基于再生长和离子注入的GaN凹槽阳极肖特基二极管制备方法

文档序号:1773905 发布日期:2019-12-03 浏览:29次 >En<

阅读说明:本技术 基于再生长和离子注入的GaN凹槽阳极肖特基二极管制备方法 (GaN groove anode Schottky diode preparation method based on regrowth and ion implanting ) 是由 张进成 张燕妮 周弘 宁静 郝跃 于 2019-08-20 设计创作,主要内容包括:本发明公开了一种基于再生长和离子注入的GaN凹槽阳极肖特基二极管制备方法,主要解决现有方法制作的GaN肖特基二极管欧姆接触电阻较大的问题。其实现方案为:1)在清洗后的外延片上淀积SiN;2)在淀积有SiN的外延片上进行欧姆区离子注入,并将其清洗后进行热退火处理;3)在离子注入后的外延片上淀积SiO&lt;Sub&gt;2&lt;/Sub&gt;;4)在淀积有SiO&lt;Sub&gt;2&lt;/Sub&gt;的外延片上依次进行源漏区凹槽光刻和凹槽刻蚀,并进行清洗;5)在清洗后的外延片上生长n&lt;Sup&gt;+&lt;/Sup&gt;-GaN,并去除生长有n&lt;Sup&gt;+&lt;/Sup&gt;-GaN外延片上的剩余SiO&lt;Sub&gt;2&lt;/Sub&gt;层,再进行阴极金属淀积,并热退火;6)在退火后的外延片上刻蚀出阳极凹槽并进行阳极制作。本发明的欧姆接触电阻低,刻蚀工艺简单,可用于制作电力电子器件。(The GaN groove anode Schottky diode preparation method based on regrowth and ion implanting that the invention discloses a kind of mainly solves the problems, such as that the GaN Schottky diode ohmic contact resistance of existing method production is larger.Its implementation are as follows: 1) deposit SiN on epitaxial wafer after cleaning;2) ohmic region ion implanting is carried out on the epitaxial wafer for be deposited with SiN, and carries out thermal anneal process after being cleaned;3) SiO is deposited on epitaxial wafer after ion implantation 2 ;4) it is being deposited with SiO 2 Epitaxial wafer on successively carry out the photoetching of source-drain area groove and recess etch, and cleaned;5) n is grown on epitaxial wafer after cleaning &#43; - GaN, and remove growth and have n &#43; The remaining SiO of GaN epitaxy on piece 2 Layer, then cathodic metal deposit is carried out, and thermal annealing;6) anode groove is etched on epitaxial wafer after annealing and carries out anode production.Ohmic contact resistance of the invention is low, and etching technics is simple, can be used for making power electronic devices.)

基于再生长和离子注入的GaN凹槽阳极肖特基二极管制备 方法

技术领域

本发明属于微电子技术领域,特别涉及一种GaN凹槽阳极肖特基二极管制备方法,可用于整流器和开关元器件。

技术背景

GaN材料因其较强的自发极化和压电极化,能在异质结界面感生出很强的界面电荷和电场,积聚起二维电子气。二维电子气中的电子被限域在极薄的二维层中,可获得极高的面密度以及迁移率。另一方面GaN材料因其较大的禁带宽度,使其击穿电场大、耐高温。因此GaN基器件非常适合高压、大功率以及高频应用。GaN基肖特基二极管因其正向电流密度大和开关速度快,成为低开关损耗和高频操作的理想选择。凹槽阳极结构能够同时实现极低的开启电压和大的击穿电压。然而器件常采用禁带宽度大的材料形成势垒层,以获得较大的异质结导带断续,实现高击穿电压和大输出电流。但是大的势垒层禁带宽度使得器件难以形成好的欧姆接触,导致输出电流能力降低。因此制作高性能的欧姆接触是实现大输出电流密度和提高开关速度的关键。

为提高欧姆接触,许多研究者采用了不同的方法,例如通过选区刻蚀使二维电子气与金属直接接触、采用与GaN材料功函数相近的金属减小势垒等,详见Ohmic contactsto Gallium Nitride materials,Applied Surface Science,383(2016),324–345。这些欧姆接触优化方法均不能在增大二维电子气与欧姆金属接触面积的同时提高欧姆区域载流子浓度,使得欧姆接触的降低效果并不明显。另一方面由于这些方法都要进行高温热退火,会导致金属深入GaN内部,产生电迁移现象,影响器件的稳定性。

发明内容

本发明的目的在于克服上述已有技术的不足,提供一种基于离子注入和再生长的低欧姆接触GaN凹槽阳极肖特基二极管制备方法,以在增大二维电子气与阴极的接触面积的同时,提升欧姆区域载流子浓度,大幅减小欧姆接触电阻,提高电流输出密度,并降低退火温度,提高器件稳定性。

实现本发明的技术关键是:采用离子注入提高欧姆区域载流子浓度。采用SiO2掩模层,在欧姆区刻蚀出凹槽。采用n+-GaN再生长填充凹槽,实现n+-GaN与二维电子气接触。在阴极处淀积金属与n+-GaN层欧姆接触。具体步骤包括如下:

(1)对外延片进行清洗,将清洗后的外延片放入低压化学气相淀积LPCVD反应室内,淀积10-30nm厚的SiN钝化层;

(2)在淀积有SiN钝化层的外延片上进行欧姆区离子注入光刻,再放入离子注入系统内对欧姆区注入Si,并清洗;然后将清洗后的外延片在1000-1200℃的温度下进行5-15min的热退火处理;

(3)再生长n+-GaN

(3a)将热退火后的外延片放入等离子体增强型化学气相淀积PECVD反应室内,在250-350℃的温度下,淀积200-300nm厚的SiO2

(3b)在淀积有SiO2的外延片上进行欧姆区域凹槽光刻,并将光刻过凹槽的外延片放入等离子刻蚀机内刻蚀掉欧姆区域的SiN和SiO2,再刻蚀20-30nm厚的AlGaN,形成嵌入GaN层的欧姆区凹槽;

(3c)将刻蚀出欧姆区凹槽的外延片先依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗2-10min,再用氮气吹干,然后置于金属有机物化学气相淀积MOCVD反应室中,生长25-35nm厚的n+-GaN;

(4)制作阴极电极

(4a)将再生长n+-GaN后的片子放入HF酸溶液中浸泡3-5min,以去除剩余的SiO2层;

(4b)在去除了SiO2层的外延片上进行阴极光刻,再放入电子束蒸发系统或磁控溅射系统内淀积功函数大小为4.2eV的金属层,形成阴电极,并进行400-500℃热退火处理30-60s;

(5)制作阳极电极:

(5a)在退火后的外延片上光刻阳极凹槽,并刻蚀掉阳极下方的SiO2层、SiN层和AlGaN层;

(5b)在刻蚀出阳极凹槽的外延片上进行阳极电极光刻,并放入电子束蒸发系统或磁控溅射系统内淀积功函数大小为4.6eV的金属,形成阳极电极,完成整个器件的制作。

本发明具有如下优点:

1.本发明由于采用离子注入技术,增大了欧姆区域载流子浓度,有效降低了欧姆接触电阻。

2.本发明由于在欧姆区采用n+-GaN再生长,使得欧姆金属的退火温度明显降低,从而减少了金属渗入材料的现象,提高器件稳定性。

附图说明

图1是本发明的实现流程示意图。

具体实施方式

以下结合附图对本发明实施例作进一步说明。

本发明的实施是在现有的AlGaN/GaN外延片上进行,该外延片自下而上为SiC衬底、AlN成核层、GaN缓冲层和AlGaN势垒层,其中,SiC衬底的厚度为300-800μm,AlN成核层的厚度为20-100nm,GaN缓冲层的厚度为0.5-2μm,AlGaN势垒层的厚度为20-30nm。

参照图1,本发明给出如下三种实施例:

实施例1,制作SiO2层厚度为200nm、n+-GaN欧姆区厚度为25nm的GaN肖特基二极管:

步骤1,外延片清洗,淀积SiN钝化层,如图1(a)-(b)。

选择AlGaN/GaN结构的外延片,如图1(a),先将其放入HF酸溶液中浸泡30s,再放入丙酮溶液中超声清洗2min,然后放入无水乙醇溶液中超声清洗2min,再放入去离子水中超声清洗2min,最后用氮气吹干;

将清洗后的外延片放入低压化学气相淀积LPCVD反应室内,淀积10nm厚的SiN钝化层,如图1(b)。

步骤2,离子注入,如图1(d)。

在淀积了SiN钝化层的外延片上进行欧姆区离子注入光刻,如图1(c);

再放入离子注入系统内注入Si,注入的能量为30keV,剂量为1×1016,角度为0°,如图1(d);

将离子注入后的外延片放入丙酮溶液中超声清洗2min,然后放入无水乙醇溶液中超声清洗2min,再放入去离子水中超声清洗2min,最后用氮气吹干;然后将清洗后的外延片放入热退火炉内,在1000℃的温度下进行15min热退火。

步骤3,再生长n+-GaN,如图1(e)-1(h)。

将热退火后的外延片放入低压化学气相淀积PECVD系统内,在250℃的温度下,淀积200nm厚的SiO2,如图1(e);

对淀积了SiO2的外延片进行欧姆区域凹槽光刻,如图1(f);

再将进行了欧姆区域凹槽光刻的外延片放入等离子体刻蚀机,刻蚀出200nm厚的SiO2、10nm厚的SiN层和20nm厚的AlGaN势垒层,如图1(g);

将刻蚀后的片子先放入丙酮溶液中超声清洗5min,然后放入无水乙醇溶液中超声清洗5min,再放入去离子水中超声清洗5min,最后用氮气吹干;

将清洗后的片子放入金属有机物化学气相淀积MOCVD系统中,在腔室压力为10Torr、温度为900℃的条件下,向反应室同时通入流量为40μmol/min的镓源、流量为10μmol/min的硅烷、流量为1000sccm的氢气和流量为3000sccm的氨气,生长25nm厚的n+-GaN,如图1(h)。

步骤4,制作阴极电极,如图1(i)-(j)。

将生长了n+-GaN的外延片放入HF酸溶液中浸泡3min,再用氮气吹干,以去除剩余的SiO2层,如图1(i);

在去除了剩余SiO2层的外延片上光刻出阴极,再放入电子束蒸发系统内依次淀积Ti/Al/Ni/Au金属层,厚度为分别40/140/25/50nm;

将淀积了阴极金属的外延片放入热退火炉内,在400℃的温度下退火60s,形成阴极电极,如图1(j)。

步骤5,制作阳极电极,如图1(k)-(l)。

在退火后的外延片上进行阳极凹槽光刻,再放入等离子体刻蚀机内刻蚀,刻蚀掉200nm厚的SiO2、10nm厚的SiN层和AlGaN势垒层,形成阳极凹槽,如图1(k);

将形成阳极凹槽的外延片放入电子束蒸发系统内,依次淀积厚度分别为50/100nm的Ti/Au金属层,形成阳极电极,完成整个器件的制作,如图1(l)。

实施例2,制作SiO2层厚度为250nm、n+-GaN欧姆区厚度为30nm的GaN肖特基二极管:

步骤一,外延片清洗并淀积SiN钝化层,如图1(a)-(b)。

1.1)选择AlGaN/GaN结构的外延片,如图1(a)。先将其放入HF酸溶液中浸泡30s,再依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗5min,最后用氮气吹干;

1.2)将进清洗后的外延片放入低压化学气相淀积LPCVD反应室内,淀积15nm厚的SiN钝化层,如图1(b)。

步骤二,离子注入,如图1(c)-(d)。

2.1)在淀积了SiN钝化层的外延片上进行欧姆区离子注入光刻,如图1(c);

2.2)将进行了欧姆区离子注入光刻的外延片放入离子注入系统内注入Si,注入的能量为60keV,剂量为5×1015,注入角度为5°,如图1(d);

2.3)将离子注入后的外延片依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗7min,然后用氮气吹干,并将其放入热退火炉内在1100℃下热退火10min。

步骤三,再生长n+-GaN,如图1(e)-(h)。

3.1)将热退火后的外延片放入低压化学气相淀积PECVD系统内,在300℃的温度下,淀积250nm厚的SiO2,如图1(e);

3.2)对淀积了SiO2的外延片进行欧姆区域凹槽光刻,如图1(f);

3.3)再将进行了欧姆区域凹槽光刻的外延片放入等离子体刻蚀机,刻蚀出250nm厚的SiO2、15nm厚的SiN层和25nm厚的AlGaN势垒层,如图1(g);

3.4)将刻蚀后的片子先放入丙酮溶液中超声清洗5min,然后放入无水乙醇溶液中超声清洗5min,再放入去离子水中超声清洗5min,最后用氮气吹干;

3.5)将清洗后的片子放入金属有机物化学气相淀积MOCVD系统中,在腔室压力为40Torr、温度为1000℃的条件下,向反应室同时通入流量为70μmol/min的镓源、流量为35μmol/min的硅烷、流量为1500sccm的氢气和流量为4500sccm的氨气,生长30nm厚的n+-GaN,如图1(h)。

步骤四,制作阴极电极,如图1(i)-(j)。

4.1)将生长了n+-GaN的外延片放入HF酸溶液中浸泡4min,再用氮气吹干,以去除剩余的SiO2层,如图1(i);

4.2)在去除了剩余SiO2层的外延片上光刻出阴极,再放入磁控溅射系统内依次淀积Ti/Al/Ni/Au金属层,厚度为分别40/140/25/50nm,如图1(j);

4.3)将淀积了阴极金属的外延片放入热退火炉内,在450℃的温度下退火45s,形成阴极电极。

步骤五,制作阳极电极,如图1(k)-(l)。

5.1)在退火后的外延片上进行阳极凹槽光刻,再放入等离子体刻蚀机内刻蚀出250nm厚的SiO2、15nm厚的SiN层和AlGaN势垒层,形成阳极凹槽,如图1(k);

5.2)将形成阳极凹槽的外延片放入磁控溅射系统内,依次淀积厚度分别为50/100nm的Ti/Au金属层,形成阳极电极,完成整个器件的制作,如图1(l)。

实施例3,制作SiO2层厚度为300nm、n+-GaN欧姆区厚度为35nm的GaN肖特基二极管:

步骤A,外延片清洗并淀积SiN钝化层,如图1(a)-(b)。

A1)选择AlGaN/GaN结构的外延片,如图1(a),先将其放入HCl酸溶液中浸泡30s,再依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗10min,最后用氮气吹干;

A2)将清洗后的外延片放入低压化学气相淀积LPCVD反应室内,淀积20nm厚的SiN钝化层,如图1(b)。

步骤B,离子注入,如图1(c)-(d)。

B1)在淀积了SiN钝化层的外延片上进行欧姆区离子注入光刻,如图1(c);

B2)将进行了欧姆区离子注入光刻的外延片放入离子注入系统内,按照10°的注入角度,注入的能量为100keV,剂量为1×1015的Si,如图1(d);

B3)将离子注入后的外延片依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗10min,然后用氮气吹干,并将其放入热退火炉内在1200℃下热退火5min。

步骤C,再生长n+-GaN,如图1(e)-(h)。

C1)将热退火后的外延片放入低压化学气相淀积PECVD系统内,在350℃的温度下,淀积300nm厚的SiO2,如图1(e);

C2)对淀积了SiO2的外延片进行欧姆区域凹槽光刻,如图1(f);再将进行了欧姆区域凹槽光刻的外延片放入等离子体刻蚀机,刻蚀出300nm厚的SiO2、20nm厚的SiN层和30nm厚的AlGaN势垒层,如图1(g)。

C3)将刻蚀后的片子依次放入丙酮溶液、无水乙醇溶液和去离子水中各超声清洗10min,并用氮气吹干;

C4)将清洗后的片子放入金属有机物化学气相淀积MOCVD系统中,在腔室压力为80Torr、温度为1100℃的条件下,向反应室同时通入流量为100μmol/min的镓源、流量为60μmol/min的硅烷、流量为2000sccm的氢气和流量为6000sccm的氨气,生长35nm厚的n+-GaN,如图1(h)。

步骤D,制作阴极电极,如图1(i)-(j)。

D1)将生长了n+-GaN的外延片放入HF酸溶液中浸泡5min,再用氮气吹干,以去除剩余的SiO2层,如图1(i);

D2)在去除了剩余SiO2层的外延片上光刻出阴极,再放入电子束蒸发系统内依次淀积Ti/Al/Ni/Au金属层,厚度为分别40/140/25/50nm,如图1(j);

D3)将淀积了阴极金属的外延片放入热退火炉内,在500℃的温度下退火30s,形成阴极电极,如图1(l)。

步骤E,制作阳极电极,如图1(k)-(l)。

E1)在退火后的外延片上先进行阳极凹槽光刻,再放入等离子体刻蚀机内刻蚀出300nm厚的SiO2、20nm厚的SiN层和AlGaN势垒层,形成阳极凹槽,如图1(k);

E2)将形成阳极凹槽的外延片放入磁控溅射系统内,依次淀积厚度分别为50/100nm的Ti/Au金属层,形成阳极电极,完成整个器件的制作,如图1(l)。

以上描述仅是本发明的三个具体实例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明的原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:半导体器件及其形成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类