玻璃树脂层叠体的制造方法

文档序号:1803342 发布日期:2021-11-05 浏览:29次 >En<

阅读说明:本技术 玻璃树脂层叠体的制造方法 (Method for producing glass resin laminate ) 是由 佐藤启介 村重毅 稻垣淳一 岸敦史 于 2020-03-11 设计创作,主要内容包括:本玻璃树脂层叠体的制造方法是一种具有将玻璃膜和树脂膜夹在对所述树脂膜进行按压的第1辊和与所述第1辊相对配置且对所述玻璃膜进行按压的第2辊之间、并藉由粘合剂层使所述玻璃膜和所述树脂膜粘合在一起的步骤的玻璃树脂层叠体的制造方法,当使所述第1辊的表面层的弹性率为P1并使所述树脂膜的弹性率为P2时,弹性率P1与弹性率P2之比P1/P2满足3×10~(-3)≤P1/P2≤1.0。(The glass resin laminateA method for manufacturing a glass resin laminate comprising a step of sandwiching a glass film and a resin film between a 1 st roll for pressing the resin film and a 2 nd roll disposed opposite to the 1 st roll for pressing the glass film, and bonding the glass film and the resin film together via an adhesive layer, wherein when an elastic modulus of a surface layer of the 1 st roll is P1 and an elastic modulus of the resin film is P2, a ratio P1/P2 between an elastic modulus P1 and an elastic modulus P2 satisfies 3 x 10 -3 ≤P1/P2≤1.0。)

玻璃树脂层叠体的制造方法

技术领域

本发明涉及玻璃树脂层叠体的制造方法。

背景技术

近年,画面上安装了触控传感器功能的液晶单元广泛应用于从移动电话到信息显示器的各种领域。

作为一例,可列举出一种将具有传感器功能的膜或玻璃层叠在偏光板之上,并将被称为“前板”的钢化玻璃藉由用于填充传感器表面的段差(台阶)的粘接剂层配置在最表层的显示面板。此外,最近还出现了一种从薄化和轻量化的观点出发将触控传感器埋入液晶单元的玻璃基板内的被称为“内嵌式单元(In-cell)”的液晶面板。

另一方面,钢化玻璃的薄化也在进行中,但钢化玻璃如果为300μm以下,则由于玻璃的压缩应力而会发生自损,故薄化受到限制。在这种情况下,尽管已经研究了使用树脂来提高前板的硬度,但实际上无法获得足够的硬度。

因此,薄玻璃膜作为液晶单元的前板引起了人们的注意。该玻璃膜例如可藉由粘合剂层与包括偏光板的树脂膜进行层叠。由于需要更薄的产品等,故粘合剂层倾向于更薄。

[引证文件]

[专利文件]

[专利文件1]国际公开第2013/175767号

发明内容

[要解决的技术问题]

然而,就玻璃膜和树脂膜的层叠而言,例如,是夹在上下相邻配置的两个辊之间进行的。此时,如果异物附着在与树脂膜相接的一侧的辊的表面上,则刚性较高的玻璃膜基本上不发生变形,主要是刚性较低的树脂膜发生变形。

为此,树脂膜的与玻璃膜相接的一侧有时会出现与异物的形状相应的凹凸,导致空气进入凹部内,进而生成气泡缺损。尤其是在粘合剂层的厚度较薄的情况下,气泡缺损的发生更为显著。作为产品,气泡缺损的个数越少越好。

本发明是鉴于上述问题而提出的,其目的在于,提供一种当藉由粘合剂层对玻璃膜和树脂膜进行层叠时,即使在粘合剂层较薄的情况下,与先前相比也可抑制气泡缺损的发生的玻璃树脂层叠体的制造方法。

[技术方案]

本玻璃树脂层叠体的制造方法是一种具有将玻璃膜和树脂膜夹在对所述树脂膜进行按压的第1辊和与所述第1辊相对配置且对所述玻璃膜进行按压的第2辊之间、并藉由粘合剂层使所述玻璃膜和所述树脂膜粘合在一起的步骤的玻璃树脂层叠体的制造方法,当将所述第1辊的表面层的弹性率设为P1并将所述树脂膜的弹性率设为P2时,弹性率P1与弹性率P2之比P1/P2满足3×10-3≤P1/P2≤1.0。

[有益效果]

根据公开的技术,能够提供一种当藉由粘合剂层对玻璃膜和树脂膜进行层叠时,即使在粘合剂层较薄的情况下,与先前相比也可抑制气泡缺损的发生的玻璃树脂层叠体的制造方法。

附图说明

[图1]玻璃树脂层叠体的例示剖面图。

[图2]在树脂膜上层叠玻璃膜的步骤的说明图。

[图3]在树脂膜上层叠玻璃膜时的以往的问题的说明图。

[图4]抑制气泡缺损的发生的方法的说明图。

[图5]图4的A部分的放大图。

具体实施方式

以下,参照附图对用于实施发明的形态(方式)进行说明。各图中,存在对相同构成部分赋予相同符号,并对重复说明进行省略的情况。

(玻璃树脂层叠体)

首先,对作为制造对象的玻璃树脂层叠体进行说明。图1是玻璃树脂层叠体的例示剖面图,图1(a)示出了层叠前的玻璃膜和树脂膜,图1(b)示出了层叠后的玻璃膜和树脂膜(即,玻璃树脂层叠体)。

玻璃树脂层叠体1具有玻璃膜10和树脂膜20。玻璃膜10藉由树脂膜20的粘合剂层21与树脂膜20粘合在一起。

就玻璃膜10而言,对其并无特别限定,可根据使用目的采用适当的玻璃膜。玻璃膜10按照组成(成分)进行分类时,例如可列举出苏打石灰玻璃、硼酸玻璃、铝硅酸玻璃、石英玻璃等。此外,按照碱成分进行分类时,可列举出无碱玻璃和低碱玻璃。上述玻璃的碱金属成分(例如,Na2O、K2O、Li2O)的含量优选为15重量%以下,较佳为10重量%以下。

玻璃膜10的厚度优选为50μm~150μm,较佳为60μm~140μm,更佳为70μm~130μm,尤佳为80μm~120μm。在这样的范围内,可进行灵活性较优且基于辊到辊工艺的加工,并可获得玻璃膜不易破裂且生产性优异的玻璃树脂层叠体1。

玻璃膜10在波长550nm下的透光率优选为85%以上。玻璃膜10在波长550nm下的折射率优选为1.4~1.65。

玻璃膜10的密度优选为2.3g/cm3~3.0g/cm3,较佳为2.3g/cm3~2.7g/cm3。只要是位于该范围内的玻璃膜,即可提供有助于图像显示的轻量化的玻璃树脂层叠体1。

就玻璃膜10的成形方法而言,对其并无特别限定,可根据使用目的采用适当的成形方法。通常,玻璃膜10可藉由如下方法制作,即,使包含二氧化硅、氧化铝等的主原料、芒硝、氧化锑等的消泡剂、及碳等的还原剂的混合物在1400℃~1600℃左右的温度下进行熔融(融化),并将其成形为薄板状,然后再进行冷却,由此可制作玻璃膜10。作为玻璃膜10的成形方法,例如可列举出槽下拉法、熔融法、浮式法等。就藉由该些方法而成形为板状的玻璃膜而言,为了进行薄化或提高平滑性,根据需要,还可使用氟酸等的溶剂对其进行化学研磨。

树脂膜20依次具备粘合剂层21、偏光板22、粘接剂层28、及离型膜29。但树脂膜20还可具备其他层。例如,树脂膜20可在偏光板22和粘接剂层28之间具备相位差层,但并不限定于此。

需要说明的是,粘合剂层21也可设置在玻璃膜10上。此情况下,树脂膜20依次具备偏光板22、粘接剂层28、及离型膜29,根据需要还可具备其他层。

树脂膜20的弹性率优选为0.1GPa~8.0GPa,较佳为0.2GPa~7.0GPa,更佳为0.3GPa~5.0GPa。本说明书中,弹性率可藉由精密万能试验机(Autograph)并在下述条件下进行测定。

[弹性率测定方法]

测定温度:23℃

样品尺寸:宽2cm,长15cm

卡盘间距离:10cm

拉伸速度:10mm/min。

需要说明的是,本说明书中,粘接剂层是指,常温下具有粘接性,藉由较轻的压力即可粘接于被粘接体的层。故,即使在将粘接于粘接剂层上的被粘接体进行了剥离的情况下,粘接剂层也可保持具有实用性的粘接力。另一方面,粘合剂层是指,藉由存在于物质之间而可对物质进行结合的层。故,在将粘合于粘合剂层上的被粘合体进行了剥离的情况下,粘合剂层并不具有实用性的粘合力。

偏光板22配置在粘合剂层21的与玻璃膜10粘合的一侧的相反侧。偏光板22具有偏光片221、第1保护膜222、及第2保护膜223。第1保护膜222配置在偏光片221的粘合剂层21侧,第2保护膜223配置在偏光片221的粘接剂层28侧。

离型膜29藉由粘接剂层28配置在第2保护膜223的与偏光片221相反的一侧。

以下,对树脂膜20的各构成要素进行更详细的说明。

[粘合剂层]

就粘合剂层21而言,对其并无特别限定,可根据使用目的采用适当的粘合剂。作为粘合剂,例如可列举出聚酯(Polyester)类粘合剂、聚氨酯(Polyurethane)类粘合剂、聚乙烯醇(Polyvinyl alcohol)类粘合剂、及环氧(Epoxy)类粘合剂。其中,可获得尤其良好的密着(密接)性的环氧类粘合剂为优选。

在粘合剂层21为热硬化性粘合剂的情况下,藉由加热硬化(固化),可发挥耐剥离性。此外,在粘合剂层21为紫外线硬化性等的光硬化性粘合剂的情况下,藉由照射紫外线等的光以进行硬化,可发挥耐剥离性。另外,在粘合剂层21为可湿硬化性粘合剂的情况下,由于可与空气中的水分等进行反应而进行硬化,故藉由放置也可进行硬化,由此可发挥耐剥离性。

粘合剂层21例如可使用市场上销售的粘合剂,也可将各种硬化性树脂溶解或分散于溶媒(溶剂),藉此调制粘合剂溶液(或分散液)。

粘合剂层21的厚度优选为8μm以下,较佳为0.1μm~8μm,更佳为0.1μm~5μm,尤佳为0.1μm~2μm。在这样的范围内,可获得可挠性较佳且耐穿刺性优异的玻璃树脂层叠体1。此外,粘合剂层21越薄,玻璃树脂层叠体1也越薄,故可满足产品薄化的要求。

粘合剂层21的弹性率优选为0.5GPa~15GPa,较佳为0.8GPa~10GPa,更佳为1GPa~5GPa。在这样的范围内,能获得可挠性优异且耐穿刺性较佳的玻璃树脂层叠体1。

需要说明的是,图1(a)的状态(层叠前)下的粘合剂层21并未硬化,如图1(b)所示在树脂膜20上层叠了玻璃膜10后粘合剂层21进行了硬化,由此可获得将玻璃膜10和树脂膜20粘合在一起的玻璃树脂层叠体1。关于藉由粘合剂层21将玻璃膜10和树脂膜20粘合在一起的玻璃树脂层叠体1的制造方法,将在后面进行详述。

[偏光板]

偏光板22的厚度优选为5μm~300μm,较佳为10μm~250μm,更佳为25μm~200μm,尤佳为25μm~100μm。

偏光板22的弹性率优选为1GPa以上,较佳为1GPa~10GPa,更佳为2GPa~7GPa,尤佳为2GPa~5GPa。在这样的范围内,可获得耐穿刺性优异的玻璃树脂层叠体1。

就偏光板22的形状而言,对其并无特别限定,可根据使用目的采用适当的形状,作为一例,可列举出具有长边和短边的矩形形状。在偏光板22为矩形形状的情况下,优选为,偏光板22所具有的偏光片221的吸收轴方向与偏光板22的长边或短边大致平行。需要说明的是,本说明书中,“大致平行”的概念是指,不仅包括严格平行的情况,还包括两线之夹角为±10°(优选为±5°)的情况。

[偏光片]

就偏光片221的厚度而言,对其并无特别限定,可根据使用目采用适当的厚度。偏光片221的厚度通常为1μm~80μm左右。作为偏光片221,可使用较薄的偏光片,此情况下,偏光片221的厚度优选为20μm以下,较佳为15μm以下,更佳为10μm以下,尤佳为6μm以下。

偏光片221优选在波长380nm~780nm内的任意波长下具有吸收二色性。偏光片的单体透射率优选为40.0%以上,较佳为41.0%以上,更佳为42.0%以上,尤佳为43.0%以上。偏光片221的偏光度优选为99.8%以上,较佳为99.9%以上,更佳为99.95%以上。

偏光片221优选为碘类偏光片。具体而言,上述偏光片可由包含碘的聚乙烯醇类树脂(以下称「PVA类树脂」)膜构成。

作为形成PVA类树脂膜的PVA类树脂,对其并无特别限定,可根据使用目的采用适当的树脂,例如可列举出聚乙烯醇和乙烯-乙烯醇共聚物(Ethylene-vinyl alcoholcopolymer)。

聚乙烯醇可藉由对聚醋酸乙烯(Polyvinyl acetate)进行皂化(Saponification)而获得。乙烯-乙烯醇共聚物可藉由对乙烯-乙酸乙烯酯共聚物(Ethylene-vinylacetate copolymer)进行皂化而获得。PVA类树脂的皂化度通常为85摩尔%~100摩尔%,优选为95.0摩尔%~99.95摩尔%,较佳为99.0摩尔%~99.93摩尔%。皂化度可基于JIS K6726-1994求得。藉由使用这样的皂化度的PVA类树脂,可获得耐久性较优的偏光片。然而,如果皂化度过高,则也可能会发生胶凝。

就PVA类树脂的平均聚合度而言,对其并无特别限定,可根据使用目的进行适当的选择。PVA类树脂的平均聚合度例如为1000~10000,较佳为1200~5000,更佳为1500~4500。需要说明的是,平均聚合度可基于JIS K 6726-1994求得。

作为偏光片221的制造方法,例如可列举出使PVA类树脂膜单体延伸并进行染色的方法(I)、使具有树脂基材和聚乙烯醇类树脂层的层叠体(i)延伸并进行染色的方法(II)等。方法(I)为业界周知的惯用方法,故省略其详细说明。

方法(II)优选包括使具有树脂基材和在该树脂基材的单侧形成的聚乙烯醇类树脂层的层叠体(i)延伸并进行染色,从而在该树脂基材上制作偏光片的步骤。层叠体(i)可藉由在树脂基材上涂敷包含聚乙烯醇类树脂的涂敷液并进行干燥而形成。此外,层叠体(i)也可藉由将聚乙烯醇类树脂层转写(转录)在树脂基材上而形成。该制造方法(II)的详细内容例如记载于(日本)特开2012-73580号公报,该公报作为参考援引于本说明书。

[第1和第2保护膜]

作为第1保护膜222和第2保护膜223,对其并无特别限定,可根据使用目的采用适当的树脂膜。作为第1保护膜222和第2保护膜223的形成材料,例如可列举出聚对苯二甲酸乙二酯(PET)等的聚酯类树脂、三醋酸纤维素(TAC)等的纤维素类树脂、降冰片烯(Norbornene)类树脂等的环烯烃(Cycloolefin)类树脂、聚乙烯(Polyethylene)、聚丙烯(Polypropylene)等的烯烃(Olefin)类树脂、(甲基)丙烯酸((Meth)acrylic)类树脂等。这些当中,优选为聚对苯二甲酸乙二酯(PET)。需要说明的是,“(甲基)丙烯酸类树脂”是指,丙烯酸类树脂和/或甲基丙烯酸类树脂。

作为(甲基)丙烯酸类树脂,例如可使用具有戊二酰亚胺(G1utarimide)结构的(甲基)丙烯酸类树脂。具有戊二酰亚胺结构的(甲基)丙烯酸类树脂(以下也称戊二酰亚胺树脂)例如记载于(日本)特开2006-309033号公报、特开2006-317560号公报、特开2006-328329号公报、特开2006-328334号公报、特开2006-337491号公报、特开2006-337492号公报、特开2006-337493号公报、特开2006-337569号公报、特开2007-009182号公报、特开2009-161744号公报、及特开2010-284840号公报。该些内容作为参考援引于本说明书。

可藉由适当的任意粘合剂层使第1保护膜222和第2保护膜223与偏光片221层叠。就偏光片221的制作时所使用的树脂基材而言,可在第1保护膜222和第2保护膜223与偏光片221层叠前或层叠后被剥离。

第1保护膜222和第2保护膜223的厚度优选为4μm~250μm,较佳为5μm~150μm,更佳为10μm~100μm,尤佳为10μm~50μm。

第1保护膜222和第2保护膜223的弹性率为1GPa以上,优选为1GPa~10GPa,较佳为1.8GPa~7GPa,更佳为2GPa~5GPa。在这样的范围内,可获耐穿刺性优异的玻璃树脂层叠体1。

[粘接剂层]

粘接剂层28可藉由适当的任意粘接剂而形成。作为粘接剂,例如可使用将丙烯酸类聚合物、硅树脂类聚合物、聚酯、聚氨酯、聚酰胺、聚醚、氟类橡胶类等的聚合物作为基础聚合物的粘接剂。优选使用丙烯酸类粘接剂。其理由为,丙烯酸类粘接剂的光学透明性较优,显示了适度的润湿性、凝聚性、及粘合性的粘接特性,并具有优异的耐候性、耐热性等。由碳数为4~12的丙烯酸类聚合物制成的丙烯酸类粘接剂尤佳。

粘接剂层28的厚度优选为1μm~100μm,较佳为3μm~80μm,更佳为3μm~50μm。在这样的范围内,当将玻璃树脂层叠体1贴附在液晶单元等的光学元件上以制作光学层叠体时,能获得可挠性优异且耐穿刺性较佳的光学层叠体。

[离型膜]

离型膜29例如可藉由聚对苯二甲酸乙二酯(PET)、聚乙烯(PE)、聚丙烯(PP)等的树脂而形成。离型膜29的厚度优选为5μm~125μm,较佳为20μm~75μm,更佳为30μm~50μm。就离型膜29而言,在将玻璃树脂层叠体1贴附于液晶单元等的光学元件之前,从与粘接剂层28之间的界面处被剥离。

(玻璃树脂层叠体的制造方法)

接下来,就玻璃树脂层叠体的制造方法而言,着眼于将玻璃膜10和树脂膜20夹在对树脂膜20进行按压的辊和对玻璃膜10进行按压的辊之间并藉由粘合剂层21使玻璃膜10和树脂膜20粘合在一起的步骤,由此对该制造方法进行说明。

图2是在树脂膜上层叠玻璃膜的步骤的说明图。图2中,树脂膜20悬架在辊110、120、及130上,并沿箭头方向被搬送。树脂膜20例如可藉由辊到辊(roll-to-roll)的方式而被进行搬送。沿上下方向与辊110相对的位置处配置有辊140。

需要说明的是,图2中尽管示出了3个用于对树脂膜20进行搬送的辊,但这仅为一例,可根据需要适当地确定辊的个数。

玻璃膜10沿箭头方向被搬送,并在辊110和辊140之间被层叠在树脂膜20上。此时,辊140对玻璃膜10进行按压,辊110对树脂膜20进行按压。

据此,可在树脂膜20上对玻璃膜10进行层叠。此时,粘合剂层21并未硬化。粘合剂层21在辊110和辊140的搬送方向(箭头方向)的下游侧所配置的未图示的硬化步骤中进行硬化,由此可制成玻璃树脂层叠体1。需要说明的是,硬化前和硬化后,粘合剂层21的厚度基本上没有变化。

这里,对当使用先前的方法的情况下在树脂膜20上层叠玻璃膜10时可能会发生的问题进行说明。图3是对在树脂膜上层叠玻璃膜时的先前存在的问题进行说明的图。

图3中,取代图2所示的辊110使用了辊110X。辊110X为铁制。即,辊110X中相当于辊110的表面层的部分由铁形成。

如图3所示,有时异物F会附着在辊110X上。此情况下,当在树脂膜20上层叠玻璃膜10时,树脂膜20的辊110X侧与异物F相接(接触),但此时,刚性较高的铁制的辊110X和玻璃膜10基本上不会发生变形,主要是刚性较低的树脂膜20进行变形。为此,在树脂膜20的与玻璃膜10相接的一侧会出现与异物F的形状相应的凹凸,导致空气进入凹部内,从而产生气泡缺损B。

气泡缺损B具有人的眼睛能观察到的大小(size)。为此,在玻璃树脂层叠体1被应用于显示装置等的产品的情况下,就这样的气泡缺损而言,只允许存在一定个数(数量)以下的这样的气泡缺损,优选尽可能为零。因此,为了解决先前存在的这样的问题,本实施方式中提出了可抑制气泡缺损B的发生的对策。以下参照图4和图5对其进行说明。

图4是对抑制气泡缺损的发生的方法进行说明的图,放大地示出了图2的辊110和140的附近的部分。如参照图3所说明的那样,以往,使用铁制辊的情况较多,本实施方式中,辊110的表面层由弹性率低于铁的材料形成。需要说明的是,表面层是指,从辊110的表面开始沿中心方向深入至1mm左右的内侧的区域。

作为弹性率低于铁的材料,对其并无特别限定,例如可列举出聚对苯二甲酸乙二酯(PET)、聚乙烯(PE)、聚丙烯(PP)等的树脂、硅树脂橡胶、聚氨酯橡胶、丁腈橡胶等的橡胶等。这些当中,柔软性优异的硅树脂橡胶(Silicone rubber)尤佳。

图5是图4的A部分的放大图。图5中,异物F的存在导致树脂膜20和辊110的表面层发生了变形。

这里,与树脂膜20的表面垂直的方向的异物F的压缩前的长度为t,考虑到在树脂膜20上层叠玻璃膜10时的压缩,压缩后的异物F的长度可为Δl=√t。这是基于本发明的发明人的经验而获得的知识。

此外,压缩后的异物F的长度Δl中,树脂膜20侧的长度为Δlp,辊110侧的长度为Δlr。此时,如果将树脂膜20的弹性率设为Ep,并将辊110的表面层的弹性率设为Er,则根据异物F的两侧的应变和弹性率的关系,可导出以下的公式(1)。

[公式1]

此外,根据上述说明还可知,Δlp、Δlr、Δl、及√t的关系由以下的公式(2)所示。

[公式2]

下面,使用公式(1)和公式(2),对具体的数值例进行探讨(研究)。这里,作为目标的异物F的压缩前的长度t为20~100μm左右。其理由为,如果存在这样大小的异物F,则容易产生可被人眼观察到的气泡缺损B。这里,作为一例,t=100μm。

这里,在作为辊110的表面层的材料而假定使用了聚对苯二甲酸乙二酯(PET)的情况下,其弹性率为5GPa左右。树脂膜20的弹性率也为5GPa左右,故根据公式(1)和公式(2)计算Δlp后可知,Δlp=5μm。即,异物F进入树脂膜20内的量大约为5μm左右。此时,并未硬化的粘合剂层21柔软性较高,故,如果粘合剂层21的厚度为5μm以上,则粘合剂层21会吸收Δlp,据此,如图4所示,树脂膜20的与玻璃膜10相接的一侧不会发生变形。即,不会出现如图3所示的气泡缺损B。

此外,在作为辊110的表面层的材料而假定使用了硅树脂橡胶的情况下,其弹性率为1.5MPa左右。树脂膜20的弹性率为5GPa左右,故根据公式(1)和公式(2)计算Δlp后可知,Δlp=3.0×10-3μm。即,异物F进入树脂膜20的量为3.0×10-3μm左右(基本上没有进入)。此时,树脂膜20基本上不发生变形,故,即使在粘合剂层21的厚度极薄的情况下,树脂膜20的与玻璃膜10相接的一侧也不会发生变形。即,不会出现如图3所示的气泡缺损B。

即,在具备5μm以下的粘合剂层21的弹性率为5GPa左右的树脂膜20上对玻璃膜10进行层叠的情况下,辊110的表面层优选由聚对苯二甲酸乙二酯(PET)、硅树脂橡胶等的弹性率较低的材料形成。据此,即使在异物F附着于辊110的表面的情况下,也可抑制树脂膜20的变形,进而可抑制气泡缺损B的发生。

这样,如果辊110的表面层的弹性率较低,则异物F导致的树脂膜20的变形较小,藉此可抑制气泡缺损B的发生。此外,如果异物F引起的树脂膜20的变形较小,则粘合剂层21也不太可能有助于变形的缓和,从而可使用更薄的粘合剂层21。

对上述内容进行进一步的概括后可知,在玻璃树脂层叠体的制造步骤中,当辊110的表面层的弹性率为P1,并且树脂膜20的弹性率为P2时,只要按照弹性率P1与弹性率P2之比P1/P2满足3×10-3≤P1/P2≤1.0的方式来选择辊110的表面层的材料即可。这里需要说明的是,辊110中的表面层之外的部分也可由与表面层相同的材料形成。

就上述要求(条件)而言,使玻璃膜和树脂膜粘合在一起的粘合剂层越薄,效果发挥的越好,例如,在粘合剂层的厚度为0.1μm以上且5μm以下的情况下,效果尤其显著。换言之,在使用厚度大于10μm那样的粘合剂层的情况下,有时即使不满足上述条件也可抑制气泡缺损B的发生。但是,如果粘合剂层增厚,则会出现树脂膜的搬送性下降的问题、粘合剂层的硬化时间变长的问题等,故粘合剂层不应为10μm以上。

需要说明的是,以上的探讨中并没有言及辊140,但是,就辊140而言,由于刚性较高的玻璃膜10基本上不发生变形,故可认为,辊140的表面层的材质不会影响上述的探讨。因此,辊140的表面层的材质可为铁,可为树脂,可为橡胶,还可为其他材料。

以下,通过列举实施例和比较例对树脂膜和玻璃膜的层叠进行更具体的说明,但本发明并不限定于这些实施例。

[实施例1]

实施例1中,准备一块具备厚度2μm的粘合剂层的弹性率为5GPa的树脂膜,并在上下相对的辊之间将玻璃膜层叠在树脂膜上。之后,使粘合剂层硬化,由此制作了玻璃树脂层叠体A。与树脂膜相接的辊的表面层使用了弹性率5GPa的聚对苯二甲酸乙二酯(PET)。

[实施例2]

实施例2中,使粘合剂层的厚度为5μm,除此之外与实施例1相同,由此制作了玻璃树脂层叠体B。

[实施例3]

实施例3中,使粘合剂层的厚度为10μm,除此之外与实施例1相同,由此制作了玻璃树脂层叠体C。

[比较例1]

比较例1中,准备一块具备厚度2μm的粘合剂层的弹性率为5GPa的树脂膜,并在上下相对的辊之间将玻璃膜层叠在树脂膜上。之后,使粘合剂层硬化,由此制作了玻璃树脂层叠体D。与树脂膜相接的辊的表面层使用了弹性率73GPa的铁。

[比较例2]

比较例2中,使粘合剂层的厚度为5μm,除此之外与比较例1相同,由此制作了玻璃树脂层叠体E。

[比较例3]

比较例3中,使粘合剂层的厚度为10μm,除此之外与比较例1相同,由此制作了玻璃树脂层叠体F。

[评价(评估)]

针对实施例1~3和比较例1~3中制作的玻璃树脂层叠体A~F,分别对其气泡缺损的个数进行了目视检查。结果示于表1和表2。需要说明的是,判定时,如果气泡缺损的个数[/m2]为50个以下,则为〇(合格),如果多于50个,则为×(不合格)。

[表1]

[表2]

如表1所示,在与树脂膜相接的辊的表面层由聚对苯二甲酸乙二酯(PET)形成的情况下,不管粘合剂层的厚度为2μm、5μm、及10μm中的哪一个,气泡缺损的个数都位于容许范围内。尤其是,如果粘合剂层的厚度为5μm以上,则气泡缺损的个数为0,这是一个非常好的结果。

需要说明的是,根据前述的研究结果还可预测到,如果与树脂膜相接的辊的表面层由硅树脂橡胶形成,则粘合剂层的厚度即使为2μm或小于2μm,气泡缺损的个数也可大约为零。

另一方面,如表2所示,在与树脂膜相接的辊的表面层使用了铁的情况下,如果粘合剂层的厚度为10μm,则气泡缺损的个数为0,但如果粘合剂层的厚度为2μm和5μm,则气泡缺损的个数就超出了容许范围。即,由此可知,在使用厚度为5μm以下的较薄的粘合剂层的情况下,与树脂膜相接的辊的表面层需要使用聚对苯二甲酸乙二酯(PET)或弹性率更低的材料(硅树脂橡胶等)。

如此,根据本实施例和比较例的结果可知,在玻璃树脂层叠体的制造步骤中,当使与树脂膜相接的辊的表面层的弹性率为P1,并使树脂膜的弹性率为P2时,藉由按照弹性率P1与弹性率P2之比P1/P2满足3×10-3≤P1/P2≤1.0的方式来选择与树脂膜相接的辊的表面层的材料,可抑制气泡缺损的发生。

此外,还确认到了,就上述条件而言,使玻璃膜和树脂膜粘合在一起的粘合剂层越薄,效果发挥的越好,在粘合剂层的厚度为5μm以下的情况下,效果尤其显著。

需要说明的是,以上尽管以具有偏光板的树脂膜为例进行了说明,但是,就上述条件而言,在具有使用相对的两个辊并藉由粘合剂层将玻璃膜和树脂膜粘合在一起的步骤的玻璃树脂层叠体的制造方法中都是有效的,并不限定于具有偏光板的树脂膜。作为具有偏光板的树脂膜之外的例子,例如可列举出PET膜、PEN膜等。

以上对优选实施方式等进行了详细说明,但并不限定于上述实施方式等,只要不脱离权利要求书记载的技术范围,还可对上述实施方式等进行各种各样的变形和置换。

本国际申请主张基于2019年3月29日申请的日本国专利申请第2019-066162号的优先权,并将日本国专利申请第2019-066162号的内容全部援引于本国际申请。

[附图标记说明]

1 玻璃树脂层叠体

10 玻璃膜

20 树脂膜

21 粘合剂层

22 偏光板

28 粘接剂层

29 离型膜

110、120、130、140 辊

221 偏光片

222 第1保护膜

223 第2保护膜

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:压制成型体的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!