一种高场致应变温度稳定性弛豫铁电陶瓷及其制备方法

文档序号:162865 发布日期:2021-10-29 浏览:46次 >En<

阅读说明:本技术 一种高场致应变温度稳定性弛豫铁电陶瓷及其制备方法 (Relaxation ferroelectric ceramic with high field strain temperature stability and preparation method thereof ) 是由 凌志远 吴鎔 于 2021-07-23 设计创作,主要内容包括:本发明属于铁电陶瓷材料的技术领域,公开了一种高场致应变温度稳定性弛豫铁电陶瓷及其制备方法。所述高场致应变温度稳定性弛豫铁电陶瓷,化学组成为Pb-(0.955)Sm-(0.03)[(Mg-(1/3)Nb-(2/3))-(1-)-(x)Ti-(x)]O-(3),0.32≤x≤0.35。本发明还公开了高场致应变温度稳定性弛豫铁电陶瓷的制备方法。本发明的铁电陶瓷在-10℃至+65℃温度范围内不但具有高场致应变,同时还具有极佳的场致应变温度稳定性。本发明的高场致应变温度稳定性弛豫铁电陶瓷,在-10℃~+65℃下横向场致应变随温度变化率小于±5%,满足高精度微位移致动器对场致应变温度稳定性的要求。(The invention belongs to the technical field of ferroelectric ceramic materials, and discloses a relaxation ferroelectric ceramic with high field strain temperature stability and a preparation method thereof. The chemical composition of the relaxation ferroelectric ceramic with high field strain temperature stability is Pb 0.955 Sm 0.03 [(Mg 1/3 Nb 2/3 ) 1‑ x Ti x ]O 3 X is more than or equal to 0.32 and less than or equal to 0.35. The invention also discloses a preparation method of the relaxation ferroelectric ceramic with high field strain temperature stability. The ferroelectric ceramic of the invention not only has high field strain in the temperature range of-10 ℃ to &#43;65 ℃, but also has excellent field strain temperature stability. High field strain temperature stable relaxation of the inventionThe change rate of transverse field strain along with temperature is less than &#43;/-5% at-10 to &#43;65 ℃, and the requirement of a high-precision micro-displacement actuator on the stability of field strain temperature is met.)

一种高场致应变温度稳定性弛豫铁电陶瓷及其制备方法

技术领域

本发明属于铁电陶瓷材料的技术领域,具体涉及一种高场致应变温度稳定性弛豫铁电陶瓷及其制备方法。本发明的弛豫铁电陶瓷用于制造各种高精度微位移致动器。

背景技术

伴随着半导体制造、显微分析、表面测量、生物和化学工程的迅猛发展,精密位移和定位装置的市场需求量愈来愈大,高性能微位移致动器已成为一个不可或缺的元器件。采用铁电陶瓷制备的微位移致动器不仅制造成本低,而且还具有结构简单、体积小、易于复杂结构成型、无电磁干扰、精度高等优势。但前提是微位移致动器用铁电陶瓷材料必须满足高应变量、低应变滞后、高应变温度稳定性等性能要求。

铁电材料均具有压电性,根据第一类压电方程,外应力恒定或为零时,施加电场Ei作用于铁电材料将产生应变Sj:Sj=dijEi,dij为压电电荷系数。为获得大场致应变,铁电材料必须具有大dij系数。在所有已知铁电材料中,弛豫铁电材料不但具有高dij和大场致应变,而且应变滞后非常低。Park等人对(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(以下简称为PMN-xPT)单晶的研究(Seung-Eek Park and Thomas R.Shrout.Ultrahigh strain andpiezoelectric behavior in relaxor based ferroelectric single crystals.Journalof Applied Physics,1997,82:1804-1811)表明:<001>极化取向PMN-xPT(x=0.29、0.31和0.33)在1.5kV/mm电场下的纵向场致应变高于0.2%,应变滞后非常小。然而,这些化学组成对陶瓷材料不适用,相同组分PMN-xPT陶瓷的纵向场致应变远小于单晶。Zhao等人对位于准同型相界(x≈0.3)附近PMN-xPT陶瓷的场致应变进行了研究(J.Zhao,Q.M.Zhang,N.Kimand T.Shrout T.Shrout.Electromechanical Properties of Relaxor FerroelectricLead Magnesium Niebate-Lead Titanate Ceramics.Japanese Journal of AppliedPhysics,1995,34:5658-5663),结果表明:1kV/mm电场下PMN-0.28PT的纵向场致应变高达0.15%,但却与温度密切相关,最大值位于退极化温度(Td)附近,偏离Td纵向场致应变迅速衰减,限制了实际应用。Li等人(Li F,Lin D,Chen Z,Cheng Z,Wang J,Li ChunChun,etal.Ultrahigh piezoelectricity in ferroelectric ceramics by design..NatureMaterials,2018,17:349-354)通过Sm掺杂来提高压电电荷系数d33,2.5mol%Sm掺杂PMN-0.29PT陶瓷的d33高达1530pC/N,但退极化温度较低(Td=62℃),无法满足应用需求。

发明内容

为了克服现有技术的缺点和不足,本发明目的在于提供一种高场致应变温度稳定性弛豫铁电陶瓷材料。本发明的弛豫铁电陶瓷材料在-10℃至+65℃温度范围内不但具有高场致应变,同时还具有极佳的场致应变温度稳定性。

本发明的另一个目的在于提供一种高场致应变温度稳定性弛豫铁电陶瓷材料的制备方法。

本发明的目的通过如下技术方案实现:

一种高场致应变温度稳定性弛豫铁电陶瓷材料,其化学组分为:

Pb0.955Sm0.03[(Mg1/3Nb2/3)1-xTix]O3,其中0.32≤x≤0.35;优选的,所述x=0.33。

该陶瓷在800V/mm电场下,横向场致应变为2.2~3.5×10-4,-10℃~+65℃横向场致应变随温度变化率在±5%以内。

上述高场致应变温度稳定性弛豫铁电陶瓷材料的制备方法,包括以下步骤:

1)将Nb2O5和(MgCO3)4·Mg(OH)2·5H2O按化学计量比MgNb2O6配料,球磨混合均匀,烘干过筛,煅烧后得到MgNb2O6前驱体粉体;

2)将Sm2O3原料进行预处理;

3)将Pb3O4、TiO2、预处理Sm2O3和MgNb2O6前驱体粉体按照化学计量比Pb0.955Sm0.03[(Mg1/3Nb2/3)1-xTix]O3称量配料,球磨混合均匀,烘干过筛,煅烧后得到粉体;

4)将步骤3)获得的粉体再次球磨混合均匀,干燥,加入粘结剂研磨造粒,过筛,压片得到坯体;

5)将步骤4)所得坯体排胶后烧结,极化处理,获得高场致应变温度稳定性弛豫铁电陶瓷材料。所述烧结的温度为1230℃~1270℃,烧结的时间为1~2h;所述烧结在密闭的环境下进行,具体是在密闭氧化铝坩埚中进行。

所述极化处理是指在烧结完成后的陶瓷上制备电极,然后进行极化处理。

所述在陶瓷上制备电极是指在陶瓷上涂覆银浆,烧银。所述烧银条件为:700℃~800℃下处理15~20min。

为了补偿高温下Pb的挥发,步骤2)中除按化学计量比Pb0.955Sm0.03[(Mg1/3Nb2/3)1- xTix]O3称量外,需额外加入Pb3O4,额外加入的Pb3O4的加入量为Pb0.955Sm0.03[(Mg1/3Nb2/3)1- xTix]O3质量的0.1~0.5wt%。

优选的,步骤1)所述煅烧条件为1150~1250℃煅烧5~7h,优选1200℃煅烧6h。所述煅烧在空气氛围下进行。

步骤2)所述预处理条件为400~600℃热处理2~6h,优选500℃下4h。所述预处理在空气氛围下进行。

步骤3)所述煅烧的条件为850~950℃煅烧2~6h,优选煅烧条件为900℃下4h。所述煅烧在空气的氛围下进行。

步骤4)所述粘结剂为聚乙烯醇,所述粘结剂的加入量占煅烧粉体质量的1~1.5%。

步骤1)、3)和4)中各自所述过筛的目数为60~80。

步骤1)、3)和4)各自所述球磨混合均匀的条件:以水为溶剂,钇全稳定氧化锆球为球磨介质,其中料、球和水的质量比为1∶2∶1,300~350r/min球磨90~120min。

步骤4)所述压片的条件:20~24MPa单向加压保持15~25s。

步骤5)所述排胶的条件:700~800℃下处理30~60min;步骤1)和3)各自所述烘干的条件为:100~130℃下烘10~12h。步骤4)中所述干燥的条件为100~130℃下干燥10~12h。

步骤5)所述烧结的温度为1230℃~1270℃,烧结的时间为1~3h;所述烧结温度优选为1250℃。

步骤5)所述极化处理的条件:常温下硅油槽中、1kV/mm直流电场下极化10~15min。

上述高应变温度稳定性弛豫铁电陶瓷材料优选在致动器中应用。

与现有技术相比,本发明具有以下优点及有益效果:

(1)本发明具有工艺简单、成本低廉、重复性好等优势。

(2)本发明通过引入Sm2O3,所制备的弛豫铁电陶瓷材料在-10℃~+65℃范围内横向场致应变随温度变化率小于±5%,满足高精度微位移致动器应用要求。

附图说明

图1为实施例1所得Pb0.955Sm0.03[(Mg1/3Nb2/3)0.68Ti0.32]O3在空气中1250℃烧结2h样品在-55℃~+65℃间横向场致应变随温度变化曲线;

图2为实施例2所得Pb0.955Sm0.03[(Mg1/3Nb2/3)0.67Ti0.33]O3在空气中1250℃烧结2h样品在-55℃~+65℃间横向场致应变随温度变化曲线;

图3为实施例3所得Pb0.955Sm0.03[(Mg1/3Nb2/3)0.66Ti0.34]O3在空气中1250℃烧结2h样品在-55℃~+65℃间横向场致应变随温度变化曲线;

图4为实施例4所得Pb0.955Sm0.03[(Mg1/3Nb2/3)0.65Ti0.35]O3在空气中1250℃烧结2h样品在-55℃~+65℃间横向场致应变随温度变化曲线。

具体实施方式

下面结合附图和实施例对本发明作进一步说明,本发明要求保护的范围并不局限于实施例所述范围。

实施例1~4

以Nb2O5和(MgCO3)4·Mg(OH)2·5H2O为原料,按化学计量比MgNb2O6配料,行星球磨混合均匀后烘干过80目筛,然后置于刚玉坩埚中空气下1200℃煅烧6h,得到MgNb2O6前驱体。

将原料Sm2O3置于刚玉坩埚中空气下500℃煅烧4h预处理,得到预处理的Sm2O3

以Pb3O4、TiO2、预处理的Sm2O3和MgNb2O6前驱体为原料,按Pb0.955Sm0.03[(Mg1/ 3Nb2/3)1-xTix]O3+0.3%wt Pb3O4化学计量比配料,行星球磨90min混合均匀(以去离子水为溶剂,转速为300转/分钟),烘干后过80目筛,置于刚玉坩埚在空气中900℃下煅烧4h。所得粉体行星球磨粉碎90min(以去离子水为溶剂,转速为300转/分钟),烘干过80目筛后,加入粉体质量10%的聚乙烯醇(PVA)溶液(PVA溶液的浓度为10wt%质量百分比)(聚乙烯醇的用量占煅烧粉末质量的1%,聚乙烯醇PVA-1788,聚合度为1700,醇解度为88%,),研磨混合均匀,过60目筛造粒,22MPa下保压20s干压成型,制成直径25mm、厚度1.2mm圆片,750℃下排胶30min,然后置于密闭刚玉坩埚中1250℃下烧结2h成瓷。

样品电极为纯银,采用丝网印刷工艺制备双面全电极结构,750℃空气中烧结15min。再将含有银电极的陶瓷置于硅油槽中,常温下施加1kV/mm直流电场极化15min。

极化样品室温下放置24后采用Agilent E4981A电容仪测试电容和介质损耗,测试频率为1kHz,测试电平为1Vpp,测试温度为室温;采用ZJ-3型准静态d33测试仪测试压电电荷系数d33,测试温度为室温;横向场致应变由计算机程序控制Keithley 2410源表和MDS系列LVDT测微仪获得,-55℃~+65℃温度环境由GZ-ESPEC710P型环境试验箱提供,测试采用幅值800V/mm单向三角波电场,测试频率为0.02Hz。横向场致应变及随温度变化率分别由下列公式计算:

式中,Savg为指定温度范围内横向场致应变平均值;Smax和Smin分别为指定温度范围内横向场致应变最大值和最小值。测试结果如表1所示。

表1 实施例1~4制备的陶瓷的性能测试数据

表1中d33,εr,tanδ分别表示压电常数,介电常数,介电损耗。

图1为实施例1所得Pb0.955Sm0.03[(Mg1/3Nb2/3)0.68Ti0.32]O3在空气中1250℃烧结2h样品在-55℃~+65℃间横向场致应变随温度变化曲线;

图2为实施例2所得Pb0.955Sm0.03[(Mg1/3Nb2/3)0.67Ti0.33]O3在空气中1250℃烧结2h样品在-55℃~+65℃间横向场致应变随温度变化曲线;

图3为实施例3所得Pb0.955Sm0.03[(Mg1/3Nb2/3)0.66Ti0.34]O3在空气中1250℃烧结2h样品在-55℃~+65℃间横向场致应变随温度变化曲线;

图4为实施例4所得Pb0.955Sm0.03[(Mg1/3Nb2/3)0.65Ti0.35]O3在空气中1250℃烧结2h样品在-55℃~+65℃间横向场致应变随温度变化曲线。

从图1~4和表1可知:温度-10℃~+65℃范围内,弛豫铁电陶瓷材料Pb0.955Sm0.03[(Mg1/3Nb2/3)1-xTix]O3+0.3%wt Pb3O4中x=0.32~0.35时,横向场致应变随温度变化率τS小于±5%,满足高精度微位移致动器应用要求。优选的,x=0.33样品综合性能最佳。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种应用于太阳能电池的硫化物靶材及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!