一种耐热冲击性优异的堇青石质蜂窝陶瓷载体及其制备方法

文档序号:1682122 发布日期:2020-01-03 浏览:19次 >En<

阅读说明:本技术 一种耐热冲击性优异的堇青石质蜂窝陶瓷载体及其制备方法 (Cordierite honeycomb ceramic carrier with excellent thermal shock resistance and preparation method thereof ) 是由 史亮 冯家迪 于 2019-10-12 设计创作,主要内容包括:本发明公开了一种耐热冲击性优异的堇青石质蜂窝陶瓷载体,所述堇青石质蜂窝陶瓷载体中形成堇青石的原料包括滑石、高岭土、二氧化硅、氧化铝源,且满足:&lt;Image he="127" wi="700" file="DDA0002230395390000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;其中,S为参数;R为滑石形态指数;K为高岭土切割指数;A为氧化铝源比表面积,单位m&lt;Sup&gt;2&lt;/Sup&gt;/g;E为滑石粒径,单位μm;所述R≥0.80,K≥0.84,A≥20m&lt;Sup&gt;2&lt;/Sup&gt;/g,E为7-35μm。本发明制备所得载体具有低热膨胀系数,优异的耐热冲击性,汽车尾气排放满足国六排放标准。(The invention discloses a cordierite honeycomb ceramic carrier with excellent thermal shock resistance, wherein the cordierite forming raw materials in the cordierite honeycomb ceramic carrier comprise talc, kaolin, silica and an alumina source, and satisfy the following conditions: wherein S is a parameter; r is talc morphology index; k is the kaolin cutting index; a is the specific surface area of the alumina source and the unit m 2 (ii)/g; e is the particle diameter of talc with unit of mu m; r is more than or equal to 0.80, K is more than or equal to 0.84, A is more than or equal to 20m 2 G, E is 7-35 μm. The carrier prepared by the method has low thermal expansion coefficient and excellent thermal shock resistance, and the automobile exhaust emission meets the national emission standard.)

一种耐热冲击性优异的堇青石质蜂窝陶瓷载体及其制备方法

技术领域

本发明涉及一种具有低热膨胀系数的陶瓷载体的制备方法,尤其是涉及具有优异的耐热冲击性能堇青石蜂窝陶瓷体的制备方法。

背景技术

汽车尾气、柴油车尾气排放,会严重污染大气环境,主要排放的污染物为一氧化碳、硫化物、氮氧化合物、碳氢化合物、以及固体微粒颗粒;随着人们对环境高度重视,世界上已有部分国家实施欧六标准,我国也将在2019年实施国六标准。

汽车尾气、柴油车尾气排放过滤净化装置一般以堇青石多孔材料制备而成,以氧化铝、氧化硅、氧化镁原料合成,粉体经配料、混料、捏合、炼泥、陈腐、挤出成型、切割、烧结、磨边、造皮、封孔和检测等多道程序制备而成。

在工程应用上,堇青石蜂窝陶瓷耐热冲击性尤为重要,直接关系到使用寿命,目前大多数蜂窝陶瓷厂,想尽各种办法降低热膨胀系数。如美国专利US7481962中提出高岭土切割指数大于0.84,可以获得热膨胀系数0.3×10-6/℃。在烧制的过程中,所述堇青石晶体从高岭土粒子(结晶粒子)为核生长,从而越过高岭土粒子的c轴成直角。由此,如果该晶体可以被定向,使得高岭土粒子的c轴交叉成直角挤出成形时的成形品的长度方向,该堇青石晶体可以如上述定向。高岭土颗粒的挤出成形时的取向主要由高岭土颗粒本身的形状所决定。当高岭土颗粒变得平坦,颗粒通过挤出成形时的模具的狭缝的情况下,颗粒容易定向。层状高岭土颗粒变得更平由于脱层(层间剥离)的层的数量减少。然而,由于目前本领域没有专门对测定高岭土颗粒的形状的方法进行研究,所以难以有选择地使用具有合适的上述形状的高岭土颗粒用于降低热膨胀系数的堇青石蜂窝结构体的材料。如美国专利US2007240397A1中提出滑石的粒径在13-33um范围内可降低热膨胀系数;同时美国专利US2684919、US3885977提示了滑石形态指数对热膨胀系数的影响,形态指数R大于0.80以上,对降低热膨胀系数有一定作用;专利CN1834059A中描述氧化铝源比表面积大于20m2/g,热膨胀系数为在室温-800℃为0.25×10-6/℃。

目前,大部分专利合成堇青石,为了降低热膨胀系数,提高耐热冲击性,都是单从高岭土的切割指数、滑石形态指数、滑石的粒度、氧化铝源的比表面积一个方面研究分析降低膨胀系数,而往往满足一个方面是很难使热膨胀系数降到最低。

发明内容

本申请针对现有技术的不足,本发明提供了一种耐热冲击性优异的堇青石质蜂窝陶瓷载体及其制备方法。本发明制备所得载体具有低热膨胀系数,优异的耐热冲击性,汽车尾气排放满足国六排放标准。

本发明的技术方案如下:

一种耐热冲击性优异的堇青石质蜂窝陶瓷载体,所述堇青石质蜂窝陶瓷载体中形成堇青石的原料包括滑石、高岭土、二氧化硅、氧化铝源,且满足:

其中,S为参数;R为滑石形态指数;K为高岭土切割指数;A为氧化铝源比表面积,单位m2/g;E为滑石粒径,单位μm;

所述R≥0.80,K≥0.84,A≥20m2/g,E为7-35μm。

所述高岭土为未煅烧高岭土与煅烧高岭土的混合物,两者质量比为1:1;所述高岭土的平均粒径为2-11μm;所述二氧化硅的平均粒径为5-35μm。

所述氧化铝源为α氧化铝、γ氧化铝、κ氧化铝、η氧化铝、θ氧化铝、氢氧化铝、一水合铝石、勃姆石中的一种或多种;所述α氧化铝的平均粒径为0.5-10μm;所述勃姆石的平均粒径为0.1-1μm。

所述形成堇青石的原料及各原料的质量百分数为:滑石37-43%,高岭土30-40%,二氧化硅5-10%,氧化铝源15-25%。

一种所述耐热冲击性优异的堇青石质蜂窝陶瓷载体的制备方法,所述制备方法包括如下步骤:

将滑石、高岭土、二氧化硅、氧化铝源混合形成的无机原料和5wt%有机粘合剂进行混合均匀,加水和2wt%润滑剂、0.5wt%分散剂和1.5wt%表面活性剂进行捏合15min、炼泥2遍、陈腐48h、16Mpa压力下挤出成型、微波干燥、1400℃下烧成96h、自动切割、磨边、封孔植皮,最终制得所述陶瓷载体。

所述有机粘合剂为甲基纤维素、羟丙基甲基纤维、羟乙基纤维中的一种或多种。所述表面活性剂为硬脂酸钠、月桂酸钾皂、硬脂酸、月桂酸中的一种或多种。

一种所述耐热冲击性优异的堇青石质蜂窝陶瓷载体的用途,运用于汽油车载体、汽油车过滤器、柴油车过滤器、DOC、SCR、DPF、或GPF。

本发明有益的技术效果在于:

现有技术仅对某一种原料形貌与热膨胀系数关联性进行研究,但对耐热冲击性能没进行深入研究;本发明申请制作堇青石载体使用的无机原料形貌以指数形式进行表述,把这参数与热膨胀系数关联性进行研究,并与耐热冲击性能进行深入研究,耐热冲击性能是国六产品的关键指标,其重要性远大于热膨胀系数。

附图说明

图1为为滑石形态指数R与热膨胀系数CTE关系图;

图2为高岭土切割指数K与热膨胀系数CTE关系图;

图3为滑石粒径与热膨胀系数CTE关系图;

图4为氧化铝源比表面积BET与热膨胀CTE关系图;

图5为氧化铝源比表面积BET与S参数关系图;

图6为耐热震性温度℃与S参数关系图。

具体实施方式

下面结合附图和实施例,对本发明进行具体描述。

本发明具体实施例和比较例的性能见表1、表2、表3、表4;实施例和比较例的制备方法是无机原料和有机粘合剂5wt%羟丙基纤维素进行混合均匀,加水和2wt%甘油润滑剂、0.5wt%月桂酸分散剂和1.5wt%硬脂酸表面活性剂进行捏合15min、炼泥2遍、陈腐48h、16Mpa压力下挤出成型、微波干燥、1400℃下烧成96h、自动切割、磨边、封孔植皮,制得陶瓷载体。各实施例组成及性能测试结果分别如表1-4所示。

表1滑石形态指数R与热膨胀系数CTE关系

Figure BDA0002230395370000031

Figure BDA0002230395370000041

表2高岭土切割指数K与热膨胀系数CTE关系

Figure BDA0002230395370000042

表3滑石平均粒径E与热膨胀系数CTE关系

Figure BDA0002230395370000043

Figure BDA0002230395370000051

表4氧化铝源比表面积BET的A值与热膨胀系数CTE关系

Figure BDA0002230395370000052

Figure BDA0002230395370000061

注:

(1)滑石形态指数测定方法:

测定该取向滑石的x射线衍射图,形态指数使用以下等式半定量地将滑石的板状特征与其XRD峰强度相关联:M=Ix(Ix+2Iy)-1;其中Ix是(004)峰的强度,并且Iy是(020)反射(与(111)和(110)重叠)的强度。

(2)高岭土切割指数测定方法:

切割指数=(002)/[(200)+(020)+(002)],其中,(200),(020)和(002)表示通过X射线衍射中的(200)测得的高岭土颗粒的峰强度的值,(020),和(002)面。

由图1可以看出实施例中滑石的形态指数R与CTE成反比;由图2可以看出为实施例中高岭土切割指数K与CTE成反比;由图3可以看出实施例中滑石平均粒径与CTE成反比;由图4可以看出实施例氧化铝源比表面积BET(A)与CTE成反比;由图5可以看出实施例中氧化铝源比表面积BET(A)与S参数成正比;由图6可以看出实施例显示耐热震性温度与S参数成正比。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种脱模成型的钧瓷及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!