一种雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶及其制备与应用

文档序号:176799 发布日期:2021-11-02 浏览:36次 >En<

阅读说明:本技术 一种雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶及其制备与应用 (Triptolide-gold nanoparticle/hyaluronic acid composite hydrogel and preparation and application thereof ) 是由 刘元艳 李晨曦 刘蕊 宋钰蓉 华正来 罗昕怡 李阳 于 2021-07-16 设计创作,主要内容包括:本发明涉及一种雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶及其制备与应用。其制备方法包括以下步骤:TP-Au-RGD纳米粒子的制备;酪胺及巯基改性的透明质酸的制备;TP-Au/HA复合水凝胶的制备。本发明设计的雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶,对炎症关节特异性靶向,不但能在局部达到有效药物浓度,同时可减少药物的用量,并抑制类风湿性成纤维细胞样滑膜细胞的增殖,且毒性低,继而避免全身给药的副作用。与常规治疗相比,使用了更小剂量的药物以达到相同的效果。(The invention relates to triptolide-gold nanoparticle/hyaluronic acid composite hydrogel and preparation and application thereof. The preparation method comprises the following steps: preparing TP-Au-RGD nano particles; preparing tyramine and sulfhydryl modified hyaluronic acid; and (3) preparing the TP-Au/HA composite hydrogel. The triptolide-gold nanoparticle/hyaluronic acid composite hydrogel designed by the invention can specifically target inflammatory joints, can locally reach effective drug concentration, can reduce the dosage of the drug, can inhibit the proliferation of rheumatoid fibroblast-like synovial cells, has low toxicity, and further avoids the side effect of systemic administration. Smaller doses of the drug are used to achieve the same effect compared to conventional treatments.)

一种雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶及其制备 与应用

技术领域

本发明属于药物制备技术领域,具体涉及一种雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶及其制备与应用。

技术背景

类风湿关节炎(Rheumatoid arthritis,RA)是一种以多发性关节炎症为主要临床表现的慢性自身免疫性疾病,在我国的患病率较高(0.32%-0.36%),致残率亦较高(60%-70%),且预后较差,严重危害人类生命健康。目前RA的病因尚不明确,一般认为与免疫系统异常、遗传、感染等多种因素有关。RA 患者基本病理特点包括滑膜炎与血管生成,一方面滑膜血管增生,并分泌大量细胞因子,引起滑膜组织增厚,破坏软骨和骨结构完整,并侵犯骨关节周围软组织,从而导致关节畸形,另一方面血管生成增多,侵犯人体各器官,如肺心、眼、脾和皮下组织等,随着病程延长,会引起相关脏器功能障碍。主要表现为关节疼痛、肿胀、僵硬、畸形和功能不全等致残率高,不仅影响患者生活质量,还加重家庭负担。

目前治疗药物主要有非甾体抗炎药、改善病情的抗风湿药、糖皮质激素等,但均有使用局限性,存在相当一部分患者无法耐受药物不良反应,影响了治疗作用的发挥;生物制剂效果确切,不良反应少,但价格昂贵,不能广泛用于临床。雷公藤是治疗关节肿痛的传统中药,具有活血化瘀、去湿止痛的作用,含有80种以上有效成分,其中雷公藤甲素(TP)是最主要的免疫抑制与抗炎成分。雷公藤多苷片是临床常用的RA 治疗药,雷公藤甲素相比于雷公藤多苷,生化稳定性更好,药物活性更强,相关效价高达100倍以上。但由于TP水溶性差,体内消除快,毒副作用大,极大限制了其在临床的应用。因此鉴于RA疾病的复杂性以及TP治疗的缺点,急需一种既能够增加疗效又减轻毒性的新型治疗方案。

发明内容

为解决上述技术问题,本发明提供了一种雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶及其制备与应用。

本发明所述的一种雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶的制备,包括以下步骤:

(1)TP-Au-RGD纳米粒子的制备

将150-450mg聚乳酸-羟基乙酸共聚物(PLGA)和9-27mg TP溶解在15-45ml二氯乙烷中,作为油相,在磁力搅拌下,将含150-450mg F-127(嵌段式聚醚F-127)的150-450ml蒸馏水作为水相,缓慢加入上述溶液;将油和水相混合后,400w超声乳化0.5-1.5h,然后搅拌12-36h让二氯乙烷挥发;离心收集合成的TP-PLGA纳米颗粒,超声分散于5-15ml磷酸盐缓冲盐溶液(PBS)中;然后将TP-PLGA纳米颗粒缓慢加入25-75mL金纳米(AuNps)溶液中,磁力搅拌10-30h,离心收集TP-PLGA-AuNps;采用柠檬酸钠还原法制备AuNps,先将32-96ml 0.1g/L的四氯金酸(HAuCl4)溶液加热至沸腾,同时逐滴加入0.21-0.63ml 10g/L柠檬酸钠,使其还原时间保持在6min,在此之后,保持溶液沸腾,直到溶液变成红紫色,并转移到烧瓶中,于4℃保存,接着将0.1575-0.4725mL柠檬酸钠溶液和11.296-33.888mL HAuCl4水溶液加入30-90mL TP-PLGA-AuNps溶液中,在磁力搅拌下,滴加0.15-0.45mL的80mM羟胺溶液,超声搅拌15-45min,使得TP-PLGA-AuNps中的AuNps形成Au纳米壳;

TP-PLGA-Au纳米粒子稀释到1wt%巯基-聚乙二醇-羧基(SH-PEG-COOH)溶液中并超声,10000rpm离心收集。将收集到的带有羧酸末端的TP-PLGA-Au纳米粒子、4-12mg 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/N-羟基琥珀酰亚胺(NHS)和环状3-9mg精氨酸-甘氨酸-天冬氨酸(RGD)溶于9-27mL的pH为7.4的0.2M PBS中,室温下搅拌;在此期间,环状RGD与金(Au)纳米壳吸附的SH-PEG-COOH链的-COOH基团共价结合;12-36h后,离心收集TP-Au-RGD纳米粒子,丢弃含有未反应的环状RGD的上清液;最后,将制备的TP-Au-RGD纳米粒子冷冻干燥,并在4℃下保存备用;

(2)酪胺及巯基(-SH)改性的透明质酸(HA)的制备

准确称取0.25-0.75g的含羧酸基团1.24mmol,平均分子量为8700g/mol HA溶解于50-150m L去离子水中,搅拌使其充分溶解,得HA溶液;称取0.479-1.437gEDC,0.2875-0.8625g NHS分别溶解于5-15m L去离子水中,然后与上述HA溶液混合,得混合溶液;用1M的HCL溶液调节上述混合溶液的pH值为5.4,在搅拌条件下室温活化0.25-0.75h;活化完成后,准确称取0.87-2.61g酪胺盐酸盐(TA),1.125-3.375g胱胺二盐酸盐,并将其加入混合溶液中,室温反应12-36h;反应结束后,称取1.15-3.45g二硫苏糖醇(DTT),搅拌条件下室温反应12-36h;反应结束后,将反应溶液放入截留分子量为3.5k Da的透析袋中,用去离子水透析1.5-4.5天;透析结束后,将透析袋中的溶液冷冻干燥,得到酪胺和-SH改性的透明质酸;

(3)TP-Au/HA复合水凝胶的制备

称取改性的透明质酸0.025-0.075g,溶解于0.5-1.5mL p H为7.4的PBS溶液中;待改性透明质酸完全溶解后,称取1mg载药纳米微球加入上述PBS溶液中,超声分散5-15min,使其均匀分散于凝胶前体溶液中,搅拌使其完全溶解,再向溶液中先后加入25-75μL0.02mg/m L辣根过氧化酶的PBS溶液和25-75μL 0.02wt%的双氧水,搅拌均匀室温下制得纳米复合水凝胶。

本发明所述的一种雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶的制备,包括以下步骤:

(1)TP-Au-RGD纳米粒子的制备

将300mg聚乳酸-羟基乙酸共聚物和18mg TP溶解在30ml二氯乙烷中,在磁力搅拌下,将含300mg F-127的300ml蒸馏水缓慢加入上述溶液;将油和水相混合后,400w超声乳化1h,然后搅拌24h让二氯乙烷挥发;离心收集合成的TP-PLGA纳米颗粒,超声分散于10ml PBS中;然后将TP-PLGA纳米颗粒缓慢加入50mL AuNps溶液中,磁力搅拌20h,离心收集TP-PLGA-AuNps;采用柠檬酸钠还原法制备AuNps,先将64ml 0.1g/L的HAuCl4溶液加热至沸腾,同时逐滴加入0.42ml 10g/L柠檬酸钠,使其还原时间保持在6min,在此之后,保持溶液沸腾,直到溶液变成红紫色,并转移到烧瓶中,于4℃保存,接着将0.315mL柠檬酸钠溶液和22.592mLHAuCl4水溶液加入60mL TP-PLGA-AuNps溶液中,在磁力搅拌下,滴加0.3mL的80mM羟胺溶液,超声搅拌30min,使得TP-PLGA-AuNps中的AuNps形成Au纳米壳;

TP-PLGA-Au纳米粒子稀释到1wt%SH-PEG-COOH溶液中并超声,10000rpm离心收集;将收集到的带有羧酸末端的TP-PLGA-Au纳米粒子、8mg EDC、8mg NHS和环状6mg RGD溶于18mL的pH为7.4的0.2M磷酸盐缓冲液中,室温下搅拌;在此期间,环状RGD与Au纳米壳吸附的SH-PEG-COOH链的-COOH基团共价结合;24h后,离心收集TP-Au-RGD纳米粒子,丢弃含有未反应的环状RGD的上清液;最后,将制备的TP-Au-RGD纳米粒子冷冻干燥,并在4℃下保存备用;

(2)酪胺及-SH改性的HA的制备

准确称取0.5g的含羧酸基团1.24mmol,平均分子量为8700g/mol HA溶解于100m L去离子水中,搅拌使其充分溶解,得HA溶液;称取0.958g EDC,0.575gNHS分别溶解于10mL去离子水中,然后与上述HA溶液混合,得混合溶液;用1M的HCL溶液调节上述混合溶液的p H值为5.4,在搅拌条件下室温活化0.5h;活化完成后,准确称取1.74g酪胺盐酸盐,2.25g胱胺二盐酸盐,并将其加入混合溶液中,室温反应24h;反应结束后,称取2.3g二硫苏糖醇,搅拌条件下室温反应24h;反应结束后,将反应溶液放入截留分子量为3.5k Da的透析袋中,用去离子水透析3天;透析结束后,将透析袋中的溶液冷冻干燥,得到酪胺和-SH改性的透明质酸;

(3)TP-Au/HA复合水凝胶的制备

称取改性的透明质酸0.05g,溶解于1mL p H为7.4的PBS溶液中;待改性透明质酸完全溶解后,称取1mg载药纳米微球加入上述PBS溶液中,超声分散10min,使其均匀分散于凝胶前体溶液中,搅拌使其完全溶解,再向溶液中先后加入50μL 0.02mg/mL辣根过氧化酶的PBS溶液和50μL 0.02wt%的双氧水,搅拌均匀室温下制得纳米复合水凝胶。

本发明所述方法制备得到的雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶。

本发明所述的雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶的应用,用于制备抑制mTOR/p70S6K信号通路的药物。

本发明所述的雷公藤甲素-金纳米颗粒/透明质酸复合水凝胶的应用,用于制备治疗类风湿性关节炎的药物。

本发明设计的TP-Au/HA复合水凝胶,在CIA小鼠上进行关节腔内注射药物治疗,不但能在局部达到有效药物浓度,同时可减少药物的用量,继而避免全身给药的副作用。当药物注射到关节腔内后,HA链首先降解,随后,TP-Au-RGD纳米粒子暴露于周围环境中。由于RGD肽的靶向性,合成的纳米颗粒在炎症的关节内逐渐积累。并且,在近红外光的照射下,金纳米壳发生表面等离子体共振,产生热量,使得药物从TP-PLGA纳米颗粒中快速释放,这就达到了光热控制药物递送和释放,与常规治疗相比,使用了更小剂量的药物以达到相同的效果。TP-Au/HA复合水凝胶对炎症关节特异性靶向,并抑制类风湿性成纤维细胞样滑膜细胞(RA-FLSs)的增殖,且毒性低。其抗炎作用是通过调控哺乳动物雷帕霉素靶蛋白/p70核糖体蛋白S6激酶(mTOR/p70S6K)信号通路而实现的。

附图说明

图1为TP-Au/HA复合水凝胶的合成路线。图2:(a)改性HA的合成路线;(b)TP-Au-RGD纳米粒子的TEM图像;(c)改性HA的SEM图像;(d)TP-Au/HA复合水凝胶的TEM图像;(e)TP-Au/HA复合水凝胶的。图3:(a)改性HA的1H NMR;(b)TP-Au-RGD纳米粒子的1H NMR;(c)Au纳米壳层的在UV-vis-NIR光谱中的吸收峰。图4:(a)TP-Au/HA复合水凝胶和TP-Au-RGD纳米粒子的药物释放速率;(b)TP-Au/HA复合水凝胶有无近红外光的释药速率;*p<0.05。图5为TP-Au/HA复合水凝胶对RA-FLSs的抗增殖效果图,G1(FLS对照组)、G2(0.13μM的TP溶液)、G3(30μM的TP溶液)和G4(TP-Au/HA复合水凝胶(等效G2的TP)浓度分别处理24h和48h,用CCK-8法检测细胞凋亡率,*p<0.05。图6为TP-Au/HA复合水凝胶对小鼠CIA模型的抗炎作用示意图。图7为TP-Au/HA复合水凝胶可减少mTOR和mTOR的下游蛋白p70S6K的磷酸化;(a)TP-Au/HA复合水凝胶降低了磷酸化mTOR的水平,磷酸化mTOR/总中位数降低了54%;(b)磷酸化mTOR的下游蛋白p70S6K/总中位数降低38%,证实了TP-Au/HA复合水凝胶对mTOR通路的抑制,*p<0.05。图8为TP-Au/HA复合水凝胶对小鼠类风湿关节炎指数的作用图,*p<0.05。图9:(a)正常小鼠(NA)和CIA小鼠治疗28天后的滑膜组织学结果,H&E(滑膜炎症,原始放大倍数×100)。(b)组织病理学评估(滑膜炎症)的半定量分析。*p<0.05。

具体实施方式

为了便于理解本发明,下文将结合说明书附图和实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。

实施例1

1.实验材料

牛II型胶原蛋白(Sigma-Aldrich,上海),不完全弗式佐剂(Sigma-Aldrich,上海),完全弗氏佐剂(Sigma-Aldrich,上海),mTOR,p-mTOR,p70s6k,p-p70s6k的一抗购于Abcam公司,羊抗兔,羊抗小鼠二抗购于中杉金桥,10×SDS-PAGE电泳缓冲液(B1005-500ML),10×蛋白电转移缓冲液(B1006-500ml)购于北京普利莱基因技术有限公司。Tri-MOPS-SDS速溶颗粒,Western及IP细胞裂解液(P0013-100ML),SDS-PAGE凝胶配制试剂盒(P0012A),QuickblockTM封闭液(TBSTx)购于碧云天生物技术研究所。Blue Plus IVProtein Marker(10-180kDa)(北京全式金生物技术有限公司)。羧基聚乙二醇巯基,胱胺二盐酸盐,酪胺盐酸盐(TA),二硫苏糖醇(DTT),1-乙基-(3-二甲氨基丙基)碳二亚胺盐酸盐(EDC),雷公藤甲素购于上海源叶科技有限公司,透明质酸购于阿拉丁,聚乳酸-羟基乙酸共聚物,柠檬酸缓冲液,氯金酸和NHS购于上海迈克林生化技术有限公司,辣根过氧化物酶购于北京索莱生物科技有限公司,环状RGD购于西安瑞希生物科技有限公司,所有其他化学试剂、试剂和溶剂均为分析级。

2.TP-Au/HA复合水凝胶的合成

2.1 TP-Au-RGD纳米粒子的制备

将PLGA(300mg)和TP(18mg)溶解在二氯乙烷(30ml)中,在磁力搅拌下,将含F-127(300mg)的蒸馏水(300ml)缓慢加入上述溶液。将油和水相混合后,超声乳化1h(400w),然后搅拌24h让二氯乙烷挥发。离心收集合成的TP-PLGA纳米颗粒,超声分散于10ml PBS中。然后将TP-PLGA纳米颗粒缓慢加入50mL AuNps溶液中,磁力搅拌20h,离心收集TP-PLGA-AuNps。实验采用柠檬酸钠还原法制备AuNps。将64ml0.1g/L的HAuCl4溶液加热至沸腾,同时逐滴加入0.42ml 10g/L柠檬酸钠,使其还原时间保持在6min左右。在此之后,保持溶液沸腾,直到溶液变成红紫色,并转移到烧瓶中,于4℃保存。接着将0.315mL柠檬酸钠溶液和22.592mLHAuCl4水溶液加入60mL TP-PLGA-AuNps溶液中,在磁力搅拌下,滴加羟胺溶液(80mM,0.3mL),超声搅拌30min,使得TP-PLGA-AuNps中的AuNps形成Au纳米壳。

TP-PLGA-Au纳米粒子稀释到1wt%SH-PEG-COOH溶液中并超声,10000rpm离心收集。将收集到的带有羧酸末端的TP-PLGA-Au纳米粒子、EDC(8mg)/NHS(8mg)和环状RGD(6mg)溶于18mL0.2M磷酸盐缓冲液(pH 7.4)中,室温下搅拌。在此期间,环状RGD与Au纳米壳吸附的SH-PEG-COOH链的-COOH基团共价结合。24h后,离心收集TP-Au-RGD纳米粒子,丢弃含有未反应的环状RGD的上清液。最后,将制备的TP-Au-RGD纳米粒子冷冻干燥,并在4℃下保存备用。

2.2酪胺及-SH改性的HA的制备

准确称取0.5g HA(含羧酸基团1.24mmol,平均分子量为8700g/mol)溶解于100mL去离子水中,搅拌使其充分溶解,得HA溶液。称取0.958g EDC(5mmol),0.575g NHS(5mmol)分别溶解于10mL去离子水中,然后与上述溶液混合,用1M的HCL溶液调节上述混合溶液的pH值为5.4,在搅拌条件下室温活化0.5h。活化完成后,准确称取1.74g酪胺盐酸盐(TA)(10mmol),2.25g胱胺二盐酸盐(10mmol),并将其加入混合溶液中,室温反应24h。反应结束后,称取2.3g二硫苏糖醇(DTT)(15mmol),搅拌条件下室温反应24h。反应结束后,将反应溶液放入透析袋(3.5k Da)中,用去离子水透析3天。透析结束后,将透析袋中的溶液冷冻干燥,得到酪胺和-SH改性的透明质酸。反应过程如图1。

2.3 TP-Au/HA复合水凝胶的制备

本实验中,所有的纳米复合水凝胶(1mL)均在3mL的小瓶子中在室温下制备。称取改性的透明质酸0.05g,溶解于1ml L PBS(p H=7.4)溶液中。待改性透明质酸完全溶解后,称取1mg载药纳米微球加入上述溶液中,超声分散10min,使其均匀分散于凝胶前体溶液中,搅拌使其完全溶解,再向溶液中先后加入辣根过氧化酶HRP的PBS溶液(50μL 0.02mg/mL)和双氧水(50μL 0.02wt%),搅拌均匀室温下可形成纳米复合水凝胶。

2.4体外释药研究

将10mg TP-Au/HA复合水凝胶和等效的TP-Au-RGD纳米粒子分别装入1000Da的透析袋中。将透析袋浸泡在装有10ml PBS(pH 7.4,10mm)的烧杯中,在37℃摇床中摇晃(150rpm),继而用0.53W/cm2近红外光照射10min。在确定的时间间隔替换释放培养基以保持释放条件。采用紫外-可见分光光度法在220nm处测定TP释放量。所有测量均重复三次。

2.5 RA-FLSs的制备和培养

RA-FLSs和细胞生长培养基均购自Cell Applications(北京龙跃生物科技发展有限公司)。从第4代到第8代获得的FLS细胞以1×10 4个/mL的密度接种到96孔板上,在Dulbecco's修饰的Eagle培养基(DMEM)中加入4.5g/L葡萄糖、100IU/mL青霉素、100μg/mL链霉菌素和10%胎牛血清。细胞在37℃加湿的培养箱中生长,环境为氧气和5%CO2

2.6 CCK-8试验

采用CCK-8法测定TP-Au/HA复合水凝胶对RA-FLSs增殖的影响。培养RA-FLSs并接种到96孔板中,每孔2×104个细胞。然后分别用不同浓度的药物在不同时间(24h、48h)下培养细胞。药物分组分别为TP溶液(0.13和30μM)、TP-Au/HA复合水凝胶(含有等效0.13的μM的TP)、TP-Au/HA复合水凝胶(含有等效0.13的μM的TP)并在0.38W/cm2近红外光下照射10min。分别给药24h和48h后,每孔加入10μl CCK-8溶液于37℃,5%CO2孵育1h,然后采用酶联免疫吸附仪在450nm波长下测定吸光度。

2.7 Western blot试验

加有蛋白酶抑制剂和磷酸酶抑制剂的RIPA裂解30min提取总蛋白。蛋白浓度使用BCA蛋白浓度测定试剂盒(碧云天)测定,提取的蛋白放在-80℃条件下保存。50微克蛋白电转移到PVDF膜上,用10%SDS聚丙烯酰胺凝胶分离,PVDF膜用5%脱脂奶粉封闭两个小时,用对应的一抗4度孵育过夜,分别mTOR、p70S6K、p-mTOR和p-p70S6K蛋白,第二天回收一抗,用TBST洗涤3次,每次5min,加入二抗(1:5000),室温摇床孵育2小时,回收二抗,用TBST洗3次,每次5min,显影。

2.8建立关节炎模型

牛Ⅱ型胶原诱导的关节炎小鼠模型:用0.05mol/L醋酸溶液溶解牛Ⅱ型胶原蛋白,取适量牛Ⅱ型胶原溶液(浓度为2mg/ml)逐滴加入至等容积的不完全弗氏佐剂中,用匀浆机进行充分乳化,操作过程完全在冰上进行,以保持低温,以滴入水中不扩散为成功标准。造模的大鼠尾根部用75%酒精消毒后,于尾根部皮下注射上述乳化后的混合液200μg/只,21天,在相同部位按皮下注射100μg/只加强免疫一次。

2.9动物分组及给药

雄性DBA/1J小鼠40只,适应性喂养一周后,随机选5只作为正常组(Normal组),剩余35只建立CIA模型,只有20只造模成功(关节炎指数≥2)。将造模成功的小鼠采用随机数字法分成4组,每组5只,分别注射生理盐水(第1组)、TP溶液(第2组)、TP-Au/HA复合水凝胶(第3组和第四组),第4组每次关节内注射复合水凝胶后,在1.59W/cm2近红外光下照射10min。每5只动物被放置在一个独立的笼子里,房间内自动控制照明(12小时光/暗循环,灯光从8:00到20:00),控制温度(22-25℃)和相对湿度(45-50%),自由给予食物和水。二次免疫后3天开始给药,连续给药4周。

2.10关节炎指数(AI)评估

给药后开始评分,一周两次,按照0-4级评分法进行评价。根据关节红肿程度进行评分。评分标准如下:(1)关节无红肿,0分;(2)小趾关节轻度发红或肿胀,1分;(3)小趾关节和足趾肿胀、发红,2分;(3)踝关节下的整个脚爪全部肿胀、发红,3分;(4)踝关节严重肿胀和发红,4分。

2.11近红外活体成像

将TP-Au/HA复合水凝胶(200μL,1mg/ml分散在PBS中)注射到小鼠关节腔内。小鼠被麻醉后,使用eXplore Optix系统(Advanced Research Technologies Inc.,Montreal,Canada)获得近红外吸光度图像。

2.12关节组织与心肝脾肺肾HE染色

心肝脾肺肾被固定在10%中性福尔马林至少24小时后,70%、80%、95%(I、II)、100%(I、II)酒精进行逐级脱水,二甲苯I、II透明,之后石蜡包埋切片,HE染色,苏木素染液染细胞核,伊红染细胞浆,最后光学显微镜观察病理变化。染色具体过程如下:

(1)取石蜡切片进行水化:二甲苯I、II各15min,100%(I、II)、95%、80%、70%酒精各5min,蒸馏水洗两次,每次1min。

(2)加入苏木素10min,自来水冲洗2min。

(3)1%盐酸酒精分化5-10s。

(4)自来水蓝化30min。

(5)0.5%伊红酒精液复染2min。

(6)80%酒精5-10s,95%(I、II)酒精各2min,100%(I、II)酒精各5min,二甲苯I5min,二甲苯II 10min。

(7)中性树胶封片。

关节组织切片用苏木精和伊红染色,并对细胞浸润、骨侵蚀和滑膜增生的变化进行评分,所有评分均为0-4分。0分代表细胞因子无表达,1分轻度表达,2分中度表达,3分丰富表达。每个分数由两名独立观察员评估,并计算平均分数。

2.13 Micro-CT分析

小鼠整只爪子放在10%多聚甲醛固定,一周后使用Micro-CT(SkyScan 1176,SkyScan,Aartselaar,Belgium)扫描,参数设置为70kV和141μA,曝光时间为1750ms。通过使用CT分析软件定量骨小梁厚度(Tb.Th;mm)和骨体积分数(BV/TV;%)。

2.14数据分析

数据用平均值±标准差(SD)表示。使用单因素方差分析(ANOVA),然后通过使用GraphPad Prism6.0(GraphPad Software,Inc.,San Diego,CA)的Tukey's多重比较来比较各组之间的显著差异。p<0.05时认为差异有统计学意义,p<0.01时认为差异极显著。

3.实验结果与讨论

3.1 TP-Au/HA复合水凝胶的制备与表征

制备路线如图1所示。首先,我们制备了TP-Au-RGD纳米粒子。将TP-PLGA-Au纳米粒子稀释在1wt%SH-PEG-COOH溶液中进行超声并离心收集。将环状RGD肽结合在PLGA表面(TP-Au-RGD),该肽可与血管内皮细胞上炎症位点表达的Rvβ3整合素结合[26],将TP靶向至炎症部位。TP-Au-RGD纳米粒子的粒径为140.3nm,zeta电位为-15.2±0.4。TP-Au-RGD纳米粒子的结构通过1HNMR来确定(图2b),8.27-8.438ppm为环状RGD的-NH(NH2)=NH,4.85-5.02ppm为PLGA的-CH。Au纳米壳层的形成也反映在UV-vis-NIR光谱中(图3c),吸收峰在680-740nm,表明纳米粒子可用于光热治疗和体内近红外吸收成像。

采用酪胺以及二胱胺盐酸盐对HA进行改性,主要是通过酪胺及二胱胺盐酸盐端基的氨基-NH2官能团与透明质酸结构单元上的羧基-COOH反应,脱去水分子形成酰胺键(-CONH-),如图2a。首先将HA溶解于去离子水中,再加入羧基活化剂EDC和NHS对其结构单元中的羧-COOH进行活化,然后再加入改性剂酪胺和二胱胺盐酸盐,室温下进行反应。然后再向溶液中加入还原剂DTT将二胱胺盐酸盐的二硫键(-S-S-)断开。冷冻干燥后,可室温下长期储存。改性HA的结构可以通过1H NMR来确定,如图3a。δ=6.64ppm,δ=6.60ppm处的吸收峰为TA上的苯环上的质子吸收峰,δ=2.05ppm,δ=2.67ppm处的吸收峰为半胱胺(CS)上的两个亚甲基的质子吸收峰,其中δ=2.67ppm处的吸收峰强度明显大于2.05ppm处的吸收峰强度,主要是因为本体HA主链上的质子在δ=2.78ppm处也有吸收。最后,在过氧化氢(H2O2)和辣根过氧化物酶(HRP)的催化下,酪胺和硫醇氧化偶联形成水凝胶。图2b为TP-Au-RGD纳米粒子的TEM图像。改性的SEM图像显示表面形貌光滑,如图2c。TEM图像,图2d,2e,显示TP-Au-RGD纳米粒子和TP-Au-RGD纳米粒子嵌套在水凝胶基体中且分布均匀。

3.2体外药物释放和光热效应

在体外释放研究中,我们测定了TP-Au/HA复合水凝胶和TP-Au-RGD纳米粒子的药物释放速率,表明高交联水凝胶的药物比单纯的纳米粒子药物的持续释放时间更长。因为HA的长链具有多个相互作用位点,形成了一个相对致密稳定的亲水壳层,如图1所示。TP-Au-RGD纳米粒子显示TP持续释放3天,12小时内释放超过60%的药物(图4a)。TP-Au/HA复合水凝胶的药物释放图显示TP持续释放3天,在72h内释放大约60%的药物,单纯的载药纳米粒子的药物释放速率明显要高于纳米复合透明质酸水凝胶的药物释放速率。载药纳米粒子在溶液中的药物释放主要是通过渗透作用进行,载药纳米复合透明质酸水凝胶在溶液中的药物释放分为两个阶段,首先药物分子通过渗透作用从聚合物纳米粒子内部释放出来,进入到水凝胶的结构网络当中,然后再由水凝胶的结构网络当中通过渗透作用释放到外部溶液中。以上实验结果充分表明,纳米复合透明质酸水凝胶可以明显的延缓药物释放速率。

3.4体外细胞试验TP-Au/HA复合水凝胶对RA-FLSs的增殖抑制作用

在体外细胞实验研究中,利用RA-FLSs证实了TP-Au/HA复合水凝胶与近红外辐射联合治疗的光热控制药物释放和抗关节炎作用。通过CCK-8法验证TP-Au/HA复合水凝胶对RA-FLSs的增殖抑制作用,实验表明TP-Au/HA复合水凝胶显著抑制了RA-FLSs的增殖(图5)。G1为RA-FLSs对照组,G2和G3分别用0.13μM和30μM的TP溶液处理,G4是用TP-Au/HA复合水凝胶(G2等效的TP),G5是将TP-Au/HA复合水凝胶给药后的RA-FLSs细胞以0.38W/cm2的近红外光照射10分钟。结果表明,由于G2的TP浓度较低,细胞抗增殖能力明显低于G3。RA-FLSs经TP-Au/HA复合水凝胶处理后,G4细胞的抗增殖能力显著增强。TP-Au/HA复合水凝胶联合近红外照射(G5)处理的细胞抗增殖能力最强,且G5中TP的用量低于G3。结果表明,TP-Au/HA复合水凝胶与近红外辐射具有协同效应。

3.5 TP-Au/HA复合水凝胶对mTOR/p70S6K信号通路的影响

滑膜炎症和滑膜细胞增生是RA的显著特征[27],RA-FLSs是这种侵袭性滑膜炎的关键组成部分,在破坏性关节炎症的起始和持续中有着重要作用。RA-FLSs释放重要的炎症因子(TNF-a、IL-1b、IL-6、IL-21、IL-22和IL-32)、趋化因子(CXCL1、CXCL5、MCP-1、G-CSF和IL-8)和炎症介质(TLR-2、TLR-3、TLR-4、iNOS和COX-2),促进单核细胞、巨噬细胞、中性粒细胞、树突状细胞、T细胞、和B细胞进入关节,导致慢性炎症和关节破坏的发生(图6)。近年来的研究表明,雷帕霉素/p70核糖体蛋白S6激酶(mTOR/p70S6K)信号通路在RA-FLSs中过度激活,在调节细胞凋亡和存活中发挥重要作用。mTOR在多种癌症中表达上调,促进癌细胞侵袭,其表达也与癌症预后不良相关。p70S6K1通过诱导蛋白质合成调节细胞生长。我们推测TP-Au/HA复合水凝胶诱导RA-FLSs的凋亡作用可能与抑制mTOR/p70S6K信号通路有关。因此,我们通过western blotting分析各组总mTOR、p70S6K、p-mTOR、p-p70S6K的蛋白表达水平(图7)。结果显示,经过TP-Au/HA复合水凝胶处理的RA-FLSs显著降低了磷酸化mTOR的水平,以及mTOR的底物-磷酸化p70S6K1的水平,证实了该通路的抑制与凋亡减少有关。这些数据表明,TP-Au/HA复合水凝胶可以抑制RA-FLSs中的mTOR/p70S6K信号通路。

3.6在CIA小鼠体内化疗结合光热治疗的治疗效果

为了研究混合水凝胶的治疗效果,将CIA小鼠分为4组(每组5只),每组均在关节内给药200μL,见表1。

表1 CIA小鼠关节给药分组

图8显示了各组的临床指标随时间的变化,阳性对照为每次35mg/kg TP溶液,每周注射4次(G2)。与生理盐水处理的小鼠(G1)相比,其他各组的临床指标均下降,且随时间的不同有一定的变化。TP-Au/HA复合水凝胶(0.2mg/kg)不加近红外辐射处理的小鼠(G3),其临床指标虽低于G1,但在第20天左右逐渐下降,然后再次上升。然而,关节注射TP-Au/HA复合水凝胶(0.2mg/kg)并用1.59W/cm2近红外照射10分钟(G4),小鼠的临床指标低于TP组(G2),这可能是由于光照控制药物释放。在G3中,TP从水凝胶中缓慢释放可能是因为近红外辐射的缺失阻碍了TP的持续释放,导致治疗效果小。而在近红外光照射下,导致在12小时内,TP的释放量超过10%(图4b)。我们注意到水凝胶中只有0.2mg/kg的TP,这比G2的TP用量要低得多。这些结果表明,使用TP-Au/HA混合水凝胶联合化学光热治疗是最大限度地提高治疗效果和使用最小化TP剂量,减少相关副作用。

3.7病理组织学检查

为了确认化疗-光热结合治疗的靶向效果,在给药28天后对关节进行了组织学检查(图9a)。未给药小鼠的关节切片显示严重的炎症细胞浸润(图9b)。在G2和G4小鼠中,这些组织病理学改变明显减少。相比之下,G3小鼠无明显差异。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种妇科凝胶

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!