均有很大影响,关系着地下水在土壤中的运移规律、地表水(包括雨水)入渗的规律、地下土的补给以及地下水位的埋藏透水条件等,是影响土壤渗透性的重要因素。所以,研究土壤薄膜水的厚度对研究土壤的渗流有着很重要科学实用价值和作用。薄膜水厚度极小,属微观尺度,其测试方法一直是一个难题。

随着科学技术的发展,仪器设备愈发先进,核磁共振技术从开始用于医学诊断,逐步发展的应用于石油勘探及岩土工程领域。核磁共振测试具有快速经济、无损检测、大规模等优点,使得核磁共振技术在岩、土体的测试方面显示出其显著的优越性。

发明内容

本发明的目的在于克服上述不足,提供一种土壤薄膜水厚度的测试方法,首次将核磁共振试验手段应用于土壤薄膜水的厚度测试中。

为了达到上述目的,本发明包括以下步骤:

步骤一,对核磁共振仪进行校准,并确定核磁共振仪的中心频率;

步骤二,将待检测的不扰动土壤试样放入核磁共振仪内,进行第一次核磁共振测试;

步骤三,设定硬脉冲CPMG的脉冲序列,进行重复采样;

步骤四,将采样结果进行反演,反演得到第一次T2谱;

步骤五,将不扰动土壤试样用热缩管包裹,并在热缩管表面开设若干小孔,放入煤油中直至饱和;

步骤六,将饱和后的土壤试样放入核磁共振仪内,进行第二次核磁共振测试,反演得到第二次T2谱;

步骤七,将饱和后的土壤试样进行离心,达到束缚水状态;

步骤八,将离心后的土壤试样放入核磁共振仪内,进行第三次核磁共振测试,反演得到第三次T2谱;

步骤九,将第一次T2谱、第二次T2谱和第三次T2谱进行反演,确定T2谱的截止值,根据积累曲线得到试样的孔隙分布、核磁孔隙度和束缚水饱和度;

步骤十,测定待检测的不扰动土壤试样的比表面积;

步骤十一,通过孔隙分布、核磁孔隙度和束缚水饱结合度比表面积,得到土壤薄膜水厚度。

步骤一中,对核磁共振仪进行校准时,将测出密度的土壤试样置于核磁共振仪内进行测试。

T2谱值如下式所示:

Figure BDA0002243465090000021

其中,T2B是来自孔隙流体本身的T2弛豫时间;T2S为固体颗粒表面的T2弛豫时间;T2D为梯度磁场下作用下分子扩散的T2弛豫时间;ρ2为横向弛豫时率,与土颗粒性质决定,S和V分别为水分所处孔隙的表面积与体积。

土壤试样的T2谱值与土体孔隙结构的关系如下:

Figure BDA0002243465090000022

若土壤试样中孔隙形状为柱状,则土壤试样的T2谱值与土体孔隙结构的关系为:

其中,ρ为密度,S为表面积,V为体积,R为半径。

步骤七中,离心时,离心力为0.25MPa,离心2小时。

步骤十中,通过氮吸附法测定待检测的不扰动土壤试样的比表面积。

与现有技术相比,本发明通过土壤的核磁共振试验得到其T2谱曲线,结合相关的数值模型,反演土壤的孔隙分布,结合离心试验确定T2截止值,从而得到岩土材料的孔隙分布、孔隙结构、流体性质等数据,利用相关的模型计算出土壤薄膜水厚度。本发明的有益效果是,公开了一种土壤薄膜水厚度的测试方法,为土壤薄膜水厚度的确定提供了一条新途径,可广泛应用于各类土壤的测试。

附图说明

图1为本发明实施例1中核磁共振T2谱的分布图。

具体实施方式

下面结合附图对本发明做进一步说明。

本发明包括以下步骤:

步骤一,将测出密度的土壤试样置于核磁共振仪内进行测试,对核磁共振仪进行校准,并确定核磁共振仪的中心频率;

步骤二,将待检测的不扰动土壤试样放入核磁共振仪内,进行第一次核磁共振测试;

步骤三,设定硬脉冲CPMG的脉冲序列,进行重复采样;

步骤四,将采样结果进行反演,反演得到第一次T2谱;

步骤五,将不扰动土壤试样用热缩管包裹,并在热缩管表面开设若干小孔,放入煤油中直至饱和;

步骤六,将饱和后的土壤试样放入核磁共振仪内,进行第二次核磁共振测试,反演得到第二次T2谱;

步骤七,将饱和后的土壤试样放入CSC-12超级岩心高速冷冻离心机进行气水离心试验,用0.25MPa的离心力,离心2个小时,直至试样中煤油全部离心出来,达到束缚水状态;

步骤八,将离心后的土壤试样放入核磁共振仪内,进行第三次核磁共振测试,反演得到第三次T2谱;

步骤九,将第一次T2谱、第二次T2谱和第三次T2谱进行反演,确定T2谱的截止值,根据积累曲线得到试样的孔隙分布、核磁孔隙度和束缚水饱和度;

步骤十,采用HYA2010-B1氮吸附仪通过氮吸附法测定待检测的不扰动土壤试样的比表面积;

步骤十一,通过孔隙分布、核磁孔隙度和束缚水饱结合度比表面积,得到土壤薄膜水厚度。

核磁共振是指具有自旋磁矩的质子在均匀磁场(主磁场)与射频磁场的作用下,宏观磁化矢量不能维持平衡,当射频停止后质子群从非平衡态回到平衡状态的过程。在这个过程中核磁信号随时间的变化曲线,可以简写为FID曲线,孔隙水分布与其含量的信息被FID曲线所包含。FID曲线上的初始点可以得到的信息是初始核磁信号与所测土样中的含水量成正比。因此土样的含水量可以用FID的初始点来确定,目前此方法的可行性及精度已经得到了大量的实验验证。同时FID曲线的形态受土样中孔隙水T2值影响,经脉冲傅里叶(PFT)进行变换,就可以得到土样的T2谱,土样的含水量指的是曲线下方与T2轴围成的峰面积。T2谱值如下式所示:

Figure BDA0002243465090000041

其中,T2B是来自孔隙流体本身的T2弛豫时间;T2S为固体颗粒表面的T2弛豫时间;T2D为梯度磁场下作用下分子扩散的T2弛豫时间;ρ2为横向弛豫时率,与土颗粒性质决定,S和V分别为水分所处孔隙的表面积与体积。

在液态水的T2弛豫时间中,T2B相比于T2S,T2S远远小于T2B,因此1/T2B对T2,的影响几乎可以忽略不计;在均匀分布磁场内,T2D值无穷大,对T2值几乎也没有影响,即1/T2D几乎为零。实际上,对黄土进行核磁共振测试可以满足以上条件,因此黄土测试得到的T2值与土体孔隙结构有关,土壤试样的T2谱值与土体孔隙结构的关系如下:

Figure BDA0002243465090000051

若土壤试样中孔隙形状为柱状,则土壤试样的T2谱值与土体孔隙结构的关系为:

Figure BDA0002243465090000052

其中,ρ为密度,S为表面积,V为体积,R为半径。

上式表明每一时刻的T2值与孔隙半径R成正比,不同孔隙大小对应的T2值不同。根据这个理论,土样的T2时间分布曲线就能与岩土类材料内孔隙水分布相对应。而曲线下方的所围成的峰面积(等价于初始核磁信号)就是与其想对应的T2范围内的含水量,故这个技术能用于岩土类材料内孔隙水相关信息的测量。其中对于结合水含水量的测定关键在于T2截止值的确定,截止值的左边代表的是结合水,其右边代表的是自由水。

薄膜水厚度的计算原理采用向阳等总结土壤学中计算土颗粒表面结水膜厚度的理论公式,该厚度表征平均水膜厚度大小,公式如下:

Figure BDA0002243465090000053

式中:h为薄膜水厚度,单位为nm;

Φ为孔隙度,单位为%;

Swi为结合水饱和度,单位为%;

A为土样的比表面积,单位为m2/g;

ρ为土样的密度,单位g/cm3

实施例1:

步骤一:采用MINI MR-60核磁共振成像分析仪,并测出试样密度。

MINI MR-60核磁共振成像分析仪的参数如下:

磁体类型:永磁铁;

磁场强度:0.52±0.05Tesla;

成像核种类:1H核;

成像探头直径:60mm;

有效样品检测范围:Φ60mm×H60mm

步骤二:试样制备

用自制的取土环刀,内径35mm,高45mm,取8m深不扰动土试样。

步骤三:仪器具体操作如下

1)在测试空间中放入标准样,进行初次测试;

2)寻找仪器的中心频率;

3)确定本次试验所需要的硬脉冲范围;

4)将待检测的试样放入测试空间内,进行第二次核磁共振测试;

5)在采集计算机上点击脉冲序列,选择设定的硬脉冲CPMG;

6)在软件中修改相应的脉冲序列参数;

7)运行系统软件,进行重复采集试样;

8)采样完成后,保存文件,命名;

9)在计算机中操作,反演得到T2谱;

10)保存反演后得到T2谱文件,并命名;

11)将不扰动土试样用热缩管包裹住,并在热缩管表面扎很多小孔,然后放入煤油中抽真空饱和两天。

12)将饱和后将饱和后的试样放入测试空间内,进行第三次次核磁共振测试,通过计算机软件反演计算得到T2谱;

13)将饱和后的试样放入CSC-12超级岩心高速冷冻离心机进行气水离心试验,用0.25MPa的离心力,离心2个小时,直至试样中煤油全部离心出来,达到束缚水状态;

14)将离心后的试样放入测试空间内,进行第四次核磁共振测试,通过计算机软件反演计算得到T2谱;

15)将第二次、第三次、第四次得到的T2谱用软件进行反演,确定T2截止值,得到试样的孔隙分布;得到核磁孔隙度及束缚水饱和度

16)利用HYA2010-B1氮吸附仪测不扰动黄土试样的比表面积,该仪器利用氮吸附法能够准确的测出试样的比表面积A。

17)根据得到的数据计算出薄膜水厚度。

由于土壤中往往会含有可溶盐,遇水会被溶解,故采用煤油饱和代替水饱和试样。通过对试样在煤油饱和与束缚水这两种状态下,测得的核磁T2谱,可以反映试样中的孔隙分布进行分析,核磁共振T2数据分布图见图1。对黄土试样进行核磁共振试验,其试样分析T2截止值结果如下:

T2截止值作为划分可动流体与不可动流体的界线值。T2截止值根据土体性质、土体的孔隙结构、土体中粘土的含量等因素的不同,其值的大小也不同。根据其测试结果,土体的孔隙结构、粘土含量都相差不大,故试样的T2截止值主要受土体的性质影响。

快速无损的测定吸附结合水的含量及饱和度,测试结果如表1。

表1 8m深度土样核磁分析及水膜厚度计算结果

Figure BDA0002243465090000071

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种可变场核磁共振系统及核磁共振信号测量方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!