一种胸腔填充心脏托杯及其制备方法

文档序号:1766205 发布日期:2019-12-03 浏览:47次 >En<

阅读说明:本技术 一种胸腔填充心脏托杯及其制备方法 (A kind of thoracic cavity filling heart hypanthium and preparation method thereof ) 是由 谭周建 于 2019-09-27 设计创作,主要内容包括:本发明公开了一种胸腔填充心脏托杯及其制备方法,心脏托杯具有船形结构;船形结构由碳纤维复合材料层构成,或由碳纤维复合材料层及其表面的高分子防护层构成,或由碳纤维织物层及其表面的高分子防护层构成。该心脏托杯由碳纤维复合材料构成,具有质量轻、比强度高、组织相容性好、使用方便,稳定性好等优点。(The invention discloses a kind of thoracic cavity filling heart hypanthiums and preparation method thereof, and heart hypanthium has ship shape structure;Ship shape structure is made of carbon fibre composite layer, or is made of the macromolecule protective layer on carbon fibre composite layer and its surface, or is made of the macromolecule protective layer on carbon fiber fabric plies and its surface.The heart hypanthium is made of carbon fibre composite, has many advantages, such as that light weight, specific strength are high, histocompatbility is good, easy to use, stability is good.)

一种胸腔填充心脏托杯及其制备方法

技术领域

本发明涉及一种胸腔填充材料,特别涉及一种由碳材料织物塑型的胸腔填充心脏托杯还涉及其制备方法,属于生物医用材料领域。

背景技术

由于中心型肺癌、肺损毁、气管肿瘤等原因而行全肺切除术,导致胸腔大面积空置,其他脏器向空置区发生位移,导致血管、气管发生变形,引发一系列后遗症,甚至危及生命。通常考虑进行填充,以维持胸腔脏器的协同性和稳定性,保障正常组织的功能。国内外已有采用硅橡胶或生理盐水袋填充的报道,但是因硅橡胶或生理盐水袋自身无稳定形状、刚性差,填充效果不理想。现有的人工材料如聚四氟乙烯、甲基丙烯酸树脂、金属、有机玻璃和钢丝网等材料也存在强度不足或强度过大的力学相容性、生物相容性等一系列问题。

发明内容

为了解决现有胸腔填充材料存在的不足,本发明的目的是在于提供一种由碳纤维复合材料构成的具有质量轻、比强度高、组织相容性好、使用方便、稳定性好的胸腔填充心脏托杯。

本发明的第二个目的是在于提供一种步骤简单、原料易得制备胸腔填充心脏托杯的方法。

为了实现上述技术目的,本发明提供了一种胸腔填充心脏托杯,其具有船形结构;所述船形结构由碳纤维复合材料层构成,或由碳纤维复合材料层及其表面的高分子防护层构成,或由碳纤维织物层及其表面的高分子防护层构成。

优选的方案,所述碳纤维复合材料层由连续碳纤维织物及碳纤维内填充的基体碳和/或碳化硅构成。

优选的方案,所述碳纤维复合材料层由连续碳纤维织物构成。

优选的方案,所述基体碳如热解碳、树脂碳、沥青碳等。

优选的方案,所述碳纤维织物包括至少一层针织布、编织布或机织布。针织布,如经编布,纬编布;编织布,如二维布,三维布,立体编织布;机织布,如平纹布,斜纹布,缎纹布。

优选的方案,所述碳纤维织物由碳纤维束编织得到,碳纤维束的纤维数量为1k、3k、6k、12k或24k(1k表示1千根)。

优选的方案,所述高分子防护层为PEEK(聚醚醚酮)、PTFE(聚四氟乙烯)、PE(聚乙烯)、PET(聚酯)、PU(聚氨酯)中至少一种。高分子防护涂层可有效防护内层碳基颗粒的脱落,且避免与心脏的硬接触。

优选的方案,所述船形结构的中心区域厚度为0.5mm~5mm,高分子防护层的厚度为0.1mm~2mm。

优选的方案,所述船形结构的中心区域为与心脏接触的弧面区,周边区域为与胸壁接触的沿面区,所述沿面区中心设有加强筋及固定孔,孔径为1mm~4mm,间距为5mm~30mm。心脏托杯设计成船形结构,结构稳定,可有效支撑心脏,且可以维持胸腔内脏器的稳定,且左右厚度小,可减少手术创伤面。

优选的方案,所述加强筋为碳纤维编织带或碳纤维绳的编织带。

较优选的方案,所述加强筋是由3束以上碳纤维编织而成的碳纤维带,或者由单束或多束碳纤维加捻编织得到的碳纤维绳;其中,单束碳纤维的纤维数量为1k、3k、6k、12k或24k。加强筋能够提高船型结构的稳定性,改善其力学性能。

本发明提供了一种胸腔填充心脏托杯的制备方法,其包括以下步骤:

1)将碳纤维布按需裁剪成片;

2)将一层碳纤维布或多层碳纤维布(针织布、编织布或机织布)叠加后,通过模具辅助压制成船形结构,同时可以进一步在船形结构沿面区设置加强筋,得到碳纤维坯体;

3)通过化学气相渗透法和/或浸渍-裂解法对碳纤维坯体增密基体碳和/或碳化硅后,机加工,即得;

或者,通过静电喷涂在碳纤维坯体表面制备高分子涂层后,机加工,即得;

或者,先通过化学气相渗透法和/或浸渍-裂解法对碳纤维坯体增密基体碳和/或碳化硅后,再通过静电喷涂在碳纤维坯体表面制备高分子涂层后,机加工,即得。

本发明的碳纤维织物为针织布,如经编布、纬编布,其面密度为30g/m2~500g/m2;编织布,如二维布,三维布等,面密度为150g/m2~1200g/m2;机织布,如平纹布、斜纹布、缎纹布,其面密度为120g/m2~1000g/m2

本发明的化学气相渗透法生成基体碳工艺:将碳纤维预制体放入真空炉中,在850℃~1300℃温度下,通入的含碳气源(天然气、甲烷或丙烯等,氮气或氢气为稀释气体,碳源气体与稀释气体的流量比为1:0~2)经过裂解后,化学气相渗透在碳纤维坯料中,经过10小时~100小时,制备成碳纤维复合材料坯体。

本发明的浸渍-裂解生成基体碳工艺:碳纤维预制体经过树脂(呋喃、酚醛和糠酮等)或沥青(石油沥青、煤沥青)真空加压浸渍、固化处理(树脂)、裂解(树脂:900℃~1050℃,常压;沥青:750℃~850℃,50MPa~200MPa)等致密化工艺。浸渍压力为1.0MPa~5.0MPa,浸渍时间为2小时~10小时;固化温度为160℃~230℃,固化时间为10小时~50小时;裂解时间为2小时~20小时。

本发明的化学气相渗透生成碳化硅基体工艺:将碳纤维预制体放入真空炉中,在900℃~1300℃温度下,通入的气源(三氯甲基硅烷,氢气为载气和稀释气体,三氯甲基硅烷与氢气的流量比为1:1~10),经过裂解后,化学气相渗透在碳纤维坯料中,经过10小时~100小时,制备成碳纤维复合材料坯体。

本发明的浸渍-裂解生成碳化硅基体工艺:碳纤维预制体经过含硅前驱体(聚碳硅烷PCS、聚甲基硅烷PMS)真空加压浸渍、固化处理、裂解等致密化工艺。浸渍压力1.0MPa~5.0MPa,浸渍时间为2小时~10小时;固化温度为160℃~230℃,固化时间为10小时~50小时;裂解温度为800℃~1150℃,时间为2小时~20小时;陶瓷化温度为1200℃~1600℃,时间为2小时~10小时。

本发明的化学气相渗透生成碳化硅-碳基体工艺:可以先生成基体碳,再生成碳化硅,或者同时生成碳和碳化硅,或者先生成碳化硅,再生成基体碳。同时生成碳和碳化硅的工艺:将碳基体气源和三氯甲基硅烷同时通入,其他条件与生成基体碳的工艺条件相同。

本发明的浸渍-裂解生成碳化硅-碳基体工艺,可以先致密碳,再致密碳化硅,或者同时致密碳和碳化硅,或者先致密碳化硅,再致密基体碳。同时致密基体碳和碳化硅的工艺:将树脂/沥青和含硅前驱体同时浸渍,其他条件与致密基体碳的工艺条件相同。

本发明的静电喷涂制备高分子涂层的工艺参数:1)高分子粉末粒度为100μm~300μm;2)静电喷涂厚度为0.1mm~2mm;3)固化温度为150℃~420℃。

本发明的涉及的模具可以借助现有的3D打印技术来根据所需要的形状来制备相应模具,模具材料可以为铝合金、碳材料等。

本发明的加工包括:外形修整和沿面区打固定孔,其中固定孔孔径为2mm~4mm,间距为10mm~40mm。

本发明的碳纤维及复合材料坯体还可以进行高温除杂处理,处理工艺条件为:温度为1500℃~2300℃,保温时间为1小时~10小时。

相对现有技术,本发明技术方案带来的有益技术效果:

本发明提供心脏托杯为碳纤维增强复合材料,具有质量轻、生物相容性好、化学稳定性好、力学性能好等特点;

本发明提供心脏托杯通过设置高分子层可有效防护内层碳基颗粒的脱落,避免与心脏的硬接触;

本发明提供心脏托杯设计成船形,结构稳定,可有效支撑心脏,维持胸腔内脏器的稳定,其厚度小,可减少手术创伤面。

本发明的心脏托杯通过设置加强筋能够提高船型结构的稳定性,且可以改善其力学性能,可以有效支撑心脏,维持胸腔内脏器的稳定。

附图说明

图1为碳纤维复合材料心脏托杯前后剖面图。

其中,1为中心层碳纤维增强层、2为高分子涂层、3为加强筋、4为连接孔。

图2为实施例1制备的碳纤维复合材料心脏托杯实物图。

图3为实施例2制备的碳纤维复合材料心脏托杯实物图。

图4为实施例1的心脏托杯多次循环受压的载荷位移曲线。

具体实施方式

以下实施例旨在进一步说明本发明内容,而不是限制本发明权利要求保护范围。

实施例1

1)将面密度为560g/m2,厚度0.5mm的粘胶基碳纤维编织布裁剪成与心脏左侧适宜大小的片状结构;

2)将片状粘胶基碳纤维编织布通过模具辅助压制成船形结构,得到碳纤维坯体;

3)将碳纤维坯体放入真空炉中,在1100℃温度下,通入的天然气(氮气作为稀释气体,流量比为1:0.5)经过裂解后,化学气相渗透在碳纤维坯料中,经过50小时,制备成碳纤维复合材料坯体;

4)通过静电喷涂在碳纤维复合材料坯体表面制备PEEK涂层,工艺参数:PEEK粉末粒度为200μm;静电喷涂厚度为0.5mm;固化温度为350℃。

5)在心脏托杯沿面区加工固定孔,孔径为2.5mm,间距为20mm,得到成品。制备的胸腔填充碳纤维复合材料心脏托杯中心区域厚度为1.5mm,主要用作心脏左侧托杯。从图1中可以看出,心脏托杯多次循环受压的载荷位移曲线一致,说明心脏托杯结构稳定性好。

实施例2

1)将为面密度为320g/m2,厚度0.3mm的6k聚丙烯腈基碳纤维机织平纹布裁剪成心脏右侧适宜大小的片状结构;

2)将两层片状聚丙烯腈基碳纤维机织平纹布叠加后,通过模具辅助压制成船形结构,同时进一步在船形结构沿面区中心设置加强筋,加强筋是由15束碳纤维加捻编织而成的碳纤维绳,单束碳纤维的纤维数为3k,得到碳纤维坯体;

3)将碳纤维坯体经过酚醛树脂真空加压浸渍、固化处理、裂解等致密化工艺。浸渍压力为3.0MPa,浸渍时间为5小时;固化温度为220℃,固化时间为20小时;裂解温度为1000℃,裂解时间为10小时,得到碳纤维复合材料坯体。

4)通过静电喷涂在碳纤维复合材料坯体表面制备PTFE涂层,工艺参数:PTFE粉末粒度为150μm;静电喷涂厚度为0.4mm;固化温度为380℃。

5)在心脏托杯沿面区加工固定孔,孔径为1.5mm,间距为10mm,得到成品。

制备的胸腔填充碳纤维复合材料心脏托杯中心区域厚度为1mm,主要用作心脏右侧托杯,心脏托杯多次循环受压的载荷位移曲线基本重合,在多次循环受压的载荷位移曲线中,在同一受压条件下,位移变化率低于3%。

实施例3

1)将3k,面密度为190g/m2,厚度0.8mm的聚丙烯腈基碳纤维针织布,以及3k,面密度为160g/m2,厚度0.2mm的聚丙烯腈基碳纤维斜纹布,裁剪成心脏右侧适宜大小的片状结构;

2)将两层碳纤维斜纹布与一层碳纤维针织布交替叠加后,通过模具辅助压制成船形结构,同时进一步在船形结构沿面区中心设置加强筋,加强筋是由6束碳纤维编织而成的碳纤维带,单束碳纤维的纤维数为24k,得到碳纤维坯体;

3)将碳纤维坯体先放入真空炉中,在900℃温度下,通入丙烯(氮气作为稀释气体,流量比为1:0.5)经过裂解后,化学气相渗透在碳纤维坯料中,经过60小时,再经过煤沥青真空加压浸渍、裂解等致密化工艺。浸渍压力为4.0MPa,浸渍时间为8小时;裂解温度为800℃,压力为100MPa,裂解时间为8小时,得到碳纤维复合材料坯体。

4)通过静电喷涂在碳纤维复合材料坯体表面制备PU涂层,工艺参数:PU粉末粒度为180μm;静电喷涂厚度为0.3mm;固化温度为170℃。

5)在心脏托杯沿面区加工固定孔,孔径为2mm,间距为12mm,得到成品。

制备的胸腔填充碳纤维复合材料心脏托杯中心区域厚度为1.6mm,主要用作心脏右侧托杯,心脏托杯多次循环受压的载荷稳定性好。心脏托杯多次循环受压的载荷位移曲线基本重合,在多次循环受压的载荷位移曲线中,在同一受压条件下,位移变化率低于3%。

实施例4

1)将6k,面密度为300g/m2,厚度0.9mm的聚丙烯腈基碳纤维针织布,以及3k,面密度为240g/m2,厚度0.3mm的聚丙烯腈基碳纤维斜纹布,裁剪成心脏右侧适宜大小的片状结构;

2)将两层碳纤维斜纹布与两层碳纤维针织布交替叠加后,通过模具辅助压制成船形结构,同时进一步在船形结构沿面区中心设置加强筋,加强筋是由5束碳纤维编织而成的碳纤维带,单束碳纤维的纤维数为24k,得到碳纤维坯体;

3)将碳纤维坯体先放入真空炉中,在1100℃温度下,通入甲烷(氢气作为稀释气体,流量比为1:0.2)经过裂解后,化学气相渗透在碳纤维坯料中,经过80小时,再经过煤沥青真空加压浸渍、裂解等致密化工艺。浸渍压力为5.0MPa,浸渍时间为10小时;裂解温度为900℃,压力为80MPa,裂解时间为8小时,得到碳纤维复合材料坯体。

4)通过静电喷涂在碳纤维复合材料坯体表面制备PET涂层,工艺参数:PET粉末粒度为150μm;静电喷涂厚度为0.2mm;固化温度为180℃。

5)在心脏托杯沿面区加工固定孔,孔径为2mm,间距为10mm,得到成品。

制备的胸腔填充碳纤维复合材料心脏托杯中心区域厚度为1.6mm,主要用作心脏右侧托杯,心脏托杯多次循环受压的载荷位移曲线基本重合,在多次循环受压的载荷位移曲线中,在同一受压条件下,位移变化率低于3%。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:干法制粉生产发泡陶瓷短流程工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!