机动车辆及操作方法

文档序号:1705790 发布日期:2019-12-13 浏览:23次 >En<

阅读说明:本技术 机动车辆及操作方法 (Motor vehicle and method of operation ) 是由 J·哈姆森 M·巴莱诺维奇 F·德塞米特 C·波尔恩森 F·林森 于 2019-06-04 设计创作,主要内容包括:本发明涉及机动车辆及操作方法。提供了一种机动车辆1,其具有内燃发动机2和邻接内燃发动机2的排气系统3。排气系统3具有LNT催化转化器4、布置在LNT催化转化器4下游的可电加热的eSCR催化转化器5以及布置在eSCR催化转化器5下游的微粒过滤器6。此外,详细说明了用于这种机动车辆1的操作方法。(The invention relates to a motor vehicle and a method of operation. A motor vehicle 1 is provided having an internal combustion engine 2 and an exhaust system 3 adjoining the internal combustion engine 2. The exhaust system 3 has an LNT catalytic converter 4, an electrically heatable eSCR catalytic converter 5 arranged downstream of the LNT catalytic converter 4, and a particulate filter 6 arranged downstream of the eSCR catalytic converter 5. Furthermore, an operating method for such a motor vehicle 1 is specified.)

机动车辆及操作方法

技术领域

本发明涉及一种具有内燃发动机和邻接该内燃发动机的排气系统的机动车辆,以及用于这种机动车辆的操作方法。

背景技术

在机动车辆的内燃发动机的运转期间,控制空气污染物(例如,氮氧化物、烟灰颗粒等)的排放就愈发严格的法律要求而言构成了巨大的挑战。为了满足法律要求,越来越需要大型催化转化器,以便能够为排气的后处理提供令人满意的性能,例如,储存或还原氮氧化物或者烟灰颗粒的过滤。

例如,在内燃发动机的冷起动之后,排气后处理装置的缓慢升温也已被确定存在问题,因为直到达到最低温度(催化转化器的所谓起燃温度)为止,实现了不充分的排气后处理,并且空气污染物在此操作阶段被更大程度地释放到环境中。

因此,尝试将排气后处理装置布置成尽可能靠近内燃发动机,以便通过暖的排气实现最可能快的预热。例如,迄今为止习惯上将微粒过滤器与另外的排气后处理装置(例如,LNT催化转化器)一起直接容纳在发动机舱中,从而能够达到微粒过滤器再生所需的高温。

然而,内燃发动机附近的可用安装空间非常有限,因此由于空间不足,所需的大型催化转换器不能放置在内燃发动机附近。

替代地,排气后处理装置也可以布置在机动车辆的车身底部(underbody)区域中而不是布置在发动机舱中。这里,尽管有足够的空间,但由于距离内燃发动机的距离很远,因此在冷起动后升温仅非常缓慢地进行。另外,在布置在车身底部区域中的情况下,由于排放到环境中的热量的损失比在发动机舱中布置排气后处理装置的情况高得多,因此,暂时不能达到起燃温度。

发明内容

因此,本发明的目的是示出选项,使用所述选项能够避免或至少减少上述缺点。

该目的是通过独立权利要求的主题实现的。在从属权利要求中详细说明了本发明的有利改进。

根据本发明的机动车辆具有内燃发动机和邻接内燃发动机的排气系统。

内燃发动机(有时也称为燃烧机)应理解为意指用于将燃料中含有的化学能转换成机械功的内燃发动机。在为此所需的燃烧过程中形成排气。内燃发动机例如能够被构造为自点火或火花点火内燃发动机。例如,车用汽油或柴油可用作燃料。可选地,内燃发动机可以具有排气再循环系统,例如,高压排气再循环系统。

可选地,内燃发动机可以与电动马达组合以形成混合动力驱动器。换句话说,车辆可以是混合动力电动车辆。

排气系统由排气管形成,排气通过该排气管流动,并且排气后处理装置(例如,催化转化器、过滤器、传感器等)布置在该排气管中,从而排气也能够通过排气后处理装置流动,并且排气的性质(例如,其组成、温度等)能够通过传感器确定。给出的流动方向涉及来自内燃发动机的排气在排气系统的排出方向上的流动方向。

根据本发明的机动车辆的排气系统具有LNT催化转化器(稀NOx捕集器、氮氧化物存储催化转化器)、布置在LNT催化转化器下游的可电加热的eSCR催化转化器(选择性催化还原、氮氧化物还原催化转化器,“e”表示电加热的)以及布置在eSCR催化转化器下游的微粒过滤器。在一种设计变型中,排气系统具有三种先前提到的彼此直接相邻的排气后处理装置,即在明确提到的排气后处理装置之间没有布置另外的排气后处理装置。优选地,三种先前提到的排气后处理装置能够一个接一个地串联布置。

用于氨形成组合物(例如,尿素溶液)的进料装置可以布置在eSCR催化转化器的上游。这使得能够在混合物到达eSCR催化转化器之前将这种组合物供应到排气中并与排气混合,在eSCR催化转化器中氨在还原氮氧化物中充当还原剂。

可选地,微粒过滤器可具有SCR涂层。这种类型的微粒过滤器也已知被称为SDPF(SCR催化的柴油微粒过滤器)。

由于eSCR催化转化器被实现为可电加热的催化转化器,可以独立于排气温度选择升高eSCR催化转化器和布置在下游的微粒过滤器的温度。换句话说,能够独立于排气温度控制eSCR催化转化器和下游连接的微粒过滤器的温度。

例如,甚至能够在内燃发动机起动前不久或从内燃发动机起动起对eSCR催化转化器进行电加热,因此,甚至可以比在没有电加热的情况下在更加早的时间点在eSCR催化转化器中进行氮氧化物的催化还原。换句话说,能够更早地达到eSCR催化转化器的起燃温度,从而更有效地后处理排气中含有的氮氧化物,并且能够减少氮氧化物向环境中的排放。此外,例如,如果在较低的车辆速度的情况下,排气温度到目前为止下降到以至于没有电加热就不再能达到eSCR催化转化器的起燃温度的话,甚至能够通过电加热确保eSCR催化转化器的功能。

另外,由于eSCR催化转化器的电加热,能够独立于离开内燃发动机的排气的温度并且独立于LNT催化转化器的温度来控制布置在下游的微粒过滤器的温度。因为更高的温度能够由于电加热而达到,所以能够改善微粒过滤器的再生。用于温度升高的其它必要的后燃料喷射以及由于后燃料喷射引起的马达油的稀释造成的与之相关的问题能够被最小化或甚至避免。此外,在微粒过滤器的再生期间,LNT催化转化器的温度能够保持较低,从而LNT催化转化器中氮氧化物的储存能够有效地进行,并且能够减少或防止LNT催化转化器的热老化。

eSCR催化转化器被实现为可电加热的催化转化器另外允许eSCR催化转化器和微粒过滤器布置成远离内燃发动机,例如,在机动车辆的车身底部区域中在所谓的地板下位置。远离内燃发动机(即,在发动机舱外部)的布置进而允许更大尺寸的eSCR催化转化器和/或微粒过滤器,从而能够更有效地执行排气后处理并且能够减少空气污染物到环境中的排放。此外,通过eSCR催化转化器的电加热,能够补偿由车身底部区域中的布置引起的热损失。车身底部区域中的布置另外防止在满载状况下与过热相关联的eSCR催化转化器的过热及老化或损坏。

由于远离eSCR催化转化器的发动机和微粒过滤器的布置,另外还有更多的安装空间可用于靠近LNT催化转化器的发动机(所谓的紧密耦合位置)的布置,即发动机舱中的布置。这允许更大尺寸的LNT催化转化器,从而能够储存更多的氮氧化物。例如,在紧密耦合位置可用的安装空间能够完全用于LNT催化转化器,以便最大化LNT催化转化器的体积(所谓的整个紧密耦合位置)。

靠近LNT催化转化器的发动机的布置尤其在内燃发动机冷起动之后具有积极效果,因为LNT催化转化器主要负责在低温下从排气中去除氮氧化物。换句话说,特别是能够减少冷起动后氮氧化物向环境中的排放。在靠近LNT催化转化器的发动机的布置的情况下,LNT催化转化器的起燃温度能够另外更快地达到,从而在自较早时间点起的冷起动之后能够更有效地储存氮氧化物。

冷起动后的行为的实现类似地与工况有关,在所述工况中再次不满足排气后处理装置的最低温度或起燃温度。例如,如果内燃发动机在低负荷下运转(例如,在城市交通中驾驶时),可能是这种情况。即使在这样的情况下,根据本发明的机动车辆允许由于可能的温度升高而通过eSCR催化转化器进行有效的排气后处理。

根据各种设计变型,排气系统可具有布置在LNT催化转化器上游的温度传感器和/或布置在LNT催化转化器下游且在eSCR催化转化器上游的温度传感器和/或布置在微粒过滤器下游的温度传感器。

通过温度传感器,可以确定LNT催化转化器和eSCR催化转化器上游或微粒过滤器下游的排气温度,并由确定的排气温度得出关于相应催化转化器的温度的结论。

此外,排气系统可具有布置在LNT催化转化器下游且在eSCR催化转化器上游的氮氧化物传感器和/或布置在微粒过滤器下游的氮氧化物传感器。通过氮氧化物传感器,可以确定eSCR催化转化器上游或微粒过滤器下游的排气中的氮氧化物含量。

此外,排气系统可具有布置在LNT催化转化器上游的λ传感器。空燃比λ能够通过λ传感器确定。

温度传感器和/或氮氧化物传感器和/或λ传感器的测量信号能够传输到控制单元,该控制单元被构造和设置为根据测量信号输出用于电加热eSCR催化转换器的控制信号。换句话说,控制单元接收(一个或多个)温度传感器、(一个或多个)氮氧化物传感器和/或λ传感器的信号,根据一个或多个例程基于指令或控制单元中编程的代码处理这些信号,并将控制信号发送到作为致动器的电源装置,该电源装置用于向eSCR催化转换器的电加热供电,从而控制电加热。

控制单元可以使用硬件和/或软件来实现,并且可以物理地构造成一个或多个件。具体地,控制单元能够是发动机控制装置的一部分或集成到发动机控制装置中。在典型的实施例中,机动车辆的发动机控制装置用作控制单元。

可选地,控制单元能够被构造和设置为根据(一个或多个)温度传感器和/或(一个或多个)氮氧化物传感器和/或λ传感器的测量信号输出控制信号到进料装置用于将形成氨的混合物供应到排气,和/或输出控制信号用于影响到内燃发动机的燃烧室中的燃料喷射,例如,以便固定某一空燃比或排气中的氮氧化物与还原剂的某一比率。

通过(一个或多个)传感器和控制单元,因此可以实现eSCR催化转换器的电加热的开环或闭环控制,从而一方面能够使用于电加热的能量消耗保持尽可能低(因为电加热仅根据需要进行),并且另一方面,只要需要,就能够实现eSCR催化转化器和/或微粒过滤器的足够高的温度。

根据以上描述的根据本发明的用于机动车辆的操作方法包括:在内燃发动机中执行燃烧过程,其中形成排气;将排气中含有的氮氧化物储存在LNT催化转化器中;在eSCR催化转化器中还原排气中含有的氮氧化物并通过微粒过滤器对排气进行后处理。在LNT催化转化器中,也能够转化氮氧化物。例如,能够通过供应富排气(即,空燃比λ<1的排气)来还原氮氧化物。

根据本发明的操作方法通过根据本发明的前述机动车辆实现。在这方面,用于解释根据本发明的机动车辆的上述陈述也用于描述根据本发明的操作方法。根据本发明的操作方法的优点对应于根据本发明的机动车辆及其相应设计变型的优点。

根据各种设计变型,eSCR催化转化器可以被电加热。还可以选择确定LNT催化转化器上游和/或LNT催化转化器下游且在eSCR催化转化器上游和/或微粒过滤器下游的排气温度。温度传感器能够用于此目的。还可以对一个或多个或所有温度信号进行建模或计算,从而能够省去实际的温度测量。

例如,如果在LNT催化转化器下游且在eSCR催化转化器上游确定的排气温度太低,则可以进行eSCR催化转化器的电加热。

附图说明

从以下描述和附图中能够看出本发明的进一步优点。在图中:

图1示出了示例性实施例中的机动车辆;以及

图2示出了另一示例性实施例中的机动车辆。

参考标记列表

1 机动车辆

2 内燃发动机

3 排气系统

4 LNT催化转化器

5 eSCR催化转化器

6 微粒过滤器

7a、7b、7c 温度传感器

8 控制单元

9 排气

10 供应空气

11 燃料

12 排气装置

13 进料装置

14 电源装置

15 λ传感器

16a、16b 氮氧化物传感器

具体实施方式

在图1中的示例性实施例中示意性地图示了机动车辆1。机动车辆1具有内燃发动机2,该内燃发动机例如能够被构造为柴油发动机并且能够可选地具有高压排气再循环系统。供应空气10和燃料11被供应到内燃发动机2,以便能够在内燃发动机2的燃烧室中执行燃烧过程。可选地,机动车辆可以被构造为混合动力电动车辆。

在燃烧过程中形成排气9,该排气被引入排气系统3中。三个排气后处理装置布置在排气系统3中。沿排气9的流动方向看,这些装置是LNT催化转化器4、可电加热的eSCR催化转化器5和微粒过滤器6。微粒过滤器6具有SCR涂层。电源装置14被分配给eSCR催化转化器5,该电源装置14供应eSCR催化转化器5的加热装置。eSCR催化转化器5的电加热能够通过激活和停用电源装置14来接通和断开。在流动通过所述三个排气后处理装置之后,排气9经由排气装置12排放至环境。

LNT催化转化器4是所谓的紧密耦合催化转化器,其布置在发动机附近,即发动机舱中。相比之下,另外两个排气后处理装置,即eSCR催化转化器5和微粒过滤器6,远离发动机布置在机动车辆1的车身底部区域(所谓的地板下位置)中。进料装置13布置在eSCR催化转化器5的上游,氨形成组合物(例如尿素水溶液)能够通过该进料装置13被引入排气9中。任选地,混合装置(未示出)能够直接布置在进料装置13的下游,该混合装置用于将排气9与氨形成组合物混合。

另外,排气系统3具有多个传感器,利用这些传感器能够确定排气9和排气后处理装置的性质。因此,总共存在三个温度传感器7a、7b、7c,其中一个温度传感器7a布置在LNT催化转化器4的上游,另一个温度传感器7b直接布置在eSCR催化转化器的上游,并且另外的温度传感器7c布置在微粒过滤器6的下游。能够通过温度传感器7a、7b、7c确定通过的排气9的温度,并且可以得出关于相关联的排气后处理装置的温度的结论。

温度传感器7a、7b、7c被连接用于向控制单元8发送信号。控制单元8接收温度传感器7a、7b、7c的信号,处理所述信号,并将控制信号输出到进料装置13和电源装置14。

可选地,还可以对温度信号中的一个或多个进行建模或计算,从而能够省去实际温度测量。

例如,图1中所示的机动车辆能够根据以下描述操作:首先,起动内燃发动机1。排气系统3具有低温。排气9中含有的氮氧化物被储存在靠近发动机的LNT催化转化器4中。eSCR催化转化器5能够被电加热,以便导致快速达到其起燃温度。为此,控制单元8将相应的控制信号输出到电源装置14。

如果通过布置在LNT催化转化器4上游的温度传感器7a确定温度足够高,则能够执行LNT催化转化器4的再生。这种类型的再生用于排空LNT催化转化器4的氮氧化物储存,使得LNT催化转化器4随后能够重新储存氮氧化物。

如果通过直接布置在eSCR催化转化器5上游的温度传感器7b确定温度足够高,则能够降低LNT催化转化器4的再生过程的频率,因为在通过进料装置13供应氨形成组合物的情况下,排气9中含有的氮氧化物然后能够通过eSCR催化转化器和构造为SDPF的微粒过滤器6而被有效地转化。相应的控制信号通过控制单元8被输出到进料装置13。

此外,能够操作eSCR催化转化器5的电加热,以便确保eSCR催化转化器和微粒过滤器6的足够高的温度。如果尽管进行了电加热但还是不能达到足够高的温度,那么LNT催化转换器4再次进行更频繁地再生。

如果微粒过滤器6需要再生,则能够通过电加热eSCR催化转化器并且如果合适的话通过后燃料喷射或其他发动机内部措施来实现其所需的非常高的温度。这种高温另外允许LNT催化转化器4的脱硫(DeSOx)。为了执行后燃料喷射,控制单元8能够将相应的控制信号输出到内燃发动机2。

图2示出了另一示例性实施例中的机动车辆1。与根据图1的实施例不同,存在另外的传感器。用于确定空燃比的λ传感器15布置在LNT催化转化器4的上游。另外,氮氧化物传感器16a布置在LNT催化转化器4的下游并直接位于进料装置13上游的eSCR催化转化器5的上游,并且氮氧化物传感器16b布置在微粒过滤器6的下游。λ传感器15和氮氧化物传感器16a、16b同样被连接用于向控制单元8发送信号。关于排气后处理的有效性的结论能够通过这些传感器的测量信号得出。例如,如果在微粒过滤器6的下游仍测量到高氮氧化物含量,则排气后处理不令人满意。测量信号影响排气系统3的开环和闭环控制策略(例如,LNT催化转化器4再生的精确时间),否则能够根据图1所述的原理执行该策略。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种发动机尾气处理系统及处理方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!