一种热液型铀矿勘查方法

文档序号:1736251 发布日期:2019-12-20 浏览:12次 >En<

阅读说明:本技术 一种热液型铀矿勘查方法 (Hydrothermal uranium ore exploration method ) 是由 薛伟 王文旭 陈霜 剡鹏兵 刘小刚 于 2018-06-13 设计创作,主要内容包括:本发明涉及铀矿找矿技术领域,具体公开了一种热液型铀矿勘查方法。该方法包括:1、选择并分析待勘查区域典型铀矿床的成矿特征和规律,建立地质在立体空间中的各控制因素之间的耦合关系;2、在选定的区域范围内,利用云平台及地质在立体空间中各控制因素之间耦合关系的数据,初步确定预选的成矿体或;3、依据有利火山盆地、火山机构特征,利用云平台筛选有利的成矿体或矿区域;4、对上述步骤所获得的矿区域,获取所述区域铀成矿控制因素数据,确定有利的铀矿勘查区域;5、圈定预测区域,并对最终缩小的铀矿勘查地段开展钻探验证。该方法利用互联网及大数据平台,实现快速确定钻探验证铀矿区域的目的,尤其适用于寻找盲矿体或新区找矿。(The invention relates to the technical field of uranium ore prospecting, and particularly discloses a hydrothermal uranium ore prospecting method. The method comprises the following steps: 1. selecting and analyzing the mineralization characteristics and the law of typical uranium deposit in the area to be surveyed, and establishing the coupling relation between control factors of geology in a three-dimensional space; 2. in a selected area range, preliminarily determining a preselected mineral forming body or a preselected mineral forming body by using data of coupling relations between control factors of a cloud platform and geology in a three-dimensional space; 3. screening favorable ore forming bodies or ore regions by utilizing a cloud platform according to the characteristics of favorable volcanic basins and volcanic mechanisms; 4. for the ore area obtained in the above step, obtaining uranium mineralization control factor data of the area, and determining a favorable uranium ore exploration area; 5. and (4) defining a prediction area, and carrying out drilling verification on the finally reduced uranium mine exploration area. The method utilizes the internet and a big data platform to achieve the purpose of quickly determining the uranium ore region for drilling verification, and is particularly suitable for searching blind ore bodies or new region ore exploration.)

一种热液型铀矿勘查方法

技术领域

本发明属于铀矿找矿技术领域,具体涉及一种热液型铀矿勘查方法。

背景技术

通过半个多世纪的持续性铀矿勘查,目前我国已探明近350个铀矿床,铀矿找矿技术和铀矿地质理论研究硕果累累,快速提升了我国的铀资源保障能力,为国防事业和核电发展作出了巨大贡献。而在铀矿巨大找矿成果之后,未来的铀矿勘查难度日益增高,一方面热液型铀矿勘查“就点找点”找矿思路出现了瓶颈问题,大多数裸露地表的铀矿点已开展铀矿评价工作,新铀矿点发现又较难,所以该类找矿思路未来即将退出铀矿勘查舞台,而大数据化和互联网化的逐步完善,对成矿预测、成矿模式和成矿研究都起了强有力的支撑作用;另一方面,据统计,90%浅层铀矿已经被发现和勘查,深部找矿很难脱离已有矿床或矿床***,而新区突破难之又难。所以,硬岩型铀矿勘查总体思路相对局限,如何突破传统,开拓新思路,是当前我国硬岩型铀矿勘查首要解决问题。“互联网+大数据”可综合提取所需的有用信息,进一步进行整合叠加,得到更有利的“1+1>2”的信息资源,因此,融入“互联网+大数据”的新铀矿找矿预测方法十分必要。

发明内容

本发明的目的在于提供一种热液型铀矿勘查方法,其可利用云计算平台将勘查系统、成矿系统以及地理信息系统进行连接,实现在勘查区域确认异常区、圈定找矿靶区、探明矿床及矿体。

本发明的技术方案如下:一种热液型铀矿勘查方法,该方法具体包括如下步骤:

步骤1、选择并分析待勘查区域典型铀矿床的成矿特征和规律,建立地质在立体空间中的各控制因素之间的耦合关系;

步骤2、在选定的区域范围内,利用云平台及步骤1获得的地质在立体空间中各控制因素之间耦合关系的数据,初步确定预选的成矿体或成矿区域;

步骤3、依据有利火山盆地、火山机构特征,利用云平台筛选有利的成矿体或矿区域;

步骤4、对上述步骤所获得的矿区域,获取所述区域铀成矿控制因素数据,确定有利的铀矿勘查区域,并分级排序最有利勘查地段,进一步确定深部目标体的展布深度及范围;

步骤5、圈定预测区域,并对最终缩小的铀矿勘查地段开展钻探验证。

所述的步骤1中建立地质在立体空间中的各控制因素之间的耦合关系主要根据区域典型铀矿床成矿特征和规律,获得其主要成矿控制因素相关数据。

所述的步骤2中云平台包括GIS平台或DGSS平台;在选定的区域范围内进行地质、物化探及遥感大数据分析,利用成矿控制因素如岩体成矿年龄、期次,在云平台上预选确定有限个有利的次火山岩体;利用GIS平台或DGSS平台,将所选的次火山岩体与遥感信息叠合,确定出处于火山机构边部的次火山岩岩体,并将上述的次火山岩体与航磁ΔT等值线图、化探成果图叠加,获取符合上述地质控制因素的成矿体或成矿区域。

所述的步骤3具体包括:利用铀矿勘查的大数据平台,依据有利火山盆地、火山机构特征,筛选有利的成矿体或成矿区域,叠加放射性物探、化探信息,对各成矿控制因素进行耦合关系进行分析,缩小找矿目标体,即确定最有利的成矿体或成矿区域,并进行分级排序。

所述的步骤4中获取最有利的成矿体或成矿区域,对其开展大比例尺地质填图、物探化探测量,获取该区域铀成矿控制因素数据,并分析铀成矿控制因素之间的耦合关系,确定有利的铀矿勘查区段,并分级排序最有利勘查地段,之后利用物探测量和槽探方式确定深部目标体的展布深度及范围。

所述的步骤1中,对于次火山岩型铀矿床,其地质在立体空间中的各控制因素之间的耦合关系中,次火山岩体为第一控制因素,其主要特征数据包括岩石特征、成岩年龄、控岩构造、岩体航磁等值线、岩体地球化学特征以及岩***置,其中,岩石特征包括颜色、结构、构成、斑晶、基质的含量及硬度。

本发明的显著效果在于:本发明所述的一种热液型铀矿勘查方法,可利用互联网及大数据平台,实现快速确定钻探验证铀矿区域的目的,尤其适用于寻找盲矿体或新区找矿。

附图说明

图1为本发明所述的一种热液型铀矿勘查方法流程示意图。

具体实施方式

下面结合附图及具体实施例对本发明作进一步详细说明。

如图1所示,一种热液型铀矿勘查方法,该方法具体包括如下步骤:

步骤1、选择区域典型铀矿床,分析其成矿特征和规律,明确成矿控制因素,建立地质在立体空间中各控制因素之间的耦合关系;

选择区域典型铀矿床,通过分析其成矿特征和规律,明确最主要成矿控制因素并对其进行解剖,获得地质在立体空间中各控制因素之间的耦合关系;

例如,内蒙古中部迄今为止已探明的铀矿床为460矿床、470矿床以及534矿床,其中,460矿床为次火山岩型铀矿床,该矿床的特点为铀矿体主要产在次火山岩体内部,受次火山控制明显,次火山岩体为该矿床第一控制因素,对460矿床的次火山岩体进行立体空间上的剖析,可获得其主要特征数据为岩石特征、成岩年龄、控岩构造、岩体航磁等值线、岩体地球化学特征以及岩***置,其中,460矿床次火山岩型铀矿的岩石特征为流纹斑岩,灰白色、浅灰色,斑状结构,流纹构造或块状构造等;成岩年龄在80~85Ma期次属于早白垩世;控岩构造为区域北东向;岩体航磁ΔT等值线图处于高低值过渡部位;岩体1:5万综合化探处于Pb-Zn-Mo-Ag等综合异常区,属于乙2级别;遥感上,岩体处于榛子山火山机构的边部等;

步骤2、利用云平台,在一定的区域范围内,利用已确定地质在立体空间中各控制因素之间耦合关系的数据,初步确定预选的成矿体或成矿区域;

利用GIS平台或DGSS平台,将区域400km2范围内区域1:5万级别地质、物化探、遥感等大数据对接,利用次火山岩岩体成矿年龄、期次在平台上预选,确定了15个有利的次火山岩体;

利用大数据平台即GIS平台或DGSS平台,将预选的15个有利的次火山岩体与遥感信息叠合,发现处在火山机构边部的次火山岩岩体有8个;

对筛选出的8个有利的次火山岩体与航磁ΔT等值线图、1:5万综合化探成果图叠加,发现符合航磁ΔT等值线图处于高低值过渡部位、乙2级别Pb-Zn-Mo-Ag等综合异常的有1个岩体,即羊盘沟次火山岩体;

步骤3、利用云平台,并依据有利火山盆地、火山机构特征,筛选有利的成矿体或成矿区域;

利用铀矿勘查的大数据平台,依据有利火山盆地、火山机构特征,筛选有利的成矿体或成矿区域,叠加放射性物探、化探信息,对各成矿控制因素进行耦合关系进行分析,缩小找矿目标体,即确定最有利的成矿体或成矿区域,并进行分级排序;

步骤4、对上述步骤所获得的排名第一成矿区域,获取所述区域铀成矿控制因素数据,确定有利的铀矿勘查区域,并分级排序最有利勘查地段,进一步确定深部目标体的展布深度及范围;

对排名第一成矿区域,通过开展大比例尺地质填图、物探化探测量,获取该区域铀成矿控制因素数据,并分析铀成矿控制因素之间的耦合关系,确定有利的铀矿勘查区段,并分级排序最有利勘查地段,之后利用物探测量和槽探方式确定深部目标体的展布深度及范围;

在多伦县羊盘沟地区开展了1:5000铀矿地质填图和配套的化探工作,并在有利区域开展CSAMT测量和氡及其子体测量,确定AP1和AP3区段具备较好铀成矿条件,在地表施工槽探工程,并确定该区控矿构造为杯东向,倾向北西;

步骤5、圈定预测区域,并对最终缩小的铀矿勘查地段开展钻探验证;

在多伦县羊盘沟地区布置ZKYP1钻孔和ZKYP2钻孔,查证层层筛选的铀矿找矿区段中ZKYP1钻孔为铀异常孔、ZKYP2钻孔为铀工业矿孔,从而落实羊盘沟铀矿找矿靶区。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:检测装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!