用于内燃机的废气后处理的方法和装置

文档序号:1752651 发布日期:2019-11-29 浏览:16次 >En<

阅读说明:本技术 用于内燃机的废气后处理的方法和装置 (The method and apparatus of exhaust after-treatment for internal combustion engine ) 是由 C.尼 于 2019-05-22 设计创作,主要内容包括:本发明涉及一种用于内燃机(10)的废气后处理的方法。为内燃机(10)的废气后处理设有排气装置(20),在所述排气装置(20)中,沿内燃机(10)的废气通过排气装置(20)的流动方向布置有第一三元催化器(30)并且在第一三元催化器(30)的下游布置有至少一个另外的三元催化器(34、36)。在此,在排气装置的废气通道(38)中,在各三元催化器(30、34、36)的上游分别布置有至少一个λ传感器(40、42、44)。在所建议的方法中,检测三元催化器(30、34、36)的构件温度(T&lt;Sub&gt;K1&lt;/Sub&gt;、T&lt;Sub&gt;K2&lt;/Sub&gt;)并且将所述构件温度(T&lt;Sub&gt;K1&lt;/Sub&gt;、T&lt;Sub&gt;K2&lt;/Sub&gt;)与起燃温度(T&lt;Sub&gt;LOK1&lt;/Sub&gt;、T&lt;Sub&gt;LOK2&lt;/Sub&gt;)进行比较。在此,内燃机(10)的λ调节通过已达到起燃温度(T&lt;Sub&gt;LOK1&lt;/Sub&gt;、T&lt;Sub&gt;LOK2&lt;/Sub&gt;)的最后的三元催化器(30、34、36)上游的λ传感器(40、42、44)进行。此外,按照本发明还建议一种实施这种方法的废气后处理系统。(The present invention relates to a kind of methods of exhaust after-treatment for internal combustion engine (10).Exhaust apparatus (20) are equipped with for the exhaust after-treatment of internal combustion engine (10), in the exhaust apparatus (20), the first ternary catalyzing unit (30) is disposed with by the flow direction of exhaust apparatus (20) along the exhaust gas of internal combustion engine (10) and has at least one other in the arranged downstream of the first ternary catalyzing unit (30) ternary catalyzing unit (34,36).Here, being respectively disposed at least one exhaust gas oxygensensor (40,42,44) in the upstream of each ternary catalyzing unit (30,34,36) in the exhaust steam passage (38) of exhaust apparatus.In proposed method, the member temperature (T of ternary catalyzing unit (30,34,36) is detected K1 、T K2 ) and by the member temperature (T K1 、T K2 ) and initiation temperature (T LOK1 、T LOK2 ) be compared.Here, the λ of internal combustion engine (10) is adjusted by having reached initiation temperature (T LOK1 、T LOK2 ) last ternary catalyzing unit (30,34,36) upstream exhaust gas oxygensensor (40,42,44) carry out.In addition, also suggesting a kind of exhausted gas post-processing system for implementing this method according to the present invention.)

用于内燃机的废气后处理的方法和装置

技术领域

本发明涉及按照独立权利要求的前序部分所述的一种用于内燃机的废气后处理的方法以及一种用于实施这种方法的废气后处理系统。

背景技术

今后的排放法规对发动机原始排放和内燃机的废气后处理提出了高要求。随着Euro 6d-Temp排放法规的引入,机动车辆必须遵守实际运行中的排放限值(实际驾驶排放)。在汽油机领域中多级废气后处理方案的使用对于新的排放规定提出了问题,所述问题关于各种废气后处理部件的可调节性以及废气后处理部件的调节质量和运行准备。这表明具有刚性设计的调节系统的λ调节方案仅提供次优的排放结果。

由专利文献DE 10 2010 002 586 A1已知一种运行机动车的具有排气系统的内燃机的方法,在排气系统中布置有至少一个催化器和至少一个λ传感器。内燃机在用于加热催化器的冷启动后在稀燃料空气混合气与浓燃料空气混合气之间转换地运行。λ传感器在冷启动后如此加热,从而该λ传感器最多在十秒后就准备好运行,并且内燃机以基于λ传感器的信号的两点式调节运行。在此,以稀燃料空气混合气运行与以浓燃料空气混合气运行之间的转换分别由λ传感器的信号触发。

由专利文献DE 10 2013 201 734 A1已知一种用于运行内燃机的排放系统中的λ传感器装置的方法,该λ传感器装置具有至少一个位于催化器上游的第一λ传感器和至少一个位于催化器下游的第二λ传感器。在此,第二λ传感器设计为阶跃式传感器。在此,进行第一λ传感器的特征曲线偏移的诊断并且必要时进行特征曲线偏移误差的调整。在此,为了诊断,在λ调节激活时检测代表催化器的氧气存储能力的值和代表从催化器输出氧气的能力的值。由氧气存储能力与氧气输出能力的比例计算第一λ传感器的特征曲线偏移。

专利文献EP 2 884 066 A1公开一种用于诊断物体如催化器或过滤器的方法。为了获得关于催化器的功能的特别准确的报告,在此规定,为了测量催化作用的反应性,借助一装置通过开口对催化器的端面施加具有定义组分(如丙烷或一氧化碳)的试验介质,并且在下游位置上测量试验介质的至少一种还原性或氧化性组分在通过催化器后的浓度。但如此施加确定组合的气体或废气仅能在实验室操作。因此这种方法不适合用于实际驾驶中的排放优化。

但已知方法的缺点是,所述方法未充分地考虑催化器的与温度相关的转化性能,并且因此尤其在开始阶段中或在排气系统冷却的运行阶段后仅产生次优的废气后处理。

发明内容

本发明所要解决的技术问题在于,改善布置在内燃机的排气装置中的催化器的转化性能并且因此进一步降低实际驾驶中的有害物质排放。

按照本发明,所述技术问题通过用于内燃机的废气后处理的方法解决,所述内燃机的排气口与排气装置连接,其中,在所述排气装置中,沿内燃机的废气穿流排气装置的废气通道的流动方向布置有第一三元催化器并且在第一三元催化器的下游布置有至少一个另外的三元催化器。在此,在第一三元催化器上游的废气通道中布置有第一λ传感器(或称为氧传感器),在第一三元催化器下游并且在另外的三元催化器上游的废气通道中布置有另外的λ传感器。所述方法至少包括以下步骤:

-检测第一三元催化器和第二三元催化器的构件温度;

-将第一三元催化器和第二三元催化器的构件温度与三元催化器各自的起燃温度进行比较;

-通过在沿流动方向最后的达到起燃温度的三元催化器上游的那个λ传感器实施内燃机的λ调节。

通过按照本发明的方法可以考虑多个三元催化器上的当前主导的构件温度,以便将λ调节扩大到相应的最大可能的控制对象或者说尽可能广泛的调节对象上并且因此使λ调节可变地适应于排气装置中的主导条件。

独立权利要求所述方法的有利的扩展设计和改进方式可由从属权利要求中提及的特征得出。

在本发明的优选的设计方案中规定,λ调节按照固有频率调节(Eigenfrequenzregelung或称为自频控制)的原理进行。本专利申请的范围内,固有频率-λ调节可以理解为这样的调节系统,在该调节系统中,所使用的催化器容积完全被通流直至出现分别预控制的部件的稀混合气穿通或浓混合气穿通(Mager-oder Fettdurchbruch,或称为稀穿通或浓穿通)。由此可以在被通流的催化器容积下游的λ传感器上检测到部件的“穿通(Durchbrechen)”,并且随后才向另一预控制转换。该过程使位于之后的由另外的催化器、尤其另外的三元催化器提供的转化容积不可或缺。如果λ调节按照固有频率调节的原理实施,则催化器的全部转化容积可以用于转化排放。在此还通过在穿通前可选地平衡转换避免催化器中的老化热点,由此提高催化器的寿命。此外可以快速地校正在整个排气系统上的λ中间位置,其中,偏移可以被调整。由此可以实现具有最小排放的特别有效的废气后处理。

在所述方法的优选的实施方式中规定,在内燃机冷启动后,λ调节由第一三元催化器上游的第一λ传感器实施。在内燃机启动后,靠近发动机的第一催化器首先升温并且通常作为废气后处理的第一批部件达到其起燃温度TLOK1。因此,目的是在开始阶段通过第一三元催化器力求废气的最佳转化,直至沿废气穿流废气通道的流动方向另外位于下游的废气后处理部件也达到起燃温度。

在此优选的是,当在下游布置在排气装置中的另外的三元催化器达到起燃温度时,λ调节通过该另外的三元催化器上游的λ传感器扩展。通过在达到第二三元催化器的起燃温度后λ调节的扩展可以使两个三元催化器在用于转化有害物质的尽可能理想的运行条件下运行,从而实现废气后处理的最佳排放。

在本发明的优选的实施方式中规定,所述废气后处理系统附加地包括颗粒过滤器,其中,除了三元催化器的构件温度以外也检测颗粒过滤器的构件温度。由于自欧6排放法规制定起也为汽油发动机规定颗粒排放的限值,因此对许多具有汽油发动机的机动车而言可能需要在废气后处理装置中使用颗粒过滤器。颗粒过滤器可以具有起三元催化作用的涂层。这样的颗粒过滤器被称为四元催化器。在本专利申请的范围内,这种四元催化器也可以理解为三元催化器,因为这种四元催化器也完成三元催化器的功能。

在此优选的是,在高于颗粒过滤器的阈值温度时识别颗粒过滤器的再生可能性。为了氧化拦截在颗粒过滤器中的碳烟颗粒和使颗粒过滤器再生需要颗粒过滤器处的氧气过量和同时550℃的最低温度。如果识别到这样的温度,则能够以简单的方式通过将燃烧空气比朝向“稀薄”、也就是朝高于化学计量的燃烧空气比调节,以实施颗粒过滤器的(部分)再生。

特别优选的是,在识别到颗粒过滤器的再生的必要性并且同时识别到颗粒过滤器的构件温度高于阈值温度时,以高于化学计量的燃烧空气比运行内燃机。通过高于化学计量的运行将拦截在颗粒过滤器中的碳烟氧化。

在所述方法的另外的改进方式中规定,借助调节方案如此选择高于化学计量的幅值,从而在相关的温度范围内发生拦截在颗粒过滤器中的碳烟的持续再生。通过选择合适的幅值使得,在颗粒过滤器的再生期间不出现通过第二三元催化器的稀混合气穿通并且因此不出现氮氧化物排放的增加。因此可以实现颗粒过滤器的基本上排放中性的再生。

在此特别优选的是,仅为颗粒过滤器提供废气中的相应较高的氧气量,并且三元催化器在调节振荡内被基本上等于化学计量的废气通流。在此可以如此选择λ调节的幅值,从而三元催化器、尤其第二三元催化器的氧存储器被充满或排空,而不会导致通过相应的三元催化器的稀混合气穿通或浓混合气穿通。由此可以避免在颗粒过滤器再生期间的二次排放增加。

按照本发明,建议一种用于内燃机的废气后处理系统,所述废气后处理系统具有排气装置,在所述排气装置中,沿废气通过排气装置的废气通道的流动方向布置有第一三元催化器并且在第一三元催化器的下游布置有至少一个另外的三元催化器,其中,在第一三元催化器的上游布置有第一λ传感器,在第一三元催化器的下游并且是第二三元催化器的上游布置有另外的λ传感器,所述废气后处理系统还具有控制器,所述控制器设置用于,当机器可读的程序代码由控制器执行时,实施按照本发明的方法。通过按照本发明的废气后处理系统可以根据构件温度考虑各自的运行准备及其转化效率并且因此确保排放中性的废气后处理。此外可以在废气后处理中考虑特殊的运行情况例如颗粒过滤器的再生,以便进一步改善废气后处理的结果并且避免二次排放。

在废气后处理系统的优选的实施方式中规定,在第一三元催化器的下游并且是第二三元催化器的上游布置有颗粒过滤器。由于自欧6排放法规制定起也为汽油发动机规定颗粒排放的限值,因此对许多具有汽油发动机的机动车而言可能需要在废气后处理装置中使用颗粒过滤器。因此,除了气态的废气成分之外也可以将颗粒从废气中移除。

所述颗粒过滤器可以具有起催化作用的涂层并且设计为四元催化器。所述颗粒过滤器通过颗粒过滤器上的起催化作用的涂层附加地完成三元催化器的功能。因此可以提高总共可供有害物质转化利用的催化器容积,以便尤其在高负荷下提供附加的催化器容积并且避免在实际驾驶中的排放增加。

在此优选的是,在第一三元催化器的下游并且在颗粒过滤器的上游的废气通道中布置有第二λ传感器,以及在颗粒过滤器的下游并且在第二三元催化器的上游的废气通道中布置有第三λ传感器。由此λ调节可以在废气后处理装置的每个起三元催化作用的部件上进行,从而可以实现转化效率的最佳结果。

在本发明的有利的实施方式中设有二次空气系统,用所述二次空气系统能够将二次空气输入内燃机的排气口中、或在所述排气口下游并且是第一三元催化器上游输入排气装置中、尤其在排气口下游并且是废气涡轮增压器的涡轮机上游输入废气通道中。通过二次空气系统可以在内燃机的冷启动后加速三元催化器的加热。此外可以提供颗粒过滤器再生需要的氧气,而不必以高于化学计量的燃烧空气混合物运行内燃机并且不会增加内燃机的原始排放、尤其氮氧化物的排放。

本发明的在该申请中提到的不同的实施方式如果在各个情况下同样地实施,则能够以优点相互组合。

附图说明

以下在实施例中根据附图阐述本发明。在附图中:

图1示出具有用于实施按照本发明的方法的废气后处理系统的内燃机;和

图2示出用于实施按照本发明的用于内燃机的废气后处理的方法的流程图。

具体实施方式

图1示出内燃机10,内燃机10设计为借助火花塞18外源点火的汽油发动机。内燃机10具有进气口12、多个燃烧室14和排气口16。内燃机10的排气口16与排气装置20连接。内燃机10优选设计为借助废气涡轮增压器22增压的内燃机10。为此,废气涡轮增压器22具有布置在排气装置20的废气通道38中的涡轮机26,涡轮机26驱动在内燃机10的未示出的空气供给系统中的压缩机26并且因此改善燃烧室14的充气状况。在废气通道38中,沿废气通过废气通道38的流动方向,在涡轮机26的下游布置有第一三元催化器30,在第一三元催化器30的下游布置有颗粒过滤器32,并且在颗粒过滤器32的下游布置有第二三元催化器36。颗粒过滤器32可以具有起三元催化作用的涂层并且设计为所谓的四元催化器34。在废气涡轮增压器22的涡轮机26的下游并且是第一三元催化器30的上游布置有第一λ传感器40,第一λ传感器40优选设计为宽带λ传感器。在第一三元催化器30的下游并且是颗粒过滤器32或四元催化器34的上游布置有第二λ传感器42。在颗粒过滤器32或四元催化器34下游并且在第二三元催化器36上游的废气通道38中布置有第三λ传感器44。在第一三元催化器30下游并且在颗粒过滤器32或四元催化器34上游的废气通道38中布置有第一温度传感器46。在颗粒过滤器32或四元催化器34的下游并且是第二三元催化器36的上游布置有第二温度传感器48。λ传感器40、42、44和温度传感器46、48通过信号线52与内燃机10的控制器50连接。在内燃机10上设有二次空气系统28、54、56,该二次空气系统包括二次空气泵28、二次空气管道54和二次空气阀56。二次空气管道54通入内燃机10的排气口侧的气缸盖中或通入第一三元催化器30上游的废气通道38的区段中、尤其是通入在排气口16下游并且是废气涡轮增压器22的涡轮机26上游的废气通道38的区段中。

本发明提供一种λ调节方案,该λ调节方案考虑了关于各废气后处理部件30、32、34、36的构件温度(TK1、TK2、TOPF)的信息并且使其调节幅值和微调适应于最大可能的控制对象。此外,废气后处理部件30、32、34、36的边界条件体现在调节幅值和控制对象参数中,从而实现分别适用的排放最佳点的最佳调节。

本发明包括遵循固有频率调节原理的用于具有一个以上催化器的多级废气后处理系统的λ调节。在此,或者通过传感机构、尤其图1所示的温度传感器46、48或者通过废气温度模型考虑废气后处理部件30、32、34、36、尤其三元催化器30、36的当前存在的构件温度TK1、TK2、TOPF,以便将固有频率扩大到分别最大可能的控制对象上。在仅第一三元催化器30被完全加热的情况下,借助第一λ传感器40和已知的用于该控制对象的控制对象参数设定该废气等级上的固有频率。一旦另外的废气后处理部件32、34、36由于客户选择的行驶工况也被完全加热并且达到其起燃温度TLOK2,则λ调节自动地扩大到另外的废气后处理部件32、34、36、尤其第二三元催化器36,并且最后的激活的废气后处理部件前方的那个λ传感器42、44分别用于评估调节穿通。在下游的废气后处理部件的激活条件消除的情况下、尤其当排气装置20冷却时或由于有针对性地关闭废气后处理部件32、34、36,λ调节退回至最小的调节方案、也就是说仅通过第一λ传感器40调节。此外,在λ调节时可以考虑各废气后处理部件30、32、34、36的特殊性。在使用优选靠近发动机布置的作为废气后处理的第一部件的HC吸附器的情况下,λ调节如此设计,从而在内燃机10的冷启动期间宁愿产生过量的未燃烧的碳氢化合物(HC),因为这些未燃烧的HC可以贮存在HC吸附器中。在这种情况下,高于化学计量的调节策略没有意义。

在使用颗粒过滤器32、34的情况下,可以借助所建议的λ调节方案如此选择高于化学计量的调节幅值,从而在相关的温度范围内发生拦截在颗粒过滤器32、34中的碳烟的持续再生。在此,根据已知的控制对象时间(Streckenzeiten)如此选择调节幅值的形成,从而仅为颗粒过滤器32、34提供废气中的相应较高的氧气量,并且对于三元催化器30、36、化学计量的运行在调节振荡内是可能的。因此通过该方法可以实现最佳排放。

在图2中示出按照本发明的用于废气后处理的方法的流程图。如果启动内燃机10,则在第一方法步骤<100>中检测三元催化器30、36和必要时另外的存在的废气后处理部件32、34的构件温度TK1、TK2。在方法步骤<110>中,将这些温度TK1、TK2与相应的起燃温度TLOK1、TLOK2进行比较。首先将固有频率调节限制在第一三元催化器30上并且将由第二λ传感器42识别到的通过第一三元催化器30的稀混合气或浓混合气穿通视为需要转换调节幅值、也就是略低于化学计量的运行与略高于化学计量的运行之间的转换。

在方法步骤<120>中,在内燃机10继续运行时,布置在第一三元催化器30下游的另外的废气后处理部件32、34、36也升温并且达到它们的起燃温度TLOK2。如果达到第二三元催化器36上的起燃温度TLOK2,则将λ调节扩大到第三λ传感器44和必要时另外的λ传感器。在通过多个三元催化器30、36进行固有频率调节时可以考虑对废气后处理的特殊要求。这些要求尤其包括加热运行、颗粒过滤器32、34的再生或废气后处理部件30、32、34、36和/或λ传感器40、42、44的诊断功能。

如果在方法步骤<130>中检测到颗粒过滤器32、34的550℃或以上的构件温度,则拦截在颗粒过滤器中的碳烟可以氧化。为此在方法步骤<140>中,通过将内燃机10的燃烧空气混合物向高于化学计量的混合物调节或通过将二次空气输入排气装置20来提供附加的氧气。基于连续的λ测量和控制对象的参数的调整,气体通过排气装置20到达颗粒过滤器32、34的传输时间是已知的并且在对高于化学计量的运行区段的幅值预控制时考虑该气体传输时间。一旦在第一三元催化器30下游的第二λ传感器42上识别到稀混合气穿通,则在方法步骤<150>中,将一定的附加氧气量输入排气装置20并且因此使碳烟从颗粒过滤器32、34排出。

在使用HC吸附器的情况下,HC吸附器的装载同样可以被平衡并且以高于化学计量的幅值的形式被考虑,以便使HC吸附器再生。

附图标记列表

10 内燃机

12 进气口

14 燃烧室

16 排气口

18 火花塞

20 排气装置

22 废气涡轮增压器

24 压缩机

26 涡轮机

28 二次空气泵

30 第一三元催化器

32 汽油颗粒过滤器

34 四元催化器

36 第二三元催化器

38 废气通道

40 第一λ传感器

42 第二λ传感器

44 第三λ传感器

46 第一温度传感器

48 第二温度传感器

50 控制器

52 信号线

54 二次空气管道

56 二次空气阀

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于DPF主动再生的燃油喷射控制系统及方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!