一种基于rc充放电峰峰值检测的土壤水分传感器

文档序号:1770406 发布日期:2019-12-03 浏览:20次 >En<

阅读说明:本技术 一种基于rc充放电峰峰值检测的土壤水分传感器 (A kind of soil moisture sensor based on the detection of RC charge and discharge peak-to-peak value ) 是由 盛庆元 沃金平 张西良 倪梦瑶 蔡晓霞 于 2019-10-16 设计创作,主要内容包括:本发明涉及一种基于RC充放电峰峰值检测的土壤水分传感器,包括稳压源电路、用于产生方波信号的方波激励信号源电路、精密电阻R、放电肖特基二极管D、电容式探头C、直流隔离电路、峰峰值检测电路和二极管压降补偿电路。本发明的有益效果是:带有稳压源,高频方波激励下RC电路慢充电快放电的工作方式,有效提高了传感器灵敏度,解决了土壤离子极化附加电容对传感器的影响,即土壤盐分对传感器影响等问题;传感器输入输出接口简单方便二次仪表的开发;该土壤水分传感器结构简单,制作方便。(The present invention relates to a kind of soil moisture sensors based on the detection of RC charge and discharge peak-to-peak value, square wave excitation signal source circuit, precision resistance R, electric discharge Schottky diode D, capacitance probe C, DC isolation circuit, peak-to-peak value detection circuit and diode drop compensation circuit including pressure stabilizing source circuit, for generating square-wave signal.The beneficial effects of the present invention are: having source of stable pressure, the working method that high frequency square wave motivates lower RC circuit charging battery to discharge fastly, transducer sensitivity is effectively increased, solves influence of the soil ion polarization additional capacitor to sensor, i.e., soil salt is on the problems such as sensor influence;The exploitation of the simple and convenient secondary meter of sensor input/output interface;The soil moisture sensor structure is simple, easy to make.)

一种基于RC充放电峰峰值检测的土壤水分传感器

技术领域

本发明涉及土壤水分含量检测技术领域,尤其涉及一种基于RC充放电峰峰值检测的土壤水分传感器。

背景技术

随着无线分布式土壤含水量监测网络系统应用的日渐成熟,市场急需一种测量精度高、功耗低、价格低、结构小、标定过程简单土壤含水量传感器。

目前,基于土壤介电特性研制的电容式土壤含水量备受学者青睐。在电容式土壤水分传感器探头形式上,主要有铜环式、多探针***式以及PCB平面刀叉式或单侧敏感式。国外已有市售产品,如美国外DecagonDevics公司生产的ECH2O系列土壤含水量传感器,英国的SM300、ML2x\PR2传感器等。国内很多学者、专家对电容式水分传感器也开展了相关研究,从检测技术上来看,普遍采用高频LC谐振技术,如专利电容法土壤水分测量仪CN201697889U,多点式土壤水分传感器CN201527407U,高频式土壤湿度传感器CN201464410U等。谐振法电路设计简单,由于土壤作为非绝缘介质,其等效电容大小与信号频率有关,故谐振法本身就存在系统误差。

除谐振技术外,胡建东提出了基于双二极管调制的边缘电场土壤水分传感器,可这种电容传感器调制电路的输出和灵敏度与高频方波电源电压U0的幅度和频率f有关。为保证工作的稳定性,需严格控制高频电源的电压和频率的稳定度。王晓雷为减小土壤电导的影响提出附加电阻高频电容法土壤水分传感器,此技术需要开关切换,操作不便。

专利CN109490382A从RC串联幅值变化角度提出了一种基于幅值比检测土壤含水量的系统,201010529765.6提出了与ECH2O系列土壤含水量传感器EC-5原理一致的基于真有效值检测的土壤水分传感器。这两个专利各自使用了昂贵的专用AD8302、AD8361芯片。另外,彭星硕、李加念、张荣标等人对基于真有效值检测的EC-5型传感器研究表明,此类传感器存在:在高介电值段失真,传感器对工作电压有明显的依赖性,输出信号受土壤盐分影响,灵敏度不高的问题。

发明内容

本发明的目的在于克服现有技术存在的以上问题,提供一种基于RC充放电峰峰值检测的土壤水分传感器。

为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:

一种基于RC充放电峰峰值检测的土壤水分传感器,包括稳压源电路、用于产生方波信号的方波激励信号源电路、精密电阻R、放电肖特基二极管D、电容式探头C、直流隔离电路、峰峰值检测电路和二极管压降补偿电路,所述电容式探头C的一端与放电肖特基二极管D的阳极电连接,电容式探头C的另一端接地,所述精密电阻R与放电肖特基二极管D并联后串联在方波激励信号源电路和直流隔离电路之间,所述直流隔离电路、峰峰值检测电路和二极管压降补偿电路依次电连接;所述稳压源电路的电源输出端分别与方波激励信号源电路、峰峰值检测电路、二极管压降补偿电路的电源输入端连接。

进一步的,所述方波激励信号源电路包括硅振荡器、电容C4,所述电容C4的两个引脚分别与硅振荡器的V+引脚和GND引脚连接,所述硅振荡器的OUT引脚与放电肖特基二极管D的阴极电连接,所述硅振荡器的GND引脚接地,所述方波激励信号源电路产生的方波信号的频率为70~140MHz。

进一步的,所述直流隔离电路由电容C1与电阻R1串联组成,所述电容C1远离电阻R1的一端与放电肖特基二极管D的阳极电连接;所述电阻R1远离电容C1的一端接地。

进一步的,所述峰峰值检测电路包括波峰检测电路、波谷检测电路和差分运算电路,所述波峰检测电路由电容C2、电阻R2、开关二极管D2组成,所述电容C2与电阻R2并联后的一端接地,所述电容C2与电阻R2并联后的另一端与开关二极管D2的阴极电连接,开关二极管D2的阳极与电阻R1非接地端电连接;所述波谷检测电路由电容C3、电阻R3、开关二极管D3组成,所述电容C3与电阻R3并联后的一端接地,所述电容C3与电阻R3并联后的另一端与开关二极管D3的阳极电连接,开关二极管D3的阴极与电阻R1非接地端电连接;所述差分运算电路是采用仪表放大器实现的减法电路,电容C2与电阻R2并联的非接地端与仪表放大器的同向输入端电连接,电容C3与电阻R3并联的非接地端与仪表放大器的反向输入端电连接;所述电容C2与电容C3的电容值相等,所述电阻R2与电阻R3阻值相等,所述开关二极管D2与开关二极管D3为同一型号二极管。

进一步的,所述二极管压降补偿电路包括精密放大器、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、开关二极管D4、开关二极管D5,所述电阻R12的一端与峰峰值检测电路的输出端电连接,所述电阻R12的另一端与精密放大器的同向输入端电连接,所述电阻R13的一端与精密放大器的同向输入端电连接,所述电阻R13的另一端与开关二极管D4的阳极电连接,所述电阻R11的一端与稳压源电路的电源输出端电连接,所述电阻R11的另一端与开关二极管D4的阳极电连接,所述开关二极管D4的阴极与开关二极管D5的阳极电连接,所述开关二极管D5的阴极接地,所述电阻R10的一端与精密放大器的反向输入端电连接、所述电阻R10的另一端接地,所述电阻R9的一端与精密放大器的反向输入端电连接、所述电阻R9的另一端与精密放大器的输出端并联。

进一步的,所述稳压源电路包括DC-DC固定稳压器、电容C5、电容C6,所述电容C5的正极与DC-DC固定稳压器是输入端电连接,所述电容C6的正极与DC-DC固定稳压器是输出端电连接,所述电容C5的负极、电容C6的负极、DC-DC固定稳压器的接地脚接地。

进一步的,所述稳压源电路、方波激励信号源电路、精密电阻R、放电肖特基二极管D、直流隔离电路、峰峰值检测电路和二极管压降补偿电路均设于一主印刷电路板上,电容式探头C由两个长条印刷电路板构成,长条印刷电路板上设有点接触区,长条印刷电路板与主印刷电路板电连接且为一体成型结构,电容式探头C通过电接触区采集信号,两个长条印刷电路板的外侧分别安装一层防护板。

本发明的有益效果是:带有稳压源,高频方波激励下RC电路慢充电快放电的工作方式,有效提高了传感器灵敏度,解决了土壤离子极化附加电容对传感器的影响,即土壤盐分对传感器影响等问题;传感器输入输出接口简单方便二次仪表的开发;该土壤水分传感器结构简单,制作方便。

附图说明

此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1是本发明实施例中土壤水分传感器的电路组成框图;

图2是本发明实施例中土壤水分传感器的电路原理图;

图3是本发明实施例中土壤水分传感器的结构示意图;

图4是图2中点E、F、G处信号波形图。

具体实施方式

下面将参考附图并结合实施例,来详细说明本发明。

在本发明的描述中,需要理解的是,术语“开孔”、“上”、“下”、“厚度”、“顶”、“中”、“长度”、“内”、“四周”等指示方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的组件或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。

如图1至图4所示,一种基于RC充放电峰峰值检测的土壤水分传感器,包括稳压源电路、用于产生方波信号的方波激励信号源电路、精密电阻R、放电肖特基二极管D、电容式探头C、直流隔离电路、峰峰值检测电路和二极管压降补偿电路,电容式探头C的一端与放电肖特基二极管D的阳极电连接,电容式探头C的另一端接地,精密电阻R与放电肖特基二极管D并联后串联在方波激励信号源电路和直流隔离电路之间,直流隔离电路、峰峰值检测电路和二极管压降补偿电路依次电连接;稳压源电路的电源输出端分别与方波激励信号源电路、峰峰值检测电路、二极管压降补偿电路的电源输入端连接。放电肖特基二极管采用的型号为NSVR31SDSA3。

方波激励信号源电路包括硅振荡器、电容C4,电容C4的两个引脚分别与硅振荡器的V+引脚和GND引脚连接,硅振荡器的OUT引脚与放电肖特基二极管D的阴极电连接,硅振荡器的GND引脚接地,方波激励信号源电路产生的方波信号的频率为70~140MHz。硅振荡器优选采用LTC6905-XXX系列的LTC6905HS5-133或LTC6905HS5-100芯片,LTC6905-XXX系列是精准的固定频率硅振荡器,专为最大限度缩减电路板空间并尽量地提升准确度和易用性而设计。其无需采用外部组件来设定频率;一个内部三态分频器允许对主时钟进行1、2或4分频。如图2所示,本实施例中DIV引脚接3.3V进行1分频。LTC6905-XXX系列采用2.7V至5.5V单电源工作,并提供一个轨至轨、50%占空比的方波输出。

直流隔离电路由电容C1与电阻R1串联组成,电容C1远离电阻R1的一端与放电肖特基二极管D的阳极电连接;电阻R1远离电容C1的一端接地。

峰峰值检测电路包括波峰检测电路、波谷检测电路和差分运算电路,波峰检测电路由电容C2、电阻R2、开关二极管D2组成,电容C2与电阻R2并联后的一端接地,电容C2与电阻R2并联后的另一端与开关二极管D2的阴极电连接,开关二极管D2的阳极与电阻R1非接地端电连接;波谷检测电路由电容C3、电阻R3、开关二极管D3组成,电容C3与电阻R3并联后的一端接地,电容C3与电阻R3并联后的另一端与开关二极管D3的阳极电连接,开关二极管D3的阴极与电阻R1非接地端电连接;差分运算电路是采用仪表放大器实现的减法电路,电容C2与电阻R2并联的非接地端与仪表放大器的同向输入端电连接,电容C3与电阻R3并联的非接地端与仪表放大器的反向输入端电连接;电容C2与电容C3的电容值相等,电阻R2与电阻R3阻值相等,开关二极管D2与开关二极管D3为同一型号二极管。差分运算电路采用的仪表放大器的型号为LTC6800。

二极管压降补偿电路是采用运放实现的同向加法电路,二极管压降补偿电路包括精密放大器、电阻R9、电阻R10、电阻R11、电阻R12、电阻R13、开关二极管D4、开关二极管D5,电阻R12的一端与峰峰值检测电路的输出端电连接,电阻R12的另一端与精密放大器的同向输入端电连接,电阻R13的一端与精密放大器的同向输入端电连接,电阻R13的另一端与开关二极管D4的阳极电连接,电阻R11的一端与稳压源电路的电源输出端电连接,电阻R11的另一端与开关二极管D4的阳极电连接,开关二极管D4的阴极与开关二极管D5的阳极电连接,开关二极管D5的阴极接地,电阻R10的一端与精密放大器的反向输入端电连接,电阻R10的另一端接地,电阻R9的一端与精密放大器的反向输入端电连接,电阻R9的另一端与精密放大器的输出端并联。二极管压降补偿电路的精密放大器的型号为OP07D。

稳压源电路包括DC-DC固定稳压器、电容C5、电容C6,电容C5的正极与DC-DC固定稳压器是输入端电连接,电容C6的正极与DC-DC固定稳压器是输出端电连接,电容C5的负极、电容C6的负极、DC-DC固定稳压器的接地脚接地。DC-DC固定稳压器采用AMS1117-3.3V芯片,AMS1117-3.3V芯片是一种输出电压为3.3V的正向低压降稳压器,AMS1117-3.3V芯片提供完善的过流保护和过热保护功能,确保芯片和电源系统的稳定性。同时在产品生产中应用先进的修正技术,确保输出电压和参考源精度在±1%的精度范围内。

稳压源电路、方波激励信号源电路、精密电阻R、放电肖特基二极管D、直流隔离电路、峰峰值检测电路和二极管压降补偿电路均设于一主印刷电路板1上,电容式探头C由两个长条印刷电路板2构成,长条印刷电路板2上设有点接触区,长条印刷电路板2与主印刷电路板1电连接且为一体成型结构,电容式探头C通过电接触区采集信号,两个长条印刷电路板2的外侧分别安装一层防护板3。

开关二极管D2、开关二极管D3、开关二极管D4、开关二极管D5均采用型号为RB876W的开关二极管。

本发明的工作原理:方波信号Sig激励加在精密电阻R、放电肖特基二极管D和电容式探头C充放电组成的一阶RC电路上,不断充放电后,在电容式探头C上会出现一个与方波信号同频率的周期信号,此周期信号的峰峰值含有以土壤为电介质的电容式探头C等效电容值信息,通过试验法,建立土壤水分与传感器信号输出端电压标定关系模型,进而可以测量土壤水分含量。

本发明中在RC充放电基础上增加了放电肖特基二极管D,其工作过程是在方波信号Sig高电平时,放电肖特基二极管D截止,只能通过精密电阻R给电容式探头C充电;在方波信号Sig低平时,放电肖特基二极管D正向导通,由于二极管正向导通阻值很小,所以电容式探头C先是通过放电肖特基二极管D和精密电阻R同时放电,快速降低电容式探头C端电压,当电容式探头C端电压小于放电肖特基二极管D导通电压,通过精密电阻R继续放电。如图4所示,E处信号波形图。

本发明增加了放电肖特基二极管D的有益效果是提高传感器灵敏度。一阶RC串联电路响应,电容电压计算公式为:

Ut=U0+(Us-U0)(1-e-t/RC) (式1)

其中U0为电容上的初始电压值,Us为激励电压值,Ut为电容电压响应值;由式1可以,当电阻R、电容C、充电时间时间t固定时,U0越小Ut与U0的差值越大,即峰峰值越大,图4中的Up与Ur差值越大。

增加了放电肖特基二极管D的另一有益效果是可以减小土壤电导率对水分测量影响。电容式探头C不断充放电后稳定后,存在一残压,即波谷电压。按照电介质极化理论,当土壤为介质时,土壤中导电离子存在是引起电容测量偏大的重要原因。由于空间电荷极化即土壤中导电离子极化时间远大于土壤中水分、土壤本身的电位移极化、离子位移极化、转向极化时间。在电容式探头C电容充放电过中,残压大小直接反应土壤中导电离子空间电荷极化引起电容式探头C电容值的偏差大小。增加放电肖特基二极管D相比没有放电肖特基二极管D电路,波谷电压越小的多。

在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于检测低分子量醇类气体的传感器膜及其制备方法和传感器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类