接合体及其制造方法

文档序号:1804368 发布日期:2021-11-05 浏览:27次 >En<

阅读说明:本技术 接合体及其制造方法 (Bonded body and method for producing same ) 是由 穴井圭 山内真一 赵亭来 坂上贵彦 于 2020-03-02 设计创作,主要内容包括:本发明的接合体是半导体元件与包含Cu的接合层接合而成的。前述接合层具有从前述半导体元件的周缘向侧方伸出的伸出部。在厚度方向的截面视图中,前述伸出部从前述半导体元件的底部的周缘或周缘附近竖起并且与该半导体元件的侧面实质上分离的侧壁面。对于前述伸出部而言,不具有前述侧壁面与前述半导体元件的侧面彼此接触的部位也是适宜的。另外,本发明还提供接合体的制造方法。(The bonded body of the present invention is formed by bonding a semiconductor element and a bonding layer containing Cu. The bonding layer has a protruding portion protruding laterally from a peripheral edge of the semiconductor element. And a side wall surface rising from a peripheral edge or a vicinity of a peripheral edge of a bottom portion of the semiconductor element in a cross-sectional view in a thickness direction and substantially separated from a side surface of the semiconductor element. It is also preferable that the protruding portion does not have a portion where the side wall surface and the side surface of the semiconductor element contact each other. The present invention also provides a method for producing the joined body.)

接合体及其制造方法

技术领域

本发明涉及接合体及其制造方法。

背景技术

随着近年来世界性的节能化的趋势,作为逆变器等电力转换/控制装置,正在积极盛行使用被称为功率器件的半导体器件。功率器件与存储器、微处理之类的集成电路不同,是用于控制高电流及高电压的器件,因此有驱动时的发热量会变得非常大的倾向。因此,为了使半导体元件不因该热而遭受损伤,对半导体封装体要求冷却系统等热对策。

另外,为了实现半导体元件的高效率化及省空间化,使用了被称为功率模块的电子部件,所述功率模块在于陶瓷板的两面配置有Cu的接合体上搭载有多个半导体元件。但是,对于功率模块而言,随着小型化,驱动时的热容易囤积,因此在使用焊料材料等耐热性低的接合材料的情况下,有导致该模块故障的担心。

为了解决这样的不良情况,正在关注代替焊料材料的、使银、铜等的金属颗粒烧结而成的接合材料。例如,专利文献1中公开了一种半导体装置,其具备:配置在金属基板的表面上的第1接合层;借助前述第1接合层而配置在前述金属基板上的半导体器件;以及,配置于前述半导体器件及前述第1接合层的侧壁部且通过与前述第1接合层同样的材料形成的填角(fillet)层。

现有技术文献

专利文献

专利文献1:日本特开2014-120639号公报

发明内容

对于专利文献1中记载的半导体装置,填角层与半导体器件的侧壁面直接接触,但若包含Cu的填角层与例如由SiC系等形成的半导体器件的侧壁面接触,则在驱动时等高温环境下,Cu会向半导体器件内热扩散,其结果,有时半导体器件发生故障、或者容易发生接合层与填角层的剥离、破裂。

因此,本发明的课题在于,提供不易对半导体元件的特性带来不良影响并且耐热性高的接合体及其制造方法。

本发明提供一种接合体,其是半导体元件与包含Cu的接合层接合而成的,

前述接合层具有从前述半导体元件的周缘向侧方伸出的伸出部,

在厚度方向的截面视图中,前述伸出部具有从前述半导体元件的底部的周缘或周缘附近竖起并且与该半导体元件的侧面实质上分离的侧壁面。

另外,本发明还提供一种接合体的制造方法,其中,将接合层用组合物涂布在导电体的表面上而制成涂膜,使该涂膜干燥而形成干燥涂膜,接着,

将半导体元件层叠在前述干燥涂膜上,使前述干燥涂膜夹在前述导电体与该半导体元件之间而得到层叠体,然后,

一边对前述层叠体进行加压一边进行加热,使前述金属粉烧结,由此将前述导电体与前述半导体元件接合,

所述接合层用组合物含有:包含Cu的金属粉;以及,固体还原剂。

附图说明

图1中,图1的(a)为本发明的接合体的俯视下的示意图,图1的(b)为图1的(a)中的I-I线的截面图。

图2为放大示出图1的(b)中的重要部分的示意图。

图3中,图3的(a)~(c)为示出本发明的接合体的实施方式的伸出部与半导体元件的配置位置的示意图。

图4为示出本发明的接合体的另一实施方式的伸出部与半导体元件的配置位置的示意图。

具体实施方式

以下基于优选的实施方式并参照附图对本发明进行说明。如图1的(a)及(b)所示,接合体1是半导体元件2与包含Cu的接合层3接合而成的。这些图中所示的接合体1还具备基板等导电体5,半导体元件2与导电体5借助接合层3而接合,以能够使半导体元件2与导电体5导通的方式构成。

半导体元件2为构成接合体1的一部分的构件,具有半导体芯片2A和配置于该芯片2A的底面的电极2B。半导体元件2中的半导体芯片2A优选主要包含Si,进一步优选包含50质量%以上的Si。可以根据接合体1的使用目的,在半导体元件2中,在Si的基础上、或代替Si而包含Ga、Ge、C、N、As等原子。另外,在半导体元件2中的半导体芯片2A的上部配置有上部电极(未图示),在厚度方向Z上可导通。此外,优选在半导体元件2的底面设置有用于使该底面不与接合层3直接接触的保护层(未图示)。保护层只要为具有导电性的层,就可以没有特别限制地使用本技术领域中使用的层,例如,可以采用包含Au、Ag、Ti及Ni等的金属层。

接合层3包含Cu,优选包含50质量%以上、更优选包含60质量%以上的Cu。如图1的(a)及(b)所示,接合层3夹在半导体元件2与导电体5之间。此外,接合层3具有从半导体元件2的周缘2P向侧方伸出的伸出部3A。本实施方式中的伸出部3A是夹在半导体元件2与导电体5之间的接合层3伸出所形成的,因此接合层3与伸出部3A由相同原料构成。接合层3及伸出部3A中的Cu的含量可以通过如下方式测定:例如,以接合体1的厚度方向截面为对象,通过扫描型电子显微镜的EDX(能量色散型X射线段光法)对存在于该截面的接合层3及伸出部3A进行分析、定量,由此来测定。

在接合体1的厚度方向Z的截面视图中,伸出部3A从半导体元件2的底部2a的周缘2P或其周缘2P的附近竖起,形成伸出部3A的侧壁面3S。此处提到的“附近”是指:沿着接合体1的俯视方向,自周缘2P起分离20μm以下的距离的区域。上述的距离通过对接合体进行树脂包埋后进行研磨、利用电子显微镜观察其研磨面来测定。

作为伸出部3A的竖起形态,例如,可列举出如图3的(a)~(c)所示那样,伸出部3A从半导体元件的底部2a的周缘2P的附近竖起的形态。或者,可列举出如图4所示那样,伸出部3A从半导体元件2的底部2a的周缘2P直接竖起的形态。

如上所述,伸出部3A具有侧壁面3S。侧壁面3S与半导体元件2的侧面2S实质上分离。此处所提到的“实质上”旨在排除在接合体1的制造过程中有意地形成半导体元件的侧面2S与伸出部3A的接触部位的情况,允许不可避免地局部形成半导体元件2的侧面2S与伸出部3A的接触部位C的情况。存在半导体元件的侧面2S与伸出部3A的接触部位C时,将在厚度方向Z的截面视图中沿厚度方向Z的接触部位C的长度为20μm以下、并且在俯视中俯视方向中的接触部位C的长度为20μm以下的情况记为“实质上分离”。从能够抑制接合层中包含的Cu扩散至半导体元件内的方面出发,沿厚度方向Z的接触部位C的长度及俯视方向中的接触部位C的长度均为10μm以下是优选的。

作为不可避免地形成有接触部位C的方式,例如,可列举出:如图3的(b)所示那样不可避免地形成有半导体元件2的底面侧的侧面2S与伸出部3A的接触部位C的方式;如图3的(c)所示那样不可避免地形成有半导体元件2的上表面侧的侧面2S与伸出部3A的接触部位C的方式,但不限定于这些。接触部位C的长度通过对接合体进行树脂包埋后沿厚度方向或俯视方向进行研磨、利用电子显微镜观察其研磨面来测定。

需要说明的是,为了便于说明,通过接合体1的厚度方向的一个截面视图对伸出部3A的竖起的形态、以及伸出部3A与半导体元件的侧面2S的分离形态进行了说明,但由于伸出部3A如图1的(a)所示那样配置在半导体元件2的周围,因此优选的是,假设以半导体元件2的俯视中的附图中心为中心绘制假想圆、并且绘制通过该假想圆的中心且每隔30°切断该假想圆的假想放射状直线时,对使用该假想放射状直线每隔30°切断俯视中的接合体1而得到的截面进行观察而测定的距离均为上述的范围。图1的(a)中,伸出部3A在半导体元件2的周围的整个区域形成,但不限定于此,伸出部3A也可以在半导体元件2的周围间歇地形成。

根据具有上述构成的接合体,由于在极力减少对半导体元件的侧面的接触面积的状态下利用包含Cu的接合层将半导体元件与导电体接合,因此即使在驱动具有接合体的电子部件而形成高温环境的情况下,也能够抑制接合层中包含的Cu扩散至半导体元件内。其结果,能够使半导体元件的特性充分表现。另外,由于接合层中的Cu难以扩散至半导体元件侧,因此即使为高温环境下,也不易发生接合层的破裂、耐热性高。在此基础上,对于包含Cu的接合层而言,与形成不易产生原子向半导体元件的扩散的包含Ag的接合层的情况相比,还具有减少制造成本并且能够使接合层的强度及导电性充分表现的优点。

从有效地防止由Cu的扩散引起的对半导体元件的不良影响的观点出发,接合层3中的伸出部3A优选不具有侧壁面3S与半导体元件2的侧面2S彼此接触的部位。详细而言,优选如图3的(a)及图4所示,制成侧壁面3S与半导体元件2的侧面2S完全分离、完全不存在接触部位C的形态。这样的构成例如可以通过适宜调整通过后述的制造方法形成的涂膜的厚度、涂膜的干燥条件及加压烧结的条件来制作。需要说明的是,为了便于说明,上述的说明是使用接合体1的厚度方向的任意一个区域的截面视图来进行说明的,但该说明优选还适宜地适用于半导体元件2的周围的整个区域。

另外,从同样的观点出发,侧壁面3S与半导体元件2的侧面2S的平均距离D3优选为1μm以上、进一步优选为5μm以上。另外,从减少接合体中的不需要的空间的观点、及削减接合体的形成中使用的材料从而实现成本降低的观点出发,平均距离D3为5mm以下是现实的。

平均距离D3采用通过以下的方法测定和计算的值。即,如图2所示,在接合体1的厚度方向Z的截面视图中,划出通过伸出部3A的厚度方向Z的上端、并且与半导体元件2的底面平行的第3假想直线L3时,求出由半导体元件2的侧面2S、侧壁面3S及第3假想直线L3画成的区域的面积。假设具有与此时的面积相同的面积、并且将与作为底面的假想延长线的第1假想直线L1和第3假想直线L3之间的沿厚度方向Z的距离相同的长度的线段作为一边的假想长方形S1时,将另一边的长度设为平均距离D3。另外,在如图3的(c)所示那样于半导体元件2的上方具有接触部位的情况下,将平均距离设为如下的平均距离D3,在接合体1的厚度方向Z的截面视图中,假设具有与由半导体元件2的侧面2S和侧壁面3S画成的区域的面积相同的面积、并且将与第1假想直线L1和接触部位C之间的沿厚度方向Z的距离相同长度的线段设为一边的假想长方形,将该假想长方形的另一边的长度设为平均距离D3。上述距离可以通过与接触部位C的测定方法同样地利用电子显微镜进行观察来进行测定、计算。需要说明的是,为了便于说明,以接合体1的任意一个部位的厚度方向的截面视图对伸出部3A的分离形态进行了说明,但优选的是,假设以半导体元件2的俯视中的附图中心为中心绘制假想圆、并且绘制通过该假想圆的中心且每隔30°切断该假想圆的假想放射状直线时,利用电子显微镜对使用该假想放射状直线每隔30°切断俯视中的接合体1而得到的截面进行观察而测定的平均距离均为上述的范围。

另外,从有效地防止由Cu的扩散引起的对半导体元件的不良影响的观点出发,接合体1优选以如下方式形成:侧壁面3S与半导体元件2的侧面2S的距离例如如图3的(a)和(b)以及图4所示,从半导体元件2的底部2a起朝向上部逐渐增加。或者还优选代替上述方式,以侧壁面3S与半导体元件2的侧面2S的距离恒定的方式来形成。即,还优选侧壁面3S沿厚度方向Z形成。通过成为这样的结构,能够防止由外力的赋予等而造成伸出部3A不期望地与半导体元件2的侧面2S接触。

从兼具制造效率的提高、接合强度的表现及导电性的确保的观点出发,接合层3的厚度H1(参照图2)优选为1μm以上且200μm以下、进一步优选为3μm以上且150μm以下。接合部位的厚度例如可以通过调整通过后述的制造方法形成的涂膜的厚度、加压接合的条件来控制。对于接合层3的厚度,优选的是,假设例如以半导体元件2的俯视中的附图中心为中心绘制假想圆、并且绘制通过该假想圆的中心且每隔30°切断该假想圆的假想放射状直线时,利用电子显微镜对使用该假想放射状直线每隔30°切断俯视中的接合体1而得到的截面进行观察而测定的值的平均值为上述的范围。

从同样的观点出发,伸出部3A的厚度方向Z的长度H2(以下,也将其称为“高度H2”。参照图2)优选为250μm以下、进一步优选为150μm以下。伸出部3A的高度H2例如可以通过适宜调整通过后述的制造方法形成的涂膜的厚度以及涂膜的干燥条件和加压烧结的条件来进行控制。高度H2采用在接合层1上形成的伸出部3A的整周的算术平均值,可以通过与上述的长度H1同样的方法进行测定。

接着,对接合体的制造方法进行说明。本制造方法大致分为如下3个工序:涂布工序,在基板等导电体的表面上涂布包含Cu的接合层用组合物而形成涂膜;干燥工序,使该涂膜干燥而形成干燥涂膜;以及,接合工序,在该干燥涂膜上层叠半导体元件,一边进行加压一边进行加热而使其接合。

首先,在导电体的表面上涂布包含Cu的接合层用组合物,从而形成涂膜。接合层用组合物的详细情况将在后面叙述。

接合层用组合物的涂布手段没有特别限制,可以使用公知的涂布方法。例如可以使用丝网印刷、分配器印刷、凹版印刷、胶版印刷等。从提高涂布性的观点出发,接合层用组合物优选为包含液体介质的糊剂状或墨状的组合物。

对于形成的涂膜的厚度,从形成稳定地具有高接合强度的接合体的观点出发,刚刚涂布后优选设定为1μm以上且250μm以下、进一步优选设定为5μm以上且150μm以下。另外,从提高与接合对象的接合强度的观点出发,对于涂膜的涂布面积,优选的是,在俯视中以比作为接合对象的半导体元件的底面大的面积进行涂布。

接着,使形成的涂膜干燥而得到干燥涂膜。本工序中,通过干燥从该涂膜将液体介质的至少一部分去除,得到涂膜中的液体介质的量减少了的干燥涂膜。通过从涂膜中去除液体介质,能够提高干燥涂膜的形状保持性,另外,由于在该状态下将半导体元件与基板接合,因此能够使接合强度高。干燥涂膜是指液体介质相对于膜的总质量的比例为9质量%以下的涂膜。涂膜与使该涂膜干燥而成的干燥涂膜的除液体介质以外的各构成材料的含量实质上相同,因此液体介质的比例例如可以测定干燥前后的涂膜的质量变化来算出。

为了将液体介质干燥去除,可以使用利用了该液体介质的挥发性的自然干燥、热风干燥、红外线的照射、热板干燥等干燥方法,使液体介质挥发。对于去除了液体介质后的干燥涂膜中的该液体介质的比例,相对于涂膜的总质量100质量份,如上所述优选为9质量份以下、进一步优选为7质量份以下、进一步优选为5质量份以下。本工序可以根据使用的接合层用组合物的组成来适宜变更,但优选在大气气氛下、以40℃以上且150℃以下、大气压进行1分钟以上且60分钟以下。

最后,在干燥涂膜上层叠并接合半导体元件。详细而言,经过上述的工序得到干燥涂膜后,将半导体元件层叠在该干燥涂膜上,得到配置有导电体、半导体元件、和在它们之间夹设干燥涂膜而配置的层叠体。

接着,一边对层叠体进行加压一边进行加热,使干燥涂膜所含的金属粉烧结,由此形成将导电体与半导体元件接合的接合层。烧结时的气氛优选为氮气等非活性气体气氛。烧结温度优选低于300℃、更优选为150℃以上且低于300℃、进一步优选为200℃以上且低于300℃、进一步优选为230℃以上且低于300℃。在烧结时施加的压力优选为0.001MPa以上,更优选为0.001MPa以上且20MPa以下,进一步优选为0.01MPa以上且15MPa以下。对于烧结时间,以烧结温度在前述范围为条件,优选为20分钟以下,更优选为0.5分钟以上且20分钟以下,进一步优选为1分钟以上且30分钟以下。

特别是在本制造方法中,由于液体介质的挥发而形成具有高形状保持性的干燥涂膜,因此干燥涂膜不会发生由加热引起的熔融及软化等塑性变形,即使在涂膜的加压焙烧时,也会维持干燥涂膜的形状保持性。由此,在存在半导体元件的部分,干燥涂膜被压缩而形成接合层。在此基础上,存在于半导体元件的周缘的干燥涂膜未被加压地进行烧结,因此以从半导体元件的周缘向侧方伸出、并且从该元件的底部周缘竖起的方式形成伸出部。其结果,在极力减少对半导体元件的侧面的接触面积的状态下,半导体元件与导电体利用包含Cu的接合层进行接合,因此即使在驱动具有接合体的电子部件而成为高温环境的情况下,也能够抑制接合层中包含的Cu扩散至半导体元件内。

经过以上的工序形成的接合体其接合层为构成接合层用组合物的包含Cu的金属颗粒的烧结体。另外,接合层具有从半导体元件的周缘向侧方伸出的伸出部。在接合层包含Cu、且接合层用组合物包含后述的固体还原剂的情况下,在接合层中形成有以下的结构(3)。

式(3)中,R3~R5各自独立地表示氢原子、羟基、碳原子数1以上且10以下的烃基、或具有羟基的碳原子数1以上且10以下的烃基。对于R3~R5的详细情况,适宜地适用后述化学式(1)和(2)的说明。另外,*表示与Cu的键合部位。

是否在接合层中形成有前述结构(3)可以通过以接合部位的截面为对象、进行基于TOF-SIMS的质谱分析等来确认。例如在使用BIS-TRIS作为还原剂的情况下,在TOF-SIMS的正极侧的质谱中会观察到源自C-N(Cu)2的分子量152的碎片。

接合层用组合物含有包含Cu的金属粉,优选还包含固体还原剂和液体介质。

本发明中使用的金属粉优选由包含Cu的金属颗粒的集合体形成。金属粉根据需要可以进一步包含金、银、钯、铝、镍及锡中的至少一种金属。作为这些金属的含有方式,可以采用实质上仅由Cu形成的Cu颗粒的集合体、前述Cu颗粒与由单一的金属形成的其他金属颗粒的集合体、包含Cu和其他金属的Cu合金颗粒的集合体、或者前述Cu颗粒与前述Cu合金颗粒的集合体。

构成本发明中使用的金属粉的金属颗粒的形状例如为球状、扁平状(片状)、枝晶状(树枝状)、棒状等,它们可以单独使用或多个组合而使用。

接合层用组合物中包含的固体还原剂在室温(25℃)下为固体,用于促进该组合物的焙烧所带来的金属颗粒彼此的烧结,表现高的接合强度。出于该目的,固体还原剂为具有至少1个氨基个多个羟基的化学结构的物质是有利的。“室温(25℃)下为固体”是指固体还原剂的熔点超过25℃。

固体还原剂的熔点优选为金属粉的烧结温度以下。另外,还优选固体还原剂的沸点比后述的液体介质的沸点高。通过使用具有这种物性的固体还原剂,在使接合层用组合物的涂膜干燥来得到干燥涂膜时,能够使固体还原剂在接合层用组合物中以固体形式残留,其结果,能够提高该接合层用组合物的干燥涂膜的形状保持性。另外,由于对该接合层用组合物的干燥涂膜进行焙烧时会发生熔融而扩散至涂膜中,因此均匀地促进金属粉的烧结,能够得到具有更致密的烧结结构的导电可靠性高的接合体。

从兼顾进行加压接合时的高接合强度以及加压接合后的高导电可靠性的观点出发,作为固体还原剂,优选使用以下的化学式(1)或(2)所示的氨基醇化合物。

化学式(1)或(2)中,R1~R6各自独立地表示氢原子、羟基、碳原子数1以上且10以下的烃基、或具有羟基的碳原子数1以上且10以下的烃基。另外,式(2)中,R7表示碳原子数1以上且10以下的烃基、或具有羟基的碳原子数1以上且10以下的烃基。作为烃基,可列举出饱和或不饱和的脂肪族基团。该脂肪族基团可以为直链状、或者也可以为支链状。

对于化学式(1)所示的还原剂,从提高金属颗粒彼此的烧结性的观点出发,优选R1 R5中的至少1个包含羟基、更优选3个以上包含羟基、进一步优选4个以上包含羟基、进一步优选R1~R5全部包含羟基。从同样的观点出发,化学式(2)所示的还原剂优选R1~R6中的至少1个包含羟基、更优选3个以上包含羟基、进一步优选4个以上包含羟基、进一步优选4个以上包含羟基。作为R1~R6中包含羟基的方式,可以为羟基其本身、可以为具有羟基的碳原子数1以上且10以下的烃基、或者也可以为它们的组合。

作为化学式(1)或(2)所示的氨基醇化合物的具体例,可列举出:双(2-羟基乙基)亚氨基三(羟基甲基)甲烷(BIS-TRIS、熔点:104℃、沸点:超过300℃、相当于化学式(1))、2-氨基-2-(羟基甲基)-1,3-丙二醇(TRIS、熔点:169~173℃、沸点:超过300℃、相当于化学式(1))、1,3-双(三(羟基甲基)甲基氨基)丙烷(BIS-TRIS propane、熔点:164~165℃、沸点:超过300℃、相当于化学式(2))等。它们当中,从提高金属颗粒彼此的烧结性、并且得到表现高接合强度的接合体的观点出发,优选使用双(2-羟基乙基)亚氨基三(羟基甲基)甲烷(BIS-TRIS)作为固体还原剂。

上述的固体还原剂可以单独使用一种,或者也可以组合使用两种以上。任意情况下,从提高金属颗粒彼此的烧结性的观点出发,相对于金属粉100质量份,接合层用组合物中的固体还原剂的比例均优选为0.1质量份以上、进一步优选为1质量份以上。另外,从维持金属粉在接合层用组合物中所占的比例、并且发挥对导电体适宜的涂布性能的观点出发,设为10质量份以下是现实的,优选设为8质量份以下、进一步优选设为5质量份以下。

从提高涂膜的涂布性的观点出发,接合层用组合物优选还包含液体介质。从同样的观点出发,上述的液体介质优选在室温(25℃)下为液体,另外,还优选沸点低于300℃。

从兼具接合层用组合物的涂布性、固体还原剂的溶解性、以及液体介质的适度的挥发性的观点出发,液体介质优选为非水溶剂,更优选为一元或多元的醇、进一步优选为多元醇。作为多元醇,例如可列举出:丙二醇(沸点:188℃)、乙二醇(沸点:197℃)、己二醇(沸点:197℃)、二乙二醇(沸点:245℃)、1,3-丁二醇(沸点:207℃)、1,4-丁二醇(沸点:228℃)、二丙二醇(沸点:231℃)、三丙二醇(沸点:273℃)、甘油(沸点:290℃)、聚乙二醇200(沸点:250℃)、聚乙二醇300(沸点:250℃)等。液体介质可以单独使用一种或组合使用两种以上。

在接合层用组合物中包含液体介质的情况下,从提高将接合层用组合物涂布于导电体上时的涂膜的形状保持性的观点出发,液体介质的含量相对于金属粉100质量份优选为10质量份以上且40质量份以下、进一步优选为10质量份以上且35质量份以下。

对于接合层用组合物,从提高涂膜对导电体的涂布性以及形状保持性的观点出发,未加热时,剪切速度10s-1且25℃下的粘度优选为20Pa·s以上且200Pa·s以下、进一步优选为25Pa·s以上且150Pa·s以下。对于接合层用组合物的粘度,可以使传感器为平行板型,用流变仪(粘弹性测定装置)进行测定。

接合层用组合物只要发挥本发明的效果,则也可以包含例如粘结剂成分、表面张力调节剂、消泡剂、粘度调节剂等其他成分。对于其他成分的比例,其总量相对于金属粉100质量份优选为0.1质量份以上且10质量份以下。

对于具有这样的接合部位的接合体而言,利用其高接合强度、导热性的特性,可以适宜地在暴露于高温的环境、例如车载用电子电路、安装有功率器件的电子电路中使用。

产业上的可利用性

根据本发明,可提供不易对半导体元件的特性带来不良影响、并且耐热性高的接合体。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:RF半导体装置和其制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类