一种直立式火星飞行器共轴旋翼系统升阻特性测量装置

文档序号:1701956 发布日期:2019-12-13 浏览:5次 >En<

阅读说明:本技术 一种直立式火星飞行器共轴旋翼系统升阻特性测量装置 (lift-drag characteristic measuring device for vertical Mars aircraft coaxial rotor system ) 是由 唐德威 赵鹏越 陈水添 全齐全 邓宗全 朱凯杰 吕艺轩 于 2019-09-24 设计创作,主要内容包括:一种直立式火星飞行器共轴旋翼系统升阻特性测量装置,它涉及一种测量装置。本发明解决了现有的旋翼系统升阻特性测试装置没有针对火星飞行器系统提供充足的转速并精确获取旋翼系统工作时产生的升力与扭矩,难以满足实际的工程需求的问题。内轴的下端依次穿过外轴上齿轮、第一挡圈、内轴下齿轮、第二挡圈、第一深沟球轴承和第三挡圈,内轴的下端通过双螺母锁紧,外轴上齿轮通过一对第一深沟球轴承安装在内轴上且二者同轴连接,内轴上齿轮与内轴下齿轮相互啮合,外轴下齿轮与外轴上齿轮的下部外沿相互啮合,轴承外壳的下端安装在上支架的中心处,外轴上齿轮通过两个第二深沟球轴承安装在轴承外壳内。本发明用于火星飞行器共轴旋翼系统升阻特性测量。(A lift-drag characteristic measuring device for a coaxial rotor system of a vertical Mars aircraft relates to a measuring device. The invention solves the problems that the existing rotor system lift-drag characteristic testing device does not provide sufficient rotating speed for a Mars aircraft system, accurately obtains the lift force and the torque generated by the rotor system during working and is difficult to meet the actual engineering requirement. The lower end of the inner shaft sequentially penetrates through the outer shaft upper gear, the first retaining ring, the inner shaft lower gear, the second retaining ring, the first deep groove ball bearings and the third retaining ring, the lower end of the inner shaft is locked through the double nuts, the outer shaft upper gear is mounted on the inner shaft through the pair of first deep groove ball bearings and is coaxially connected with the inner shaft upper gear and the inner shaft lower gear, the outer shaft lower gear is meshed with the outer edge of the lower portion of the outer shaft upper gear, the lower end of the bearing shell is mounted at the center of the upper support, and the outer shaft upper gear is mounted in the bearing shell through the two second deep groove ball bearings. The method is used for measuring the lift-drag characteristic of the coaxial rotor system of the Mars aircraft.)

一种直立式火星飞行器共轴旋翼系统升阻特性测量装置

技术领域

本发明涉及一种旋翼系统升阻特性测量装置,具体涉及一种直立式火星飞行器共轴旋翼系统升阻特性测量装置。

背景技术

火星作为一颗与地球毗邻的红色星球,完整地记录了太阳系行星的演变历程,对探测火星表面对研究行星地质结构、探索生命起源及扩展人类的第二家园具有重要意义。目前对火星表面的探测方式主要采用火星漫游车,由于火星表面地形地貌复杂并存的大量沙坑等危险区域,火星漫游车的表面探测存在极大地挑战。研究表明火星表面存在稀薄的大气环境,这为研制一种用于协助火星漫游车实现火星探测任务的飞行器提供了可能性。根据飞行原理,飞行器主要包括固定翼式、扑翼式及旋翼式三类,其中固定翼式飞行器需要较长的平缓跑到实现飞行器的起降,难以适应火星表面崎岖多变的地形特征,扑翼式飞行的飞行升力较低且扑翼式飞行器难以携带较大的探测设备如高分辨率相机等,难以用于协助火星漫游车探测,旋翼式飞行能够在火星表面实现平稳起降并能够在一定飞行高度悬停以探测规划火星漫游车运动轨迹,对火星探测任务的实施具有重要意义。因而,研制一种适用于火星大气环境的共轴式旋翼系统对火星飞行器的功能实现具有重要的理论与工程意义。

现有的旋翼系统升阻特性测试装置没有针对火星飞行器系统提供充足的转速并精确获取旋翼系统工作时产生的升力与扭矩,难以满足实际的工程需求。

发明内容

本发明为解决现有的旋翼系统升阻特性测试装置没有针对火星飞行器系统提供充足的转速并精确获取旋翼系统工作时产生的升力与扭矩,难以满足实际的工程需求的问题,进而提供一种直立式火星飞行器共轴旋翼系统升阻特性测量装置。

本发明为解决上述技术问题采取的技术方案是:

本发明的直立式火星飞行器共轴旋翼系统升阻特性测量装置包括旋翼模块1、驱动模块2和测量模块3,旋翼模块1、驱动模块2和测量模块3沿旋翼系统旋转轴竖直方向依次连接;

旋翼模块1包括上桨夹1-1、内轴1-4、上旋翼安装座1-5、下桨夹1-8和多个旋翼桨叶1-9;上旋翼安装座1-5可拆卸安装在内轴1-4的上端,上桨夹1-1可拆卸安装在上旋翼安装座1-5上,上桨夹1-1上可拆卸安装有两个旋翼桨叶1-9,下桨夹1-8可拆卸安装在驱动模块2的下旋翼工装2-1上,下桨夹1-8上可拆卸安装有两个旋翼桨叶1-9;

驱动模块2包括下旋翼工装2-1、轴承端盖2-4、外轴上齿轮2-5、上支架2-9、外轴下齿轮2-10、下支架2-12、内轴下齿轮2-16、轴承下端盖2-21、两台高速电机2-24、轴承外壳2-26和内轴上齿轮2-27;下旋翼工装2-1安装在内轴1-4的中部,内轴1-4的下端依次穿过外轴上齿轮2-5、第一挡圈2-17、内轴下齿轮2-16、第二挡圈2-25、第一深沟球轴承2-19和第三挡圈2-25,内轴1-4的下端通过双螺母2-23锁紧,外轴上齿轮2-5通过一对第一深沟球轴承2-2安装在内轴1-4上且二者同轴连接,两台高速电机2-24左右对应安装在测量模块3的底座3-2上端面上,两台高速电机2-24的上部与下支架2-12可拆卸连接,内轴上齿轮2-27安装在左侧的高速电机2-24的输出轴上,内轴上齿轮2-27与内轴下齿轮2-16相互啮合,外轴下齿轮2-10安装在右侧的高速电机2-24的输出轴上,外轴下齿轮2-10与外轴上齿轮2-5的下部外沿相互啮合,上支架2-9可拆卸安装在下支架2-12的上端面上,轴承外壳2-26的下端安装在上支架2-9的中心处,外轴上齿轮2-5通过两个第二深沟球轴承2-7安装在轴承外壳2-26内,轴承端盖2-4可拆卸安装在轴承外壳2-26的上端面上,内轴1-4的下端通过第三深沟球轴承2-19安装在下支架2-12上,轴承下端盖2-21可拆卸连接在下支架2-12的中部;

测量模块3包括底座3-2和多个压力传感器3-1,压力传感器3-1沿圆周方向均布安装在底座3-2和下支架2-12之间。

在一个实施方案中,上桨夹1-1上安装有两个旋翼桨叶1-9,下桨夹1-8上安装有两个旋翼桨叶1-9,上桨夹1-1上的两个旋翼桨叶1-9与下桨夹1-8上的两个旋翼桨叶1-9的旋转方向相反。

在一个实施方案中,上桨夹1-1通过两个螺栓螺母与旋翼桨叶1-9可拆卸连接,下桨夹1-8通过两个螺栓螺母与旋翼桨叶1-9可拆卸连接,螺栓螺母均采用双螺母锁紧。

在一个实施方案中,内轴1-4用于驱动上桨夹1-1上的旋翼桨叶1-9高速旋转,外轴上齿轮2-5用于驱动下桨夹1-8上的旋翼桨叶1-9高速旋转,内轴1-4与外轴上齿轮2-5的旋转运动相互独立,内轴1-4与外轴上齿轮2-5的旋转方向相反。

在一个实施方案中,压力传感器3-1为S形压力传感器,压力传感器3-1的数量为以三个,周向设置的压力传感器3-1可以对旋翼模块1各方向产生的升力直接测量。

在一个实施方案中,外轴上齿轮2-5由套筒段和齿轮构成,套筒段的下端与齿轮同轴固装为一体。

在一个实施方案中,内轴1-4的下部通过位于左侧的高速电机2-24驱动,外轴上齿轮2-5的齿轮通过位于右侧的高速电机2-24驱动,高速电机2-24与下支架2-12可拆卸连接。

在一个实施方案中,共轴旋翼系统的结构形式为直立式。

本发明与现有技术相比具有以下有益效果:

本发明的直立式火星飞行器共轴旋翼系统升阻特性测量装置结构设计科学合理,高速电机布置于旋转轴的两侧并分别与一组齿轮配合,高速电机工作过程中旋转方向相反,上旋翼叶片和下旋翼叶片反装,从而实现上、下旋翼相反的旋转运动从而抵消上下旋翼产生的扭矩;内轴、外轴上齿轮的运动过程的同轴度分别通过一对深沟球轴承实现,最终保证旋翼系统运动过程中内、外轴运动过程的同轴度;旋翼模块与驱动模块相连,装置整体结构紧凑稳定性高,测量模块布置于装置底部,通过压力传感器直接获取共轴旋翼系统的升阻特性,可满足测量装置的测量精度要求;

本发明的旋翼可以整体进行安装与拆卸,可通过更换桨夹实现对旋翼安装角的调整,可通过更换旋翼桨叶实现对不同桨叶形式的调整,旋翼系统更换简单快速,实验前可对旋翼模块整体进行动平衡实验,保证旋翼模块工作过程中的运动稳定性;

本发明采用齿轮实现旋转轴相反方向旋转运动的传递,避免两高速电机装配发生干涉;

本发明中高速电机与S形压力传感器布置于同一平面,保证测试装置结构紧凑;

本发明的测量模块采用S形压力传感器直接测量,可实现竖直方向升力的测量,保证测量结果的正确性与准确性;

本发明通过多次试验可知,单旋翼系统升阻特性测量装置可实现的转速调节范围为0–3000r/min,转速误差为±10r/min,旋翼系统桨叶直径的调节范围为0.5–1.5m,旋翼系统可快速更换桨叶并调整安装角大小,装配简单高效。

本发明通过多次试验可知,旋翼系统在3000r/min,内、外轴高速运动过程具有良好的同轴度与运动平稳性。

本发明通过多次试验可知,旋翼系统在3000r/min,翼展1.0m时,640Pa的二氧化碳环境工作过程整体性能稳定。

附图说明

图1是本发明的直立式火星飞行器共轴旋翼系统升阻特性测量装置立体图;

图2是本发明的直立式火星飞行器共轴旋翼系统升阻特性测量装置主剖视图;

图3是本发明的直立式火星飞行器共轴旋翼系统升阻特性测量装置主视图;

图4是图2的A-A剖视图。

具体实施方式

具体实施方式一:如图1~4所示,本实施方式的直立式火星飞行器共轴旋翼系统升阻特性测量装置包括旋翼模块1、驱动模块2和测量模块3,旋翼模块1、驱动模块2和测量模块3沿旋翼系统旋转轴竖直方向依次连接;

旋翼模块1包括上桨夹1-1、内轴1-4、上旋翼安装座1-5、下桨夹1-8和多个旋翼桨叶1-9;上旋翼安装座1-5可拆卸安装在内轴1-4的上端,上桨夹1-1可拆卸安装在上旋翼安装座1-5上,上桨夹1-1上可拆卸安装有两个旋翼桨叶1-9,下桨夹1-8可拆卸安装在驱动模块2的下旋翼工装2-1上,下桨夹1-8上可拆卸安装有两个旋翼桨叶1-9;

驱动模块2包括下旋翼工装2-1、轴承端盖2-4、外轴上齿轮2-5、上支架2-9、外轴下齿轮2-10、下支架2-12、内轴下齿轮2-16、轴承下端盖2-21、两台高速电机2-24、轴承外壳2-26和内轴上齿轮2-27;下旋翼工装2-1安装在内轴1-4的中部,内轴1-4的下端依次穿过外轴上齿轮2-5、第一挡圈2-17、内轴下齿轮2-16、第二挡圈2-25、第一深沟球轴承2-19和第三挡圈2-25,内轴1-4的下端通过双螺母2-23锁紧,外轴上齿轮2-5通过一对第一深沟球轴承2-2安装在内轴1-4上且二者同轴连接,两台高速电机2-24左右对应安装在测量模块3的底座3-2上端面上,两台高速电机2-24的上部与下支架2-12可拆卸连接,内轴上齿轮2-27安装在左侧的高速电机2-24的输出轴上,内轴上齿轮2-27与内轴下齿轮2-16相互啮合,外轴下齿轮2-10安装在右侧的高速电机2-24的输出轴上,外轴下齿轮2-10与外轴上齿轮2-5的下部外沿相互啮合,上支架2-9可拆卸安装在下支架2-12的上端面上,轴承外壳2-26的下端安装在上支架2-9的中心处,外轴上齿轮2-5通过两个第二深沟球轴承2-7安装在轴承外壳2-26内,轴承端盖2-4可拆卸安装在轴承外壳2-26的上端面上,内轴1-4的下端通过第三深沟球轴承2-19安装在下支架2-12上,轴承下端盖2-21可拆卸连接在下支架2-12的中部;

测量模块3包括底座3-2和多个压力传感器3-1,压力传感器3-1沿圆周方向均布安装在底座3-2和下支架2-12之间。

具体实施方式二:如图1和图2所示,本实施方式上桨夹1-1上安装有两个旋翼桨叶1-9,下桨夹1-8上安装有两个旋翼桨叶1-9,上桨夹1-1上的两个旋翼桨叶1-9与下桨夹1-8上的两个旋翼桨叶1-9的旋转方向相反。如此设计,从而实现上、下旋翼相反的旋转运动从而抵消上下旋翼产生的扭矩。其它组成及连接关系与具体实施方式一相同。

具体实施方式三:如图1和图2所示,本实施方式上桨夹1-1通过两个螺栓螺母与旋翼桨叶1-9可拆卸连接,下桨夹1-8通过两个螺栓螺母与旋翼桨叶1-9可拆卸连接,螺栓螺母均采用双螺母锁紧。如此设计,本发明中上、下旋翼的安装角大小可通过更换上桨夹1-1与下桨夹1-8实现,桨叶的几何形状可通过更换旋翼桨叶1-9实现,上、下旋翼可分别作为整体进行拆卸与更换,并在旋翼整体进行动平衡实验后进行装配,满足实验装置对旋翼系统测试的适用性要求。其它组成及连接关系与具体实施方式一或二相同。

具体实施方式四:如图1和图2所示,本实施方式内轴1-4用于驱动上桨夹1-1上的旋翼桨叶1-9高速旋转,外轴上齿轮2-5用于驱动下桨夹1-8上的旋翼桨叶1-9高速旋转,内轴1-4与外轴上齿轮2-5的旋转运动相互独立,内轴1-4与外轴上齿轮2-5的旋转方向相反。如此设计,本发明采用齿轮实现旋转轴相反方向旋转运动的传递,避免两高速电机装配发生干涉。其它组成及连接关系与具体实施方式三相同。

具体实施方式五:如图1和图2所示,本实施方式压力传感器3-1为S形压力传感器,压力传感器3-1的数量为以三个,周向设置的压力传感器3-1可以对旋翼模块1各方向产生的升力直接测量。如此设计,三个S形压力传感器3-1均布于下支架2-12底部,可以在旋翼系统高速旋转时对上、下旋翼产生的总升力大小进行直接测量。其它组成及连接关系与具体实施方式一、二或四相同。

具体实施方式六:如图2所示,本实施方式外轴上齿轮2-5由套筒段和齿轮构成,套筒段的下端与齿轮同轴固装为一体。如此设计,内轴、外轴上齿轮的运动过程的同轴度分别通过一对深沟球轴承实现,最终保证旋翼系统运动过程中内、外轴运动过程的同轴度。其它组成及连接关系与具体实施方式五相同。

具体实施方式七:如图2所示,本实施方式内轴1-4的下部通过位于左侧的高速电机2-24驱动,外轴上齿轮2-5的齿轮通过位于右侧的高速电机2-24驱动,高速电机2-24与下支架2-12可拆卸连接。如此设计,通过左侧的高速电机2-24驱动内轴1-4高速旋转,通过右侧的高速电机2-24驱动外轴上齿轮2-5高速旋转,内轴1-4与外轴上齿轮2-5的旋转运动同轴且相互独立可控,旋转方向相反,高速电机2-24与下支架2-12可拆卸连接可以实现二者快速安装和拆卸。其它组成及连接关系与具体实施方式一、二、四或六相同。

具体实施方式八:如图1、图2和图3所示,本实施方式共轴旋翼系统的结构形式为直立式。如此设计,可以满足火星大气环境条件下共轴旋翼系统的动力学特性指标要求。其它组成及连接关系与具体实施方式七相同。

具体实施方式九:如图1和图2所示,本实施方式内轴上齿轮2-27与内轴下齿轮2-16的转速比为1。如此设计,因而可通过调整高速电机2-24的电压大小对上、下旋翼转速进行直接调整,高速电机2-24的转速大小可通过其内部的码盘进行高精度实时测量,满足实验装置对旋翼转速控制性能的要求。其它组成及连接关系与具体实施方式一、二、四、六或八相同。

具体实施方式十:如图1和图2所示,本实施方式外轴下齿轮2-10与外轴上齿轮2-5的转速比为1。如此设计,因而可通过调整高速电机2-24的电压大小对上、下旋翼转速进行直接调整,高速电机2-24的转速大小可通过其内部的码盘进行高精度实时测量,满足实验装置对旋翼转速控制性能的要求。其它组成及连接关系与具体实施方式一、二、四、六或九相同。

以上仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落在本发明的保护范围。

工作过程:

上旋翼系统的传动过程:高速电机2-24在电压驱动作用下高速旋转,高速电机2-24将旋转运动传递至内轴上齿轮2-27,内轴上齿轮2-27与内轴下齿轮2-16配合将旋转运动传递至内轴下齿轮2-16,内轴下齿轮2-16与内轴1-4连接将旋转传递至内轴1-4,内轴1-4运动过程中其同轴度通过深沟球轴承2-2保证,内轴1-4与上桨夹1-1连接传递旋转运动,上桨夹1-1与旋翼桨叶1-9连接,最终上旋翼的旋翼桨叶1-9高速旋转产生升力;

上旋翼系统的传动过程:高速电机2-24在电压驱动作用下高速旋转,高速电机2-24将旋转运动传递至外轴下齿轮2-10,外轴下齿轮2-10与外轴上齿轮2-5配合将旋转运动传递至外轴上齿轮2-5,外轴上齿轮2-5运动过程中其同轴度通过深沟球轴承2-7保证,外轴上齿轮2-5与下旋翼工装2-1连接传递旋转运动,下旋翼工装2-1与下桨夹1-8传递旋转运动,下桨夹1-8与旋翼桨叶1-9连接,最终下旋翼的旋翼桨叶1-9高速旋转产生升力。

旋翼系统升阻特性测试方法:上、下旋翼在高速电机2-24的驱动作用下高速旋转并产生升力,布于下支架2-12底部的三个S形压力传感器3-1直接测量共轴旋翼系统产生的升力大小,高速电机2-24内部元件可直接测量其压力与电流大小从而获得左、右两高速电机2-24驱动过程中所损耗的功率大小。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于测试火星飞行器单轴旋翼系统的悬停特性测试装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!