Microcomputer protection method for preventing misoperation caused by electromagnetic interference

文档序号:1720958 发布日期:2019-12-17 浏览:28次 中文

阅读说明:本技术 一种防止由电磁干扰导致误动的微机保护方法 (Microcomputer protection method for preventing misoperation caused by electromagnetic interference ) 是由 李卓轩 方严 姜建妹 徐冰寒 滕翔 武翰青 于 2018-06-07 设计创作,主要内容包括:本发明涉及一种防止由电磁干扰导致误动的微机保护方法,当微机保护装置被电磁干扰或遇到励磁涌流时,该方法可针对相应的保护功能进行闭锁,当干扰结束时及时解除闭锁。与现有技术相比,本发明能够准确、及时的识别出异常波形并对装置保护功能进行闭锁,且可在异常情况结束后及时解除保护功能的闭锁,为保护逻辑的故障判断提供了一个准确可靠的依据,且在生产现场应用,成效明显。(The invention relates to a microcomputer protection method for preventing misoperation caused by electromagnetic interference, which can lock corresponding protection functions when a microcomputer protection device is subjected to electromagnetic interference or meets excitation surge current, and timely release locking when the interference is over. Compared with the prior art, the method can accurately and timely identify the abnormal waveform and lock the protection function of the device, and can timely remove the locking of the protection function after the abnormal condition is over, thereby providing an accurate and reliable basis for fault judgment of protection logic, and having obvious effect when being applied to a production field.)

1. a microcomputer protection method for preventing misoperation caused by electromagnetic interference is characterized in that when a microcomputer protection device is subjected to electromagnetic interference or excitation surge current, the method can lock corresponding protection functions, and the locking is timely released when the interference is over.

2. The method of claim 1, wherein the lockout determination process is specifically as follows:

recording the number of a sampling point of a certain sampling as N, when a microcomputer protection device calculates that the effective value of the voltage or the current at the moment exceeds or is lower than a corresponding setting value, firstly judging the following two conditions, if the two conditions are both satisfied, judging that the current is in an electromagnetic interference or excitation inrush current state, and locking the protection function of a corresponding channel:

|AN|>K1 (1);

|BN|>K2 (2);

Counting the number of sampling points of each cycle as 2f, numbering the current sampling point as n, and obtaining the current sampling point Sncalculating the current effective value as MnAnd the sampling point of half cycle front is marked as Sn-f,K1Is a parameter | ANThreshold value of |, K2Is a parameter | BNa threshold value of |;

Recording parameters:

Then the next sampling point, i.e. the parameter corresponding to the sampling point No. n + 1:

The corresponding parameters of the sampling point with the number n + 1:

Bn+1=An+1-An

Then the next sampling point, i.e. the parameter corresponding to the sampling point n + 2:

Bn+2=An+2-An+1

The parameters corresponding to the sampling points with the number n + f:

Cn+f=An+An+1+An+2+…+An+fI.e. byThen the next sampling point, i.e. the parameter corresponding to the sampling point No. n +1+ f: cn+1+f=An+1+An+2+An+3+…+An+1+fI.e. by

3. the method according to claim 2, characterized in that the unlocking is in particular:

After a certain channel enters a locking state of a protection function, if the parameters calculated by the subsequent sampling points meet the following conditions, the protection locking state of the channel is released, namely the electromagnetic interference or the excitation inrush current is judged to be finished:

|CN|<K3 (3)

wherein K3is a parameter | CNThreshold value of | is set.

4. The method of claim 3, wherein A is represented by formula (1), (2) or (3)N、BN、CNBy sampling point SNAnd a valid value MNexpressed as:

5. The method of claim 4, wherein K is1、K2、K3Are all positive real numbers.

6. the method according to claim 4, characterized in that the method is verified by lightning surge interference experiments, electric fast transient pulse group interference experiments and typical excitation inrush current waveform generator experiments, can accurately and timely identify abnormal waveforms and lock the protection function of the device, and can timely release the locking of the protection function after the abnormal conditions are over, thereby providing an accurate and reliable basis for fault judgment of protection logic, and having obvious effect when applied to a production field.

Technical Field

The present invention relates to a microcomputer protection method, and more particularly, to a microcomputer protection method for preventing malfunction due to electromagnetic interference.

Background

the microcomputer protection technology is intended that when the microcomputer protection device detects that parameters such as current or voltage of a protected object exceed or are lower than a setting value due to faults such as short circuit, the protection device executes logic judgment to enable an outlet relay to act, drives a corresponding breaker to perform tripping action, and removes corresponding faults.

Aiming at the line protection function, the microcomputer protection device converts the acquired analog quantity current signal into a digital signal, namely a sampling value, and then calculates and judges according to the sampling value.

one set of complete overcurrent protection comprises three-section type overcurrent protection jointly: one section is instantaneous current quick-break protection (current quick-break protection or current I section for short), the second section is time-limited current quick-break protection (current II section), and the third section is overcurrent protection (current III section).

the instantaneous current quick-break protection of one section is mainly used for short-circuit protection due to the characteristics of simple wiring, reliable action and quick fault removal, and the general setting value is larger and is most instantaneous action.

The current setting values of the two-stage and three-stage overcurrent protection are set according to the current which avoids the maximum load, and the sensitivity requirement can not be met under some conditions. Therefore, in order to improve the sensitivity of the two-stage and three-stage overcurrent protection when a fault occurs and improve the condition of avoiding the maximum load current, a low-voltage locking function is generally put into the two-stage and three-stage overcurrent protection function at the same time, namely the voltage of a protected line is used for judging whether the current overcurrent condition is a fault or the load current is larger, so as to avoid misoperation.

Microcomputer protection devices are often subject to electromagnetic interference from the external environment, such as: lightning surge, electrical fast transient pulse burst, and the like. These electromagnetic interferences generally have the characteristics of short interference time, high interference energy and the like. When the microcomputer protection device normally operates under the condition that the current of the protected line does not exceed the setting value, the sampling value is influenced by the electromagnetic interference and is abnormal, the delay of the quick-break protection action of the line current is usually short, and the influence time of the interference cannot be avoided, so that the quick-break protection function of the line current which is not required to be started is started, and the outlet relay of the device acts, so that the misoperation of the device is caused; when the microcomputer protection device operates under the condition that the current line load current is large and exceeds the current setting value of two-stage and three-stage overcurrent protection, and the low-voltage locking function is started, if the corresponding voltage sampling value is abnormal due to the influence of electromagnetic interference, the calculated voltage effective value is lower than the setting value of the low-voltage locking, and the misoperation of the device can be caused.

When the transformer is switched on in an unloaded state, excitation inrush current is usually generated, and the value of the excitation inrush current is 6-8 times of rated current of the transformer. Because the transformer is a magnetic element, the magnetic flux can not change suddenly, when the no-load switch-on is carried out at the moment of zero crossing of the power voltage, the primary current becomes the transient current, the iron core of the transformer is highly saturated, and the exciting current is increased violently, so that the magnetizing inrush current is formed. The magnetizing inrush current has a long duration, which varies from several tens of power cycles to several tens of seconds, so the magnetizing inrush current often causes malfunction of the overcurrent protection function of the microcomputer protection.

In order to prevent misoperation of microcomputer protection caused by electromagnetic interference, the method of adding a filter element or a shielding material on hardware for microcomputer protection is a conventional method, but the processing cost is high and the effect is not ideal.

In order to prevent the error action of microcomputer protection caused by excitation inrush current, a differential relay with a rapidly saturated iron core is generally used on hardware, but the defects of high cost and unsatisfactory effect are overcome; the software generally uses a second harmonic braking criterion, and the real-time second harmonic calculation can increase the load of a microcomputer protection core processor, and the effect is not ideal sometimes; besides the second harmonic braking method, individual microcomputer protection manufacturers also adopt a fixed delay scheme, namely, when overcurrent is detected, the device carries out delay for a plurality of cycles and then judges, but the method can cause that the action time is too long when instantaneous current quick-break protection is really needed, and a reliable protection effect cannot be achieved.

Disclosure of Invention

The present invention is directed to overcoming the above-mentioned drawbacks of the prior art and providing a microcomputer protection method for preventing malfunction due to electromagnetic interference.

The purpose of the invention can be realized by the following technical scheme:

A microcomputer protection method for preventing misoperation caused by electromagnetic interference is characterized in that when a microcomputer protection device is subjected to electromagnetic interference or excitation surge current, the method can lock corresponding protection functions, and the locking is timely released when the interference is over.

Preferably, the locking judgment process is as follows:

recording the number of a sampling point of a certain sampling as N, when a microcomputer protection device calculates that the effective value of the voltage or the current at the moment exceeds or is lower than a corresponding setting value, firstly judging the following two conditions, if the two conditions are both satisfied, judging that the current is in an electromagnetic interference or excitation inrush current state, and locking the protection function of a corresponding channel:

|AN|>K1 (1);

|BN|>K2 (2);

Counting the number of sampling points of each cycle as 2f, numbering the current sampling point as n, and obtaining the current sampling point SnCalculating the current effective value as MnAnd the sampling point of half cycle front is marked as Sn-f,K1is a parameter | ANThreshold value of |, K2Is a parameter | BNa threshold value of |;

recording parameters:

Then the next sampling point, i.e. the parameter corresponding to the sampling point No. n + 1:

The corresponding parameters of the sampling point with the number n + 1:

Bn+1=An+1-An

Then the next sampling point, i.e. the parameter corresponding to the sampling point n + 2:

Bn+2=An+2-An+1

the parameters corresponding to the sampling points with the number n + f:

Cn+f=An+An+1+An+2+…+An+fI.e. bythen the next sampling point, i.e. the parameter corresponding to the sampling point No. n +1+ f: cn+1+f=An+1+An+2+An+3+…+An+1+fI.e. by

Preferably, the unlocking specifically comprises:

After a certain channel enters a locking state of a protection function, if the parameters calculated by the subsequent sampling points meet the following conditions, the protection locking state of the channel is released, namely the electromagnetic interference or the excitation inrush current is judged to be finished:

|CN|<K3 (3)

Wherein K3Is a parameter | CNthreshold value of | is set.

Preferably, if A in the formula (1), (2) or (3) isN、BN、CNBy sampling point SNAnd a valid value MNExpressed as:

Preferably, said K1、K2、K3Are all positive real numbers.

Preferably, the method is verified by a lightning surge interference experiment, an electric fast transient pulse group interference experiment and a typical excitation inrush current waveform generator experiment, so that an abnormal waveform can be accurately and timely identified and a protection function of the device can be locked, the locking of the protection function can be timely released after the abnormal condition is over, an accurate and reliable basis is provided for fault judgment of protection logic, and the method is applied to a production field, and has obvious effect.

Compared with the prior art, the invention has the following advantages:

1. Without additional basic data, the basic data used: the sampling point value and the effective value are necessary data in microcomputer protection.

2. The load of the microcomputer protection core processor is small, the criterion calculation is common four-rule operation, and the data window is small, so that the speed of the processor cannot be slowed down, and excessive memory cannot be occupied.

3. The cost is not increased, and additional elements such as a filter and the like are not required to be additionally arranged on hardware.

4. the method has comprehensive functions, and can simultaneously prevent maloperation caused by abnormal conditions such as electromagnetic interference or excitation inrush current and the like.

5. The real-time performance of the judgment is strong, the condition judgment is used instead of the delayed waiting, and the action time of the normal protection function is not influenced.

6. The original sampling point value is not additionally processed, and the waveform state of the site can be recorded more truly aiming at a microcomputer protection device with a real-time wave recording function.

7. The bidirectional locking can lock the protection return and the protection action simultaneously, thereby not only preventing the false operation under the normal operation, but also preventing the false return in the fault.

drawings

FIG. 1 is a flow chart of the operation of the present invention;

FIG. 2 is a lightning surge waveform diagram according to an embodiment of the invention.

Detailed Description

The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are some, not all, embodiments of the present invention. All other embodiments, which can be obtained by a person skilled in the art without any inventive step based on the embodiments of the present invention, shall fall within the scope of protection of the present invention.

The invention provides a method for locking a corresponding protection function when a microcomputer protection device is subjected to electromagnetic interference or excitation inrush current on the basis of not increasing extra cost, and releasing the locking in time when the interference is finished. The method can provide reliable basis for fault judgment of the protection logic, can prevent protection misoperation and can ensure reliable action when protection action is really needed.

The specific process of the invention is as follows:

Counting the number of sampling points of each cycle as 2f, numbering the current sampling point as n, and obtaining the current sampling point Sncalculating the current effective value as Mnand the sampling point of half cycle front is marked as Sn-f. Recording parameters:

Then the next sampling point, i.e. the parameter corresponding to the sampling point No. n + 1:

and so on.

The corresponding parameters of the sampling point with the number n + 1:

Bn+1=An+1-An

Then the next sampling point, i.e. the parameter corresponding to the sampling point n + 2:

Bn+2=An+2-An+1

And so on.

the parameters corresponding to the sampling points with the number n + f:

Cn+f=An+An+1+An+2+…+An+fi.e. by

then the next sampling point, i.e. the parameter corresponding to the sampling point No. n +1+ f:

Cn+1+f=An+1+An+2+An+3+…+An+1+fI.e. by

and so on.

recording the number of a sampling point of a certain sampling as N, when a microcomputer protection device calculates that the effective value of the voltage or the current at the moment exceeds or is lower than a corresponding setting value, firstly judging the following two conditions, if the two conditions are both satisfied, judging that the current is electromagnetic interference or excitation inrush current, and locking the protection function of a corresponding channel:

(1)|AN|>K1

(2)|BN|>K2

After a certain channel enters a locking state of a protection function, if the parameters calculated by the subsequent sampling points meet the following conditions, the protection locking state of the channel is released, namely the electromagnetic interference or the excitation inrush current is judged to be finished:

(3)|CN|<K3

if A in the formula (1), (2) or (3) is substitutedN、BN、CNBy sampling point SNAnd a valid value MNexpressed as:

wherein K1、K2、K3Are all positive real numbers.

the invention relates to a method for preventing misoperation caused by electromagnetic interference in microcomputer protection, which analyzes a sampling waveform of a protection device under the condition of electromagnetic interference or excitation inrush current, describes the characteristics of the waveform through a mathematical model, provides a locking criterion aiming at the characteristics and applies the locking criterion to the microcomputer protection device; firstly, judging whether to lock the protection function of the device according to the criteria of the formulas (1) and (2), and then judging whether to contact locking according to the criteria of the formula (3), as shown in a flow chart of fig. 1.

Embodiment for preventing lightning surge from causing malfunction:

As can be seen from the waveform results in fig. 2, an abnormal peak of the sampling value due to the lightning surge occurs at the time of the time axis S. The microcomputer protection core processor calculates the effective value M of the time shaft SSAnd if the setting value is exceeded, the protection logic judges that protection outlet action should be carried out. At this time, the microcomputer protection device does not enter a protection locking state, so that the protection locking condition is judged: | AS|>K1the result is true, and | BS|>K2The result is true. Therefore, the microcomputer protection device enters a protection locking state at the moment, namely, an abnormal sampling value caused by interference is detected. The later sampling points make the calculated effective value exceed the setting value, but | Cn|<K3the result is not true (S < N < E, N is equal to N), so the protection device is in the protection locking state. Until the time of time axis E, | CE|<K3The result is true, the protection device releases the locked state, however, the sampling value and the valid value at the moment are recovered to be normal. The above is a specific implementation method how to avoid the malfunction under the interference of one lightning surge.

While the invention has been described with reference to specific embodiments, the invention is not limited thereto, and various equivalent modifications and substitutions can be easily made by those skilled in the art within the technical scope of the invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种提高小水电上网线路重合闸成功率的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类