负载纳米零价锰生物炭的制备方法及应用

文档序号:1789604 发布日期:2021-11-05 浏览:11次 >En<

阅读说明:本技术 负载纳米零价锰生物炭的制备方法及应用 (Preparation method and application of nano zero-valent manganese loaded biochar ) 是由 龙建友 彭丽瑚 柯艳阳 陈思浩 李伙生 郑一杰 陈子楷 叶容川 黄涓溪 肖唐付 于 2021-08-18 设计创作,主要内容包括:本发明公开了一种负载纳米零价锰生物炭的制备方法及应用,所述生物炭以香蕉皮为材料通过碳热法制备,在所述生物炭的表面或孔隙中负载有纳米零价锰;所述生物炭与零价锰的负载比例为1:0.3。所述生物炭对铊离子吸附符合二级动力学模型,当含铊废水pH为10,水温度为15℃时,每1L含铊废水投加2g所述生物炭,可有效吸附含铊废水中的铊离子。(The invention discloses a preparation method and application of a nano zero-valent manganese-loaded biochar, wherein the biochar is prepared by taking banana peel as a material through a carbothermic method, and nano zero-valent manganese is loaded on the surface or in pores of the biochar; the load ratio of the biochar to the zero-valent manganese is 1: 0.3. The adsorption of the biological carbon to thallium ions accords with a two-stage kinetic model, and when the pH value of thallium-containing wastewater is 10 and the water temperature is 15 ℃, 2g of the biological carbon is added to every 1L of thallium-containing wastewater, so that the thallium ions in the thallium-containing wastewater can be effectively adsorbed.)

负载纳米零价锰生物炭的制备方法及应用

技术领域

本发明属于污水处理技术领域,涉及复合生物炭的制备,具体涉及负载纳米零价锰生物炭的制备方法及其在含铊废水处理中的应用。

背景技术

废水中的重金属污染问题日益严峻,重金属污染不仅影响到水体环境,更是对人类及其他动植物健康造成了不可忽略的影响。水体重金属污染的来源多且治理难度大。铊,是一种银白色且具有高毒性的稀散元素。铊在自然环境中含量很低,近年来人类工业活动丰富,也增大了铊污染风险。近年来,铊污染和铊中毒事件备受关注,铊中毒的病人表现出毛发脱落、恶心呕吐等症状,对肝肾器官的功能也会有所损害。因此,解决铊污染问题刻不容缓。

目前除铊的主要方式有化学沉淀法、离子交换法、吸附法等,其中使用最多的方法是吸附法,主要包含活性炭吸附、生物炭吸附、复合材料吸附、纳米金属化合物吸附等。吸附法由于吸附剂对环境危害小甚至是无害,成为去除水环境重金属的常见方式。以生物质为原料的生物炭,价格便宜、制作方法简单且性价比高,具有良好的前景。生物炭含有的官能团种类丰富,具有多孔结构且稳定,对环境问题处理效果较好,逐渐成为环境领域的研究重点。专利CN108435135A公开了一种西瓜皮生物炭的制备方法,包含以下步骤:(1)西瓜皮预处理:将西瓜皮烘干,得西瓜皮粉末;(2)炭化:将步骤(1)所得的西瓜皮粉末在氮气气氛下,在炭化温度为400~600℃下,炭化0.5~1.5h,即得所述西瓜皮生物炭;该发明所述制备方法制得的西瓜皮生物炭对亚铊离子的吸附效率最高,且工艺简单、制备成本低。

虽然吸附法可在一定程度上去除工业废水中的重金属离子,但对于生物炭负载零价锰对重金属铊的去除方法犹未可知。由此,通过提出负载纳米零价锰生物炭的制备方法及应用,结合生物炭具有高效、经济且环保的特点,制备的负载纳米零价锰生物炭可以有效去除水环境中的铊,从而为复合生物炭材料的制备以及重金属铊的吸附提供新的思路。

发明内容

为深入研发高效、低成本的吸附材料以用于水体重金属污染吸附治理,本发明提出了一种负载纳米零价锰生物炭的制备方法,详细分析了该生物炭在不同的反应时间、溶液pH值、零价锰投加量、铊溶液初始浓度及反应温度下对铊溶液的吸附效果,并利用XPS、FT-IR和TEM等表征手段、等温吸附以及动力学分析其吸附机制。

基于上述目的,本发明提供了负载纳米零价锰生物炭的制备方法及其在含铊废水中的应用,去除含铊工业废水中的Tl离子。

本发明提供的负载纳米零价锰生物炭的制备方法,具体包含如下步骤:以质量份计,取350份水,溶解2.5份一水硫酸锰,缓慢加入香蕉皮制备成的生物炭,使用蠕流泵以250rpm的速度将3.8份硼氢化钠加入含有硫酸锰和生物炭的溶液中,30min后将所制得的物质水洗3次,离心后冻干。

上述制备方法进一步详述为:按生物炭:锰=1:0.3的比例进行负载。称量2.5g一水硫酸锰、8.3g生物炭、3.8g硼氢化钠。取一个烧杯加入350ml的水,然后溶解硫酸锰,再慢慢加入生物炭,蠕流泵以250rpm的速度将硼氢化钠或硼氢化钾加入至含有硫酸锰和生物炭的烧杯里。加完后计时30分钟。将所制得的物质水洗3次,离心后放入冰箱,之后放到冻干机里,冻干后装入密封袋排出空气再放入干燥器贮存,即为所述负载纳米零价锰生物炭。

本发明还提供了香蕉皮生物炭的制备方法,具体包含如下步骤:选用经切剪过的香蕉皮为原料,放入105℃的烘箱中烘12h,然后用破碎机粉过筛(100目),过筛后装入方舟,将方舟放入管式炉中,温度设为500℃,以每分钟加热5℃的速率热解1h,通氮气30min。待管式炉冷却至室温后拿出方舟,将所制得黑色的炭化产物即为所述香蕉皮生物炭。

进一步地,当含铊废水初始pH为10,反应温度为15℃时,每1L含铊氨氮废水投入2g,混合1h后可实现负载纳米零价锰生物炭对含铊废水中铊离子的最大吸附效果。

与现有技术相比,本发明具有以下有益效果或者优点:本发明提供了负载纳米零价锰生物炭的制备方法及应用,将负载纳米零价锰生物炭投入含铊废水中,利用氧化还原、离子交换和络合作用对废水中的铊离子实现吸附处理,且原材料便宜,制备方法简单。

附图说明

图1为负载纳米零价锰生物炭SEM电镜扫描图,其中,(a)为负载纳米零价锰生物炭吸附铊离子前放大100倍,(b)是负载纳米零价锰生物炭吸附铊离子后放大100倍;

图2为负载纳米零价锰生物炭吸附铊离子前后红外光谱图;

图3为负载纳米零价锰生物炭吸附铊离子前后XPS全谱图;

图4为负载纳米零价锰生物炭吸附铊离子前的XRD图;

图5为负载纳米零价锰生物炭吸附铊离子后的XRD图;

图6为负载纳米零价锰生物炭Zeta电位图;

图7为负载纳米零价锰生物炭吸附铊离子动力学模型图;

图8为负载纳米零价锰生物炭吸附铊离子等温吸附模型;

图9为负载纳米零价锰生物炭投药量对去除重金属铊的影响图;

图10为初始pH对负载纳米零价锰生物炭去除重金属铊的影响图;

图11为反应后pH对负载纳米零价锰生物炭去除重金属铊的影响图;

图12为反应温度对负载纳米零价锰生物炭去除重金属铊的影响图;

图13为共存离子对负载纳米零价锰生物炭去除重金属铊的影响图。

具体实施方式

下面,结合实施例对本发明的技术方案进行说明,但是,本发明并不限于下述的实施例。

实施例1

本实施例提供了负载纳米零价锰生物炭对铊离子的吸附试验。

香蕉皮生物炭的制备方法为,选用经切剪过的香蕉皮为原料,放入105℃的烘箱中烘12h,然后用破碎机粉过筛(100目),过筛后装入方舟,将方舟放入管式炉中,温度设为500℃,以每分钟加热5℃的速率热解1h,通氮气30min。待管式炉冷却至室温后拿出方舟,将所制得黑色的炭化产物装入密封袋排出空气再放入干燥器中贮存。

负载纳米零价锰生物炭的制备方法为,按生物炭:锰=1:0.3的比例进行负载。称量2.5g一水硫酸锰、8.3g生物炭、3.8g硼氢化钠。取一个烧杯加入350ml的水,然后溶解硫酸锰,再慢慢加入生物炭,蠕流泵以250rpm的速度将硼氢化钠加入至含有硫酸锰和生物炭的烧杯里。加完后计时30分钟。溶液的反应如下:

将所制得的物质水洗3次,离心后放入冰箱,之后放到冻干机里,冻干后装入密封袋排出空气再放入干燥器贮存,记为负载纳米零价锰生物炭。

(1)负载纳米零价锰生物炭表征分析

图1为负载纳米零价锰生物炭SEM电镜扫描图,其中(a)为负载纳米零价锰生物炭吸附铊离子前放大100倍,(b)是负载纳米零价锰生物炭吸附铊离子后放大100倍。表1为负载纳米零价锰生物炭吸附前后EDS分析结果。

表1,负载纳米零价锰生物炭吸附前后EDS分析

利用扫描式电子显微镜(SEM)可以观察负载纳米零价锰生物炭的微观形貌,具体见图1。可以看出,反应前的复合材料成颗粒状,表面略粗糙;反应后负载纳米零价锰生物炭会团聚成更大的颗粒并出现Tl元素,其它形貌并无太大改变,可见该复合生物炭较稳定。由于O元素百分比的降低,Mn元素比重增加,由此推测含氧官能团参与了吸附反应。

(2)负载纳米零价锰生物炭傅里叶红外光谱FTIR分析

图2为吸附铊前后的红外光谱图,其中[email protected]表示负载纳米零价锰生物炭。由图2可知,负载纳米零价锰生物炭吸附铊前后吸收峰在1500~4000cm-1基本一致,吸附后500~1500cm-1的衍射峰多于吸附前的衍射峰,可见吸附铊后对复合材料的破坏作用小。3432cm-1是由于σO-H伸缩振动,吸收峰很宽,说明在吸附剂中存在着结晶水和物理吸附水,OH是个强极性基团,因此羟基化合物的缔合现象非常显著。2353cm-1处是由CO2引起的吸收峰;1861cm-1是碳酸根的面外弯曲;1641cm-1的吸收峰表明体系中存在碳基(C=O)。1405cm-1处为-COO-的对称伸缩;反应后在1097cm-1出现峰,强度弱,是C-O-C不对称伸缩振动。负载纳米零价锰生物炭吸附铊前在556cm-1的峰和吸附铊后在620cm-1的峰都可能是Mn-O的伸缩振动。该材料对吸附反应起主要作用的官能团是羟基、羧基和醚基。这些官能团可为生物炭固定铊提供活性位点,通过络合方式结合固定铊元素。

(3)负载纳米零价锰生物炭X射线光电子能谱技术XPS分析

采用X射线光电子能谱技术XPS对生物炭表面的元素组成和价态进行分析,其结果如图3所示。图3的XPS的全谱图及元素组成表显示,负载纳米零价锰生物炭表面出现的元素主要由C、O、Mn组成,吸附前后元素基本无变化,吸附后C元素增强,多了铊元素;而Cl、K、O、Na组分减少。负载纳米零价锰生物炭的C1s图谱284eV处,代表C=C/C-C(碳原子的SP2杂化,生物炭的功能性官能团),这表示负载纳米零价锰生物炭表面拥有比较良好的芳香性结构。负载纳米零价锰生物炭的O1s峰位于532.18eV的峰,代表金属氧化物中的氧。原始生物炭中金属氧原子很少,负载零价锰后和吸附一价铊后金属元素明显增加。而Mn的2p峰位于642.44和654.2eV,分别表示Mn(II)与Mn(IV)。这说明Mn元素在生物炭的表面以不同的价态存在,负载的零价锰已被氧化,原因可能是在实验过程中或者保存不当导致表面的零价锰被空气中的氧气。吸附后的材料表面出现Tl+,有两个峰,分别代表Tl+和Tl2O。

(4)负载纳米零价锰生物炭X射线衍射XRD分析

图4为吸附前的XRD图,图5为吸附后的XRD图。吸附前,负载纳米零价锰生物炭材料中观察到一些小的杂峰的存在,其中最主要的峰是碳酸锰。对于负载纳米零价锰生物炭(PDF#44-1472),在24.2°、31.4°、41.4°、51.7°和51.8°处出现衍射峰,其晶面指数分别为(012),(104),(113),(018),(116)。而在吸附后,负载纳米零价锰生物炭(PDF#83-1763)也出现数条MnCO3的衍射峰,如在24.2°、31.4°和51.7°处,衍射峰数量少,其晶面指数分别为(012),(104),(018)。

(5)负载纳米零价锰生物炭比表面积BET分析

吸附剂的比表面积是吸附性能的一个评价因素。比表面积越大,提供吸附位点越多,其吸附性能也相应提高。由于金属离子可以通过扩散到生物炭的吸附孔中,因此提高BET表面积和孔隙体积可以提高生物炭的吸附能力。分析负载纳米零价锰生物炭的比表面积,结果如表2所示。

表2,负载纳米零价锰生物炭的BET表面积、孔径和孔隙体积

负载纳米零价锰生物炭的表面积为21.6317m2/g,平均孔径为2.1388nm,孔隙体积为0.007534。负载纳米零价锰生物炭比表面积较小。猜测原因是负载的零价锰优先占据了负载纳米零价锰生物炭的表面和微孔结构,导致其比表面积减少。

(6)负载纳米零价锰生物炭Zeta电位分析

负载纳米零价锰生物炭Zeta电位图如图6所示,在靠近0mV有峰,所以材料是电中性的颗粒,带电量大,稳定性较好。

(7)负载纳米零价锰生物炭动力学分析

取两个250ml的烧杯,在两个烧杯中加入分别130mL初始浓度为10ppm的Tl+溶液,pH调至10后,加入转子,将烧杯放置在磁力搅拌器上;用电子天平准确称负载纳米零价锰生物炭,保持投药量为1.5g/L,每隔0.5、1、2、5、10、15、30、60、120、240、480min取样。

通过拟合一级动力学模型和二级动力学模型,来解释负载纳米零价锰生物炭与Tl+之间可能的吸附机制。动力学实验反映了吸附速率与吸附时间的关系变化。

根据以下公式计算出纳米零价锰生物炭对Tl+的去除率和吸附量。

吸附率公式为:

吸附量公式为:

其中C0为铊的初始浓度(mg/L),Ct为反应t时刻铊的浓度(mg/L),V为处理铊溶液的体积(L),m为吸附剂质量(g)。

将计算所得结果代入Lagergren一级动力学模型和Lagergren二级动力学模型中,绘制吸附动力学曲线,结果如图7所示。

Lagergren一级动力学模型为:

qt=qe(1-e-at)

Lagergren二级动力学模型为:

其中qe为吸附平衡时吸附量(mg/g),qt为反应t时刻的吸附量(mg/g),t为反应时间(min),a为一级动力学吸附常数(min-1),b为二级动力学吸附常数(min-1)。

依据上述公式得到动力学模型如表3所示。

表3,负载纳米零价锰生物炭吸附铊离子动力学模型

由图7和表3可见,负载纳米零价锰生物炭对铊离子的吸附速率较快,在反应前30min吸附量迅速增加,在60min附近达到吸附饱和。

一级动力学模型拟合的相关系数R2在0.808,表明该吸附过程与一级动力学模型匹配度不高,其理论饱和吸附量与实验数据存在一定差异。拟合二级动力学模型的相关系数R2为0.997。拟合结果表明,实验数据基本符合二级动力学模型曲线,偏差小,负载纳米零价锰生物炭对低浓度Tl+的吸附作用使用二级拟合曲线可以作出很好的拟合,由此可见,二级动力学模型相对一级动力学模型可以更好地表明负载纳米零价锰生物炭吸附铊的动力学过程。说明在一定浓度范围内,吸附速率和铊浓度的平方成正比,因化学键的形成是影响二级动力学吸附作用的主要因素,由此可推断该吸附过程以化学吸附为主。

随着负载纳米零价锰生物炭与铊离子接触时间增加,负载纳米零价锰生物炭对含铊溶液的吸附量也随之增加。当负载纳米零价锰生物炭的吸附位点基本被填充时,此时达到最大吸附量。该吸附过程速度由快逐渐变慢,直到吸附过程达到吸附平衡。

通过上述实验可见负载纳米零价锰生物炭吸附浓度为10mg/L的Tl+溶液,在反应初期是一个快速吸附反应,铊的吸附量快速增加,当反应时间为60min时,基本达到吸附平衡,此时铊的吸附率达到68.7%。

(8)负载纳米零价锰生物炭等温吸附线分析

用电子分析天平准确称重12份0.030g负载纳米零价锰生物炭,做两组平行样分别取20ml铊液浓度为5、10、20、30、50、100mg/L到离心管中,放入摇床中,设置反应温度25℃、转速为200rpm,反应时间为30min。

在一定温度下,当吸附达到平衡时,通过吸附等温线来表达溶液中的吸附质浓度Ce与吸附剂吸附量qe的关系。由此采用Langmuir吸附等温线和Freundlich吸附等温线对负载纳米零价锰生物炭的特性进行分析。

Langmuir吸附等温线公式:

Freundlich吸附等温线:

其中,Ce为吸附平衡时铊的浓度(mg/L),qe为吸附平衡时的吸附量(mg/g),qm为吸附剂最大的吸附量(mg/g),KL为Langmuir吸附常数(L/mg),KF为Freundlich吸附常数,1/n为表面不均匀程度或吸附强度的一个标志。

采用Langmuir模型和Freundlic模型拟合Tl+吸附等温线,拟合结果如图8所示。Langmuir等温模型的决定系数(R2=0.948)高于Freundlich模型的决定系数(R2=0.905),且拟合的饱和吸附量与实验数据基本符合,由此说明Langmuir等温吸附模型能较好地描述吸附机理,说明负载纳米零价锰生物炭对于Tl+的吸附反应是以单分子层吸附为主导。

(9)负载纳米零价锰生物炭投药量对去除重金属铊的影响

用电子天平准分别准确称重0g、0.0050g、0.010g、0.020g、0.0300g、0.0400g的负载纳米零价锰生物炭,用移液枪准确移取20ml 10ppm含铊溶液分别加入到50ml离心管中,放入摇床,设置反应温度为25℃、转速为250rpm、反应时间为30min,取出后加入1%HNO3以保存溶液,同时取10ml的铊原液作为空白样,同样加入1%HNO3保存。再采用电感耦合等离子光谱发生仪(ICP)测定溶液中剩余的铊含量,计算复合材料对铊的吸附容量。

投药量分析如图9可见,投药量实验数据线性拟合得出R2为0.954,实验过程中的误差可能是称量、仪器操作产生的误差。保持吸附20ml的10mg/LTl+溶液不变,随着负载纳米零价锰生物炭投药量的增加,负载纳米零价锰生物炭对Tl+溶液的去除率也随之增大,逐渐达到吸附饱和。负载纳米零价锰生物炭投药量大概在1.0g/L时的去除率已经接近60%,1.5g/L~2.0g/L投药量对铊的去除效果都在76%-79%之间,变化不大,综合考虑后面实验使用1.5g/L的投药量。

(10)初始pH对负载纳米零价锰生物炭去除重金属铊的影响

用氢氧化钠和稀硝酸分别将浓度为10ppm铊溶液pH调为2、4、6、7、8、10,再用移液枪分别准确移取不同pH的铊溶液20ml到50ml离心管中,用天平准确称量12份0.030g的负载纳米零价锰生物炭,做两组平行样和一组空白样,将材料分别投入50ml离心管中,实验结果见图10。

溶液pH能够影响负载纳米零价锰生物炭的表面电荷,从而影响还原反应的速率。由图10可见,在投药量、温度和铊溶液浓度等其他条件不变的情况下,通过改变Tl+溶液的初始pH,研究表明,碱性条件下(pH=10)负载纳米零价锰生物炭复合材料对Tl+溶液的吸附效率更高,从pH=2到pH=10,pH逐渐增加,铊的去除率也逐渐增大,去除率最大是在pH=10的时候,达到68.58%。

(11)反应后pH对负载纳米零价锰生物炭去除重金属铊的影响

分别取20ml 10ppm含铊溶液在50ml离心管中,再用电子天平准确称重12份0.030g负载纳米零价锰生物炭加入溶液中,再放入摇床里,设置反应温度为25℃、转速为250rpm,反应时间为30min,结束后取出。用氢氧化钠作碱,稀硝酸为酸,分别将不同离心管中的铊溶液调节pH为2、4、6、7、8、10,记录不同调节下各溶液中铊的去除率,其结果如图11所示。

在吸附反应后调节溶液pH,研究其对铊去除的影响。由图11可见,在酸性条件(pH=2)和碱性条件(pH=10)下,材料对铊的吸附效果相对较好,对比初始pH的去除率都有所提高,在酸性条件(pH=2)去除率为66.67%,碱性条件(pH=10)下去除率为74.04%;在反应后调节铊溶液pH为7和8,其去除率大幅降低至40%左右。

(12)反应温度对负载纳米零价锰生物炭去除重金属铊的影响

用电子天平准确称重10份0.030g负载纳米零价锰生物炭,再用移液枪准确移取20ml 10ppm含铊溶液分别加入到50ml离心管中,分别放入摇床中,调节转速200转/min,分别改变反应温度为20℃、25℃、30℃、35℃、40℃,反应时间为30min,后从摇床中取出,实验结果见图12。

如图12可见,负载纳米零价锰生物炭在这5个温度范围的吸附效果在66%~69%之间,反应温度对Tl+溶液的吸附效果影响不大,在低温条件下(15℃)负载纳米零价锰生物炭对铊溶液吸附效果最好。

(13)共存离子对负载纳米零价锰生物炭去除重金属铊的影响

制备10ppm的含铊溶液,初始pH调为10,NaNO3、MgSO4和CaCl2浓度为0.1、0.2、0.5、0.8、1.0mg/L,向溶液分别加入1.5g/L的负载纳米零价锰生物炭,静置5min后取样取样。

在最佳初始pH条件下,分别投加不同浓度的不同阳离子。由图13可见,Na+、Ca2+、Mg2+三种离子随着浓度增加,负载纳米零价锰生物炭对Tl+的去除率也逐渐增大。相对而言,Mg2+对负载纳米零价锰生物炭吸附Tl+有明显的促进作用,当Mg2+浓度达到1.0mg/L时,铊去除率最高可达88.35%。而Ca2+对吸附过程影响较小,在浓度为1.0mg/L时有最大去除效率,其去除率为75.42%。但是,对比初始pH为10且投药量为1.5g/L的数据,不同浓度的Na+对Tl+溶液的吸附影响较小。

如上所述,即可较好地实现本发明,上述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种改变和改进,均应落入本发明确定的保护范围内。

17页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种石墨烯基吸附材料的制备装置及其使用方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!