Poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing and preparation method thereof

文档序号:1793328 发布日期:2021-11-05 浏览:21次 中文

阅读说明:本技术 一种熔融沉积3d打印用聚(氨酯-脲-酰胺)弹性体线材及其制备方法 (Poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing and preparation method thereof ) 是由 付鹏 李震 梅树翔 刘民英 赵清香 崔喆 张晓朦 庞新厂 于 2021-08-19 设计创作,主要内容包括:本发明属于增材制造技术领域,公开了一种熔融沉积3D打印用聚(氨酯-脲-酰胺)弹性体线材及其制备方法,该线材是由聚酰胺和聚氨酯构成的分段型嵌段共聚物,其中,聚氨酯由二异氰酸酯与聚醚和/或聚酯组成。其制备方法为:1)将双端氨基聚酰胺、抗氧化剂、填料于30-90℃下混合时间10-30 min,得双端氨基聚酰胺复合粉末;2)将双端氨基聚酰胺复合粉末、异氰酸酯封端的聚醚和/或聚酯按摩尔比(0.98-1.02):1混合后,加入挤出机中挤出即可。该线材具有不断料、不拉丝,层间黏着力强,并且收缩率低、热稳定性好,制品力学性能、耐水性优异等显著优点,可应用于航空航天、医疗矫形、运动器材等领域。(The invention belongs to the technical field of additive manufacturing, and discloses a poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing and a preparation method thereof. The preparation method comprises the following steps: 1) mixing the double-end amino polyamide, the antioxidant and the filler at 30-90 ℃ for 10-30min to obtain double-end amino polyamide composite powder; 2) mixing the double-end amino polyamide composite powder and the isocyanate terminated polyether and/or polyester according to a molar ratio of (0.98-1.02):1, and adding the mixture into an extruder for extrusion. The wire has the obvious advantages of no material breakage, no wire drawing, strong interlayer adhesion, low shrinkage rate, good thermal stability, excellent mechanical property and water resistance of products and the like, and can be applied to the fields of aerospace, medical orthopedic, sports equipment and the like.)

1. The poly (urethane-urea-amide) elastomer wire for 3D printing through fused deposition is characterized in that the poly (urethane-urea-amide) elastomer is a segmented block copolymer composed of a polyamide segment and a polyurethane segment, is prepared from polyamide, isocyanate, polyether and/or polyester, and has a molecular chain structure repeating unit as follows:

in the formula, R1、R2、R3Respectively, polyether and/or polyester, isocyanate, polyamide.

2. A fused deposition 3D printing poly (urethane-urea-amide) elastomeric strand according to claim 1, wherein the polyurethane is an isocyanate terminated polyether and/or polyester; the isocyanate is one or more than two of 3-isocyanatomethylene-3, 5, 5-trimethylcyclohexyl isocyanate, 4 '-diphenylmethane diisocyanate, 1, 6-hexamethylene diisocyanate and dicyclohexylmethane-4, 4' -diisocyanate.

3. A fused deposition 3D printing poly (urethane-urea-amide) elastomeric wire according to claim 1, wherein the polyamide is a double-ended amino polyamide; the double-end amino polyamide is one or more of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610, polyamide 612, polyamide 1010, polyamide 1011, polyamide 1012, polyamide 1013, polyamide 1111, polyamide 1112, polyamide 1113, polyamide 1212, polyamide 1213, polyamide 1313 and polyamide 1414.

4. A fused deposition 3D printing poly (urethane-urea-amide) elastomeric wire according to claim 1, wherein the polyether and/or polyester is a hydroxyl terminated polyether and/or polyester; the polyether and/or polyester with double hydroxyl groups is one or more than two of polytetrahydrofuran ether glycol, polypropylene oxide glycol, polycarbonate glycol, poly adipic acid-1, 6-hexanediol glycol, poly adipic acid-1, 4-butanediol glycol, poly adipic acid neopentyl glycol-1, 6-hexanediol glycol and tetrahydrofuran-propylene oxide copolymerized glycol.

5. The poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing as claimed in claim 1, wherein the relative molecular weight of the polyamide is 500-; the polyether and/or polyester has a relative molecular weight of 750-.

6. The filament of fused deposition 3D printing poly (urethane-urea-amide) elastomer according to claim 1, wherein the poly (urethane-urea-amide) elastomer has a relative viscosity (in m-cresol solvent) of 1.5-3.0 and a melt index of 3.0-30.0g/10 min.

7. The method of preparing a poly (urethane-urea-amide) elastomeric strand for fused deposition 3D printing according to any one of claims 1 to 6, comprising the steps of:

1) stirring and mixing the double-end amino polyamide, the antioxidant and the filler at the temperature of 30-90 ℃ and the rotating speed of 200-2000r/min for 10-30min to obtain double-end amino polyamide composite powder; the weight composition of each raw material in each 100 parts of double-end amino polyamide composite powder is as follows: 90-100 parts of double-end amino polyamide, 0.01-0.5 part of antioxidant and 0-10 parts of filler;

2) mixing double-end amino polyamide composite powder and isocyanate-terminated polyether and/or polyester according to a molar ratio of (0.98-1.02):1, adding the mixture into an extruder, extruding, sizing, drafting and winding for one-step molding to obtain the poly (urethane-urea-amide) elastomer wire.

8. The method for preparing the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing according to claim 7, wherein in the step 2), the extruder is a twin-screw extruder, and the extrusion parameters are as follows: the temperature of the first zone is 140 ℃ to 260 ℃, the temperature of the second zone, the third zone and the fourth zone is 185 ℃ to 280 ℃, and the rotating speed of the screw is 15-100 rpm.

9. The method of claim 7, wherein the poly (urethane-urea-amide) elastomer wire has a diameter of 1.75 ± 0.05mm, 2.85 ± 0.05mm, or 3 ± 0.05 mm.

10. The method of claim 7, wherein the antioxidant is one or two or more of sodium hypophosphite, pentaerythritol tetrakis [ β - (3, 5-di-tert-butyl-4-hydroxyphenyl) propionate ], bis (2, 4-dicumylphenyl) pentaerythritol diphosphite, 2, 6-di-tert-butyl-4-methylphenol, 2' -methylenebis (4-methyl-6-tert-butylphenol); the filler is one or more than two of titanium dioxide, nano silicon dioxide, nano calcium carbonate, calcium stearate, talcum powder, polyethylene resin, polypropylene resin, polyamide resin, ABS resin and SEBS.

Technical Field

The invention belongs to the technical field of additive manufacturing, and particularly relates to a poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing and a preparation method thereof.

Background

Fused Deposition Modeling (FDM), also known as fused deposition modeling, uses a computer to heat and melt a filamentous hot melt material according to a three-dimensional image of an object to be produced, then selectively coats the material on a work table, rapidly cools the material to form a layer of cross section, and performs layer-by-layer melting and deposition to print a three-dimensional solid. FDM has the advantage of rapid molding, can greatly shorten the research and development period of products and save cost, and has important significance for research, development, trial production and molding of new products. Compared with other 3D printing technologies, FDM is the most widely applied 3D printing technology at present because the FDM has the advantages of simple structure, low price, small size, convenience in maintenance and the like.

Thermoplastic elastomers (TPEs) have both the elasticity of rubber and the ability to be repeatedly processed by thermoplastics and are known as "third generation synthetic rubbers". Thermoplastic poly (urethane-urea-amide) elastomer (PUUA) is a late TPE, has the excellent properties of high tensile strength, good flexibility, high elastic recovery rate, good solvent resistance, good chemical resistance, good wear resistance, high low-temperature impact strength, easy molding and processing and the like, and is developed rapidly in recent years. Regarding the poly (urethane-urea-amide) elastomer and the preparation method thereof, the inventor of the present patent at Zhengzhou university has previously applied for the invention patent CN 112961305A. The invention provides a poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing and a preparation method thereof by screening antioxidants, fillers and the like on the basis of earlier-stage work. The PUUA is prepared by adopting a reactive extrusion method, no side reaction is generated, the reaction time can be effectively shortened, the reaction efficiency can be improved, the production efficiency of FDM printing products can be improved, and the production cost can be reduced.

Compared with the traditional TPU wire, PUUA is a segmented block copolymer taking polyamide as a hard segment and polyether and/or polyester as a soft segment, and has a wider hardness range. The hard segment crystal region has high melting point and crystallinity, and the polyamide is used as a hard segment to endow the material with rigidity, form physical support in the elastomer and improve the dimensional stability of a printed product; the soft segment has lower glass transition temperature and segment flexibility, and endows the PUUA wire with excellent low temperature resistance, flexibility and rebound resilience. The poly (urethane-urea-amide) elastomer wire has the advantages of toughness, wear resistance, easiness in forming and processing, good thermal stability and the like of nylon, so that the poly (urethane-urea-amide) elastomer wire has the remarkable advantages of smooth extrusion, strong interlayer adhesion, low shrinkage rate and the like in the printing process. The material has wide application prospect in the fields of aerospace, medical orthopedic, sports equipment, shoe materials and clothes.

At present, PLA, ABS, PETG, PA wires and the like are common polymer wires for FDM printing. Patent CN 110079010B, CN 111484707A, CN 106433108A, CN 111004499 a and others have a problem of insufficient flexibility, which is a subject of research on hard plastics such as PLA and PA.

The thermoplastic TPU elastomer has good flexibility, and the research field mainly takes physical blending modification of the polymers. Patent CN 110240796A provides a 3D printing soft consumable material and a preparation method thereof, the material is prepared by taking TPU as matrix resin and blending and extruding the TPU and ABS and/or PP through double screws, and the hardness of the material is reduced. However, TPU has high water absorption and is easy to decompose to generate smoke in the printing process.

Patent CN 106589575A proposes a PP/SEBS physical blending thermoplastic elastomer wire suitable for 3D printing, which is obtained by taking PP, SEBS and mineral oil as raw materials and performing double-screw blending. Patent CN 110079010B mentions a shape memory polymer alloy based on fused deposition 3D printing and its preparation method, which is obtained by extruding raw materials such as 30-50% polyolefin plastic (polyethylene, polypropylene), 10-40% nylon resin (PA6, PA610, etc.), 20-40% thermoplastic elastomer graft (POE-g-MAH, SEBS-g-MAH, etc.) through twin-screw blending.

Disclosure of Invention

The invention aims to provide a novel poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing, and aims to solve the problems of single type, high shrinkage rate and poor mechanical property and water resistance of a printed product of an existing FDM printed polymer wire.

Another objective of the present invention is to provide a method for preparing a poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing, that is, a method for preparing a continuous fused deposition 3D printing after raw materials are extruded in a twin-screw extruder, which can effectively improve the production efficiency of FDM printed products and reduce the production cost.

In order to achieve the purpose, the invention provides the following scheme:

the poly (urethane-urea-amide) elastomer wire for 3D printing through fused deposition is characterized in that the poly (urethane-urea-amide) elastomer is a segmented block copolymer composed of a polyamide segment and a polyurethane segment, is prepared from polyamide, isocyanate, polyether and/or polyester, and has a molecular chain structure repeating unit as follows:

in the formula, R1、R2、R3Respectively, polyether and/or polyester, isocyanate, polyamide.

The polyurethane is isocyanate-terminated polyether and/or polyester; the isocyanate is one or more than two of 3-isocyanatomethylene-3, 5, 5-trimethylcyclohexyl isocyanate, 4 '-diphenylmethane diisocyanate, 1, 6-hexamethylene diisocyanate and dicyclohexylmethane-4, 4' -diisocyanate.

The polyamide is double-end amino polyamide; the double-end amino polyamide is one or more of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610, polyamide 612, polyamide 1010, polyamide 1011, polyamide 1012, polyamide 1013, polyamide 1111, polyamide 1112, polyamide 1113, polyamide 1212, polyamide 1213, polyamide 1313 and polyamide 1414.

The polyether and/or polyester is hydroxyl-terminated polyether and/or polyester; the polyether and/or polyester with double hydroxyl groups is one or more than two of polytetrahydrofuran ether glycol, polypropylene oxide glycol, polycarbonate glycol, poly adipic acid-1, 6-hexanediol glycol, poly adipic acid-1, 4-butanediol glycol, poly adipic acid neopentyl glycol-1, 6-hexanediol glycol and tetrahydrofuran-propylene oxide copolymerized glycol.

The relative molecular weight of the polyamide is 500-8000; the polyether and/or polyester has a relative molecular weight of 750-.

The relative viscosity (in m-cresol solvent) of the poly (urethane-urea-amide) elastomer is 1.5-3.0, and the melt index is 3.0-30.0g/10 min.

The preparation method of the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing comprises the following steps:

1) stirring and mixing the double-end amino polyamide, the antioxidant and the filler at the temperature of 30-90 ℃ and the rotating speed of 200-2000r/min for 10-30min to obtain double-end amino polyamide composite powder; the weight composition of each raw material in each 100 parts of double-end amino polyamide composite powder is as follows: 90-100 parts of double-end amino polyamide, 0.01-0.5 part of antioxidant and 0-10 parts of filler;

2) mixing double-end amino polyamide composite powder and isocyanate-terminated polyether and/or polyester according to a molar ratio of (0.98-1.02):1, adding the mixture into an extruder, extruding, sizing, drafting and winding for one-step molding to obtain the poly (urethane-urea-amide) elastomer wire.

In the step 2), the extruder is a double-screw extruder, and the extrusion parameters are as follows: the temperature of the first zone is 140 ℃ to 260 ℃, the temperature of the second zone, the third zone and the fourth zone is 185 ℃ to 280 ℃, and the rotating speed of the screw is 15-100 rpm.

The diameter of the poly (urethane-urea-amide) elastomer wire is 1.75 +/-0.05 mm, 2.85 +/-0.05 mm or 3 +/-0.05 mm.

The antioxidant is one or more than two of sodium hypophosphite, tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester, bis (2, 4-dicumylphenyl) pentaerythritol diphosphite, 2, 6-di-tert-butyl-4-methylphenol and 2, 2' -methylenebis (4-methyl-6-tert-butylphenol); the filler is one or more than two of titanium dioxide, nano silicon dioxide, nano calcium carbonate, calcium stearate, talcum powder, polyethylene resin, polypropylene resin, polyamide resin, ABS resin and SEBS.

In the present invention, please refer to the invention patent CN 112961305 a which was previously filed by the present inventors regarding the poly (urethane-urea-amide) elastomer and the preparation method thereof. The invention provides a poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing and a preparation method thereof by screening antioxidants, fillers and the like on the basis of earlier stage work, namely, the preparation method of double-end amino polyamide and isocyanate terminated polyether and/or polyester in the invention is the same as that in patent CN 112961305A. The PUUA is prepared by adopting a reactive extrusion method, no side reaction is generated, the reaction time can be effectively shortened, the reaction efficiency can be improved, the production efficiency of FDM printing products can be improved, and the production cost can be reduced.

Compared with the traditional TPU wire, PUUA is a segmented block copolymer taking polyamide as a hard segment and polyether and/or polyester as a soft segment, and has a wider hardness range. The hard segment crystal region has high melting point and crystallinity, and the polyamide is used as a hard segment to endow the material with rigidity, form physical support in the elastomer and improve the dimensional stability of a printed product; the soft segment has lower glass transition temperature and segment flexibility, and endows the PUUA wire with excellent low temperature resistance, flexibility and rebound resilience. The poly (urethane-urea-amide) elastomer wire has the advantages of toughness, wear resistance, easiness in forming and processing, good thermal stability and the like of nylon, so that the poly (urethane-urea-amide) elastomer wire has the remarkable advantages of smooth extrusion, strong interlayer adhesion, low shrinkage rate and the like in the printing process. The material has wide application prospect in the fields of aerospace, medical orthopedic, sports equipment, shoe materials and clothes.

Compared with the prior art, the invention also has the following technical advantages:

1. this patent provides a novel fused deposition 3D printing polymer material, namely poly (urethane-urea-amide) elastomer wire. The poly (urethane-urea-amide) elastomer structurally has the inherent advantages of softness, hardness and adjustable melting point, has the toughness and wear resistance of nylon besides excellent flexibility and rebound resilience, and also has the advantages of low density, low water absorption, static resistance and the like. This patent developed the fused deposition 3D printing wire of poly (urethane-urea-amide) elastomer, expanded its range of application in the additive manufacturing field. The wire has the remarkable advantages of smooth extrusion, strong interlayer adhesion, difficult material breaking, difficult wire drawing, stable size, low shrinkage rate and the like in the printing process.

2. In the preparation method of the wire rod, the reactive extrusion of the poly (urethane-urea-amide) elastomer and the molding step of the wire rod are combined into a whole (as shown in figure 1), and the poly (urethane-urea-amide) elastomer is subjected to sizing, drafting and winding for primary molding after reactive extrusion, so that the secondary processing step of the wire rod is reduced. Compared with a reaction kettle polymerization method, the method has the advantages that the raw materials are extruded in a double-screw extruder in a reaction manner, the reaction time is short, the efficiency is high, and the production process of wire rod products is effectively shortened. By adding the antioxidant and the additive, the aging resistance and the dimensional stability of the wire are improved, and the thermal stability and the warping resistance of the wire in the 3D printing process are improved.

Drawings

In order to make the objects, technical solutions and advantages of the present invention more apparent, the following briefly introduces the drawings needed for embodiments or prior art descriptions, and obviously, the drawings in the following description are only some embodiments of the present invention:

fig. 1 is a schematic diagram of continuous fused deposition 3D printing (b) with combined wire fused deposition 3D printing (a) and reactive extrusion provided in example 1 of the present invention;

FIG. 2 is a FT-IR plot of a poly (urethane-urea-amide) elastomer provided in example 1 of the present invention;

FIG. 3 is a DSC of a poly (urethane-urea-amide) elastomer provided in example 1 of the present invention.

Detailed Description

In order that the invention may be more clearly understood, embodiments of the invention will now be further described with reference to the accompanying drawings.

The double-end amino polyamide is prepared by laboratories; the raw materials, additives and the like used for preparing the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing are dried, and the inventors found that the quality of the obtained product is seriously reduced without drying.

Example 1

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer strand, which is a segmented block copolymer of amino-terminated polyamide 1212 and isocyanate-terminated polyurethane, wherein the polyurethane is composed of 1, 6-hexamethylene diisocyanate and polyoxypropylene glycol; the polyamide 1212 had a relative molecular weight of 1000 and the polyoxypropylene diol had a relative molecular weight of 2000.

The preparation method comprises the following steps:

1) weighing 97 parts of double-end amino polyamide, 0.1 part of tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester and 2.9 parts of titanium dioxide, putting the materials into a high-speed mixer, and uniformly premixing at the rotating speed of 600r/min for 15min and the temperature of 45 ℃ to obtain double-end amino polyamide 1212 composite powder;

2) uniformly mixing double-end amino polyamide 1212 composite powder and isocyanate terminated polyether and/or polyester according to a molar ratio (0.98-1.02):1, and adding the mixture into a double-screw extruder, wherein the extrusion parameters are as follows: the temperature of the first zone is 185 ℃, the temperature of the second zone is 195 ℃, the temperature of the third zone is 195 ℃, the temperature of the fourth zone is 200 ℃, the rotating speed of the screw is 30rpm, and the diameter of the extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.1 mm.

Example 2

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire and a method of making the same, differing from example 1 only in that the polyamide 1212 has a relative molecular weight of 500 and the polyoxypropylene diol has a relative molecular weight of 750. The rest is the same as example 1.

Example 3

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire and a method of making the same, differing from example 1 only in that the polyamide 1212 has a relative molecular weight of 8000 and the polyoxypropylene diol has a relative molecular weight of 5000. The rest is the same as example 1.

Example 4

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire and a method for making the same, which differ from example 1 only in that the amino-terminated polyamide of step 1) is 90 parts, tetrakis [ β - (3, 5-di-tert-butyl-4-hydroxyphenyl) propionate ] pentaerythritol ester 0.01 parts, and titanium dioxide 9.99 parts. The rest is the same as example 1.

Example 5

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire and a method for making the same, which differ from example 1 only in that the amino-terminated polyamide of step 1) is 99 parts, tetrakis [ β - (3, 5-di-tert-butyl-4-hydroxyphenyl) propionate ] pentaerythritol ester 0.5 parts, and titanium dioxide 0.5 parts. The rest is the same as example 1.

Example 6

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer strand and a method for preparing the same, differing from example 1 only in that the mixing time of step 1) is 30min and the temperature is 90 ℃. The rest is the same as example 1.

Example 7

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer strand and a method for preparing the same, differing from example 1 only in that the mixing time of step 1) is 2min and the temperature is 30 ℃. The rest is the same as example 1.

Example 8

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire and a method of making the same, differing from example 1 only in that the high speed mixer speed in step 1) is 200 r/min. The rest is the same as example 1.

Example 9

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire and a method of making the same, differing from example 1 only in that the high speed mixer speed in step 1) is 2000 r/min. The rest is the same as example 1.

Example 10

This example provides a poly (urethane-urea-amide) elastomer strand for fused deposition 3D printing and a method for preparing the same, differing from example 1 only in that the twin screw extruder extrusion parameters of step 2) are as follows: the temperature of the first zone is 140 ℃, the temperature of the second zone is 185 ℃, the temperature of the third zone is 185 ℃, the temperature of the fourth zone is 200 ℃, the rotating speed of a screw is 30rpm, and the diameter of an extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.05 mm. The rest is the same as example 1.

Example 11

This example provides a poly (urethane-urea-amide) elastomer strand for fused deposition 3D printing and a method for preparing the same, differing from example 1 only in that the twin screw extruder extrusion parameters of step 2) are as follows: the first zone temperature is 260 ℃, the second zone temperature is 270 ℃, the third zone temperature is 270 ℃, the fourth zone temperature is 280 ℃, the screw rotating speed is 30rpm, and the diameter of the extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.05 mm. The rest is the same as example 1.

Example 12

This example provides a poly (urethane-urea-amide) elastomer strand for fused deposition 3D printing and a method for preparing the same, differing from example 1 only in that the twin screw extruder extrusion parameters of step 2) are as follows: the first zone temperature is 185 ℃, the second zone temperature is 195 ℃, the third zone temperature is 195 ℃, the fourth zone temperature is 200 ℃, the screw rotation speed is 15rpm, and the diameter of the extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.05 mm. The rest is the same as example 1.

Example 13

This example provides a poly (urethane-urea-amide) elastomer strand for fused deposition 3D printing and a method for preparing the same, differing from example 1 only in that the twin screw extruder extrusion parameters of step 2) are as follows: the temperature of the first zone is 185 ℃, the temperature of the second zone is 195 ℃, the temperature of the third zone is 195 ℃, the temperature of the fourth zone is 200 ℃, the rotating speed of a screw is 60rpm, and the diameter of an extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.05 mm. The rest is the same as example 1.

Example 14

This example provides a poly (urethane-urea-amide) elastomer strand for fused deposition 3D printing and a method for preparing the same, differing from example 1 only in that the twin screw extruder extrusion parameters of step 2) are as follows: the first zone temperature is 185 ℃, the second zone temperature is 195 ℃, the third zone temperature is 195 ℃, the fourth zone temperature is 200 ℃, the screw rotation speed is 100rpm, and the diameter of the extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.05 mm. The rest is the same as example 1.

Example 15

This example provides a poly (urethane-urea-amide) elastomer strand for fused deposition 3D printing and a method for preparing the same, differing from example 1 only in that the twin screw extruder extrusion parameters of step 2) are as follows: the first zone temperature is 185 ℃, the second zone temperature is 195 ℃, the third zone temperature is 195 ℃, the fourth zone temperature is 200 ℃, the screw rotation speed is 30rpm, and the diameter of the extrusion head is 2.85mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 2.85 +/-0.05 mm. The rest is the same as example 1.

Example 16

This example provides a poly (urethane-urea-amide) elastomer strand for fused deposition 3D printing and a method for preparing the same, differing from example 1 only in that the twin screw extruder extrusion parameters of step 2) are as follows: the first zone temperature is 185 ℃, the second zone temperature is 195 ℃, the third zone temperature is 195 ℃, the fourth zone temperature is 200 ℃, the screw rotating speed is 30rpm, and the diameter of the extrusion head is 3.00mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 3.00 +/-0.05 mm. The rest is the same as example 1.

Example 17

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire differing from example 1 only in that the hydroxyl terminated polyether is polytetrahydrofuran ether glycol; the relative molecular weight of the polytetrahydrofuran ether glycol is 2000.

Example 18

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomeric strand, differing from example 1 only in that the hydroxyl-terminated polyester is a poly 1, 6-hexanediol adipate diol; the relative molecular weight of the poly (1, 6-hexanediol adipate) glycol is 2000.

Example 19

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire, differing from example 1 only in that the polyamide is amino-terminated polyamide 6.

The preparation method comprises the following steps:

1) weighing 97 parts of double-end amino polyamide, 0.1 part of tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester and 2.9 parts of titanium dioxide, putting the materials into a high-speed mixer, and uniformly premixing at the rotating speed of 600r/min for 15min and the temperature of 45 ℃ to obtain double-end amino polyamide 6 composite powder;

2) uniformly mixing double-end amino polyamide 6 composite powder and isocyanate-terminated polyether and/or polyester according to a molar ratio (0.98-1.02):1, and adding the mixture into a double-screw extruder, wherein the extrusion parameters are as follows: the temperature of the first zone is 235 ℃, the temperature of the second zone is 245 ℃, the temperature of the third zone is 245 ℃, the temperature of the fourth zone is 250 ℃, the rotating speed of a screw is 30rpm, and the diameter of an extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.1 mm.

Example 20

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire, differing from example 1 only in that the polyamide is amino-terminated polyamide 12.

The preparation method comprises the following steps:

1) 97 parts of double-end amino polyamide, 0.1 part of tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester and 2.9 parts of titanium dioxide are weighed and put into a high-speed mixer to be premixed uniformly at the rotating speed of 600 r/min. Mixing for 15min at 45 deg.C to obtain double-end amino polyamide 12 composite powder;

2) uniformly mixing double-end amino polyamide 12 composite powder and isocyanate-terminated polyether and/or polyester according to a molar ratio (0.98-1.02):1, and adding the mixture into a double-screw extruder, wherein the extrusion parameters are as follows: the temperature of the first zone is 190 ℃, the temperature of the second zone is 200 ℃, the temperature of the third zone is 200 ℃, the temperature of the fourth zone is 205 ℃, the rotating speed of a screw is 30rpm, and the diameter of an extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.1 mm.

Example 21

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire that differs from example 1 only in that the polyamide is amino-terminated polyamide 66.

The preparation method comprises the following steps:

1) weighing 97 parts of double-end amino polyamide, 0.1 part of tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester and 2.9 parts of titanium dioxide, putting the materials into a high-speed mixer, and uniformly premixing at the rotating speed of 600r/min for 15min and the temperature of 45 ℃ to obtain double-end amino polyamide 66 composite powder;

2) uniformly mixing double-end amino polyamide 66 composite powder and isocyanate-terminated polyether and/or polyester according to a molar ratio (0.98-1.02):1, and adding the mixture into a double-screw extruder, wherein the extrusion parameters are as follows: the first zone temperature was 275 ℃, the second zone temperature was 280 ℃, the third zone temperature was 280 ℃, the fourth zone temperature was 285 ℃, the screw speed was 30rpm, and the diameter of the extrusion head was 1.75mm, to obtain a poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing, the wire diameter being 1.75 ± 0.1 mm.

Example 22

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire that differs from example 1 only in that the polyamide is amino-terminated polyamide 612.

The preparation method comprises the following steps:

1) weighing 97 parts of double-end amino polyamide, 0.1 part of tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester and 2.9 parts of titanium dioxide, putting the materials into a high-speed mixer, and uniformly premixing at the rotating speed of 600r/min for 15min and the temperature of 45 ℃ to obtain double-end amino polyamide 612 composite powder;

2) uniformly mixing double-end amino polyamide 612 composite powder and isocyanate-terminated polyether and/or polyester according to a molar ratio of (0.98-1.02):1, and adding the mixture into a double-screw extruder, wherein the extrusion parameters are as follows: the first zone temperature is 227 ℃, the second zone temperature is 237 ℃, the third zone temperature is 237 ℃, the fourth zone temperature is 242 ℃, the screw rotating speed is 30rpm, and the diameter of the extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.1 mm.

Example 23

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire that differs from example 1 only in that the polyamide is amino-terminated polyamide 1010.

The preparation method comprises the following steps:

1) weighing 97 parts of double-end amino polyamide, 0.1 part of tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester and 2.9 parts of titanium dioxide, putting the materials into a high-speed mixer, and uniformly premixing at the rotating speed of 600r/min for 15min and the temperature of 45 ℃ to obtain double-end amino polyamide 1010 composite powder;

2) uniformly mixing double-end amino polyamide 1010 composite powder and isocyanate-terminated polyether and/or polyester according to a molar ratio (0.98-1.02):1, and adding the mixture into a double-screw extruder, wherein the extrusion parameters are as follows: the first zone temperature is 217 ℃, the second zone temperature is 227 ℃, the third zone temperature is 227 ℃, the fourth zone temperature is 232 ℃, the screw rotation speed is 30rpm, and the diameter of the extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.1 mm.

Example 24

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire that differs from example 1 only in that the polyamide is amino-terminated polyamide 1012.

The preparation method comprises the following steps:

1) weighing 97 parts of double-end amino polyamide, 0.1 part of tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester and 2.9 parts of titanium dioxide, putting the materials into a high-speed mixer, and uniformly premixing at the rotating speed of 600r/min for 15min and the temperature of 45 ℃ to obtain double-end amino polyamide 1012 composite powder;

2) uniformly mixing double-end amino polyamide 1012 composite powder and isocyanate terminated polyether and/or polyester according to a molar ratio (0.98-1.02):1, and adding the mixture into a double-screw extruder, wherein the extrusion parameters are as follows: the first zone temperature is 215 ℃, the second zone temperature is 225 ℃, the third zone temperature is 225 ℃, the fourth zone temperature is 230 ℃, the screw rotating speed is 30rpm, and the diameter of the extrusion head is 1.75mm, so that the poly (urethane-urea-amide) elastomer wire for fused deposition 3D printing is obtained, and the diameter of the wire is 1.75 +/-0.1 mm.

Example 25

This example provides a fused deposition 3D printing poly (urethane-urea-amide) elastomer wire, differing from example 1 only in that the polyamide is amino-terminated polyamide 1313.

The preparation method comprises the following steps:

1) weighing 97 parts of double-end amino polyamide, 0.1 part of tetra [ beta- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid ] pentaerythritol ester and 2.9 parts of titanium dioxide, putting the materials into a high-speed mixer, and uniformly premixing at the rotating speed of 600r/min for 15min and the temperature of 45 ℃ to obtain double-end amino polyamide 1313 composite powder;

2) uniformly mixing double-end amino polyamide 1313 composite powder and isocyanate-terminated polyether and/or polyester according to a molar ratio of (0.98-1.02):1, and adding the mixture into a double-screw extruder, wherein the extrusion parameters are as follows: the first zone temperature was 178 ℃, the second zone temperature was 188 ℃, the third zone temperature was 188 ℃, the fourth zone temperature was 193 ℃, the screw speed was 30rpm, and the diameter of the extrusion head was 1.75mm, to obtain a poly (urethane-urea-amide) elastomer strand for fused deposition 3D printing, the strand diameter being 1.75 ± 0.1 mm.

In other embodiments, the polyurethane may also be an isocyanate terminated polyether and/or polyester; the isocyanate can be one or more than two of 3-isocyanatomethylene-3, 5, 5-trimethylcyclohexyl isocyanate, 4 '-diphenylmethane diisocyanate, 1, 6-hexamethylene diisocyanate and dicyclohexylmethane-4, 4' -diisocyanate. The polyamide is one or more of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610, polyamide 612, polyamide 1010, polyamide 1011, polyamide 1012, polyamide 1013, polyamide 1111, polyamide 1112, polyamide 1113, polyamide 1212, polyamide 1213, polyamide 1313 and polyamide 1414. The polyether and/or polyester can be one or more than two of polytetrahydrofuran ether glycol, polypropylene oxide glycol, polycarbonate glycol, poly adipic acid-1, 6-hexanediol glycol, poly adipic acid-1, 4-butanediol glycol, poly adipic acid neopentyl glycol-1, 6-hexanediol glycol and tetrahydrofuran-propylene oxide copolymerized glycol.

Examples of the experiments

In the examples of the present invention, the physical properties of portions of the resulting fused deposition 3D printing poly (urethane-urea-amide) elastomer wire were characterized using the following test instruments and test standards.

TABLE 1 test items, instruments and standards

Test items Testing instrument Test standard
Melting Point DSC(TA-2000) GB/T617-2006(10℃/min)
Relative viscosity Ubbelohde viscometer (0.90-1.00) GB/T10247-2008
Relative molecular weight GPC(Breeze2) GB/T27843-2011
Melt index Melt index instrument (ZRZ400) GB/T3682-2000
Shore hardness Digital display sclerometer (TIME5410) GB/T3398-2008
Impact strength Pendulum impact test (ZBC7251-C) GB/T1843-2008,2.75J

Part of the physical properties of the fused deposition 3D printing poly (urethane-urea-amide) elastomer wires obtained in the above 25 examples were characterized and the results are shown in table 2.

Table 2 FDM printed article properties of poly (urethane-urea-amide) elastomer wires for fused deposition 3D printing

The above-described embodiments describe several embodiments of the present invention in more detail and specifically, but do not represent limitations to the scope of the invention. The protection scope of the present patent shall be subject to the appended claims.

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种抗菌聚氨酯泡沫材料及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!