一种基于图像处理的自动天文定向系统

文档序号:1813692 发布日期:2021-11-09 浏览:12次 >En<

阅读说明:本技术 一种基于图像处理的自动天文定向系统 (Automatic astronomical orientation system based on image processing ) 是由 冯冰砚 刘慧� 王冕 盛永鑫 李燕 包金平 刘莎莎 陈正平 吴孝迎 于 2021-07-28 设计创作,主要内容包括:本发明公开了一种基于图像处理的自动天文定向系统,属于天文导航技术领域,包括计算机、全站仪、工业相机、十轴惯性导航姿态传感器、通信连接盒,所述工业相机、十轴惯性导航姿态传感器设置在所述全站仪纵轴的粗瞄镜上。本发明利用十轴惯性导航姿态传感器输出磁角给全站仪水平方位角概略定向,同时输出时间和经纬度,通过天文算法计算出太阳在地平坐标系下的方位角和天顶距,控制全站仪自动指向太阳,使太阳出现在相机的视场范围内,拍摄太阳图像,通过图像处理提取太阳质心坐标,得到待测目标真北方位角,采用了基于图像处理自动定向的方法,减少了人工干预,操作简单,实现了定向的自动化和快速化。(The invention discloses an automatic astronomical orientation system based on image processing, which belongs to the technical field of astronomical navigation and comprises a computer, a total station, an industrial camera, a ten-axis inertial navigation attitude sensor and a communication connection box, wherein the industrial camera and the ten-axis inertial navigation attitude sensor are arranged on a coarse sighting telescope of a longitudinal axis of the total station. The invention utilizes a ten-axis inertial navigation attitude sensor to output a magnetic angle to roughly orient a horizontal azimuth angle of a total station, and simultaneously outputs time and longitude and latitude, calculates an azimuth angle and zenith distance of the sun under a horizon coordinate system through an astronomical algorithm, controls the total station to automatically point to the sun, enables the sun to appear in a field range of a camera, shoots a sun image, extracts a sun centroid coordinate through image processing, and obtains a true north azimuth angle of a target to be measured.)

一种基于图像处理的自动天文定向系统

技术领域

本发明涉及天文导航技术领域,具体涉及一种基于图像处理的自动天文定向系统。

背景技术

目前现有的基于图像处理天文定向系统使用相机拍摄太阳目标时,需要通过人眼观测使太阳处在相机的视场范围内或通过观测其他太阳给予全站仪水平方位角概略定向,这些系统都不能离开人员的操作,不能算真正意义上的自动天文定向系统,还有的系统是在全站仪上安装差分GPS给予全站仪水平方位角概略定向,在全站仪上安装GPS质量和体积大,结构比较复杂。为此,提出一种基于图像处理的自动天文定向系统。

发明内容

本发明所要解决的技术问题在于:如何解决现有天文定向装置存在的结构比较复杂、需要人员操作等问题,提供了一种基于图像处理的自动天文定向系统。

本发明是通过以下技术方案解决上述技术问题的,本发明包括计算机、全站仪、工业相机、十轴惯性导航姿态传感器、通信连接盒,所述工业相机、十轴惯性导航姿态传感器设置在所述全站仪纵轴的粗瞄镜上,所述工业相机、十轴惯性导航姿态通过所述通信连接盒与所述计算机通讯连接,所述全站仪与所述计算机通信连接。

更进一步地,所述计算机与全站仪通过串口通信,所述计算机与通信连接盒通过网络通信。

更进一步地,所述通信连接盒包括电源模块与串口服务器,所述电源模块用于给串口服务器和十轴惯性导航姿态传感器供电,所述串口服务器用于将串口转为网络接口,作为网络交换机使用并提供PoE供电给所述工业相机。

更进一步地,所述全站仪上设置马达驱动组件,通过马达驱动组件控制所述全站仪沿水平和垂直方向转动。

更进一步地,所述十轴惯性导航姿态传感器采用由所述电源模块转换的5VDC进行供电,用于接收BDS、GPS和GLONASS信号,输出时间、经纬度和磁角数据。

更进一步地,所述工业相机、十轴惯性导航姿态传感器通过一分二的连通电缆连接与所述通信连接盒连接。

本发明还提供了一种基于图像处理的自动天文定向方法,采用上述的自动天文定向系统对待测目标进行定向工作,包括以下步骤:

S1:十轴惯性导航姿态传感器输出时间、经纬度和磁角,利用输出的磁角给全站仪水平方位角概略定向,同时计算机采集全站仪水平方位角;

S2:通过天文算法计算此时此地太阳在地平坐标系下的水平方位角和天顶距,驱动全站仪上的马达驱动组件控制全站仪对准太阳,拍摄太阳图像,同时记录拍摄时间;

S3:利用天文算法计算此时的太阳真北方位角,通过工业相机像素坐标(u,v)和全站仪坐标(x1,y1,z1)的转换关系得出太阳质心在全站仪中的水平方位角,同时利用全站仪测出待测目标的水平方位角,从而得出待测目标与太阳质心在全站仪坐标系下的水平方位角差值,进而得出待测目标的真北方位角。

更进一步地,在所述步骤S3中,工业相机像素坐标(u,v)和全站仪坐标(x1,y1,z1)的转换关系如下式所示:

式中(u0,v0)表示图像中心的像素坐标,dx*dy表示工业相机感光元件中像元的物理尺寸,R1、T1表示全站仪纵轴坐标系到全站仪坐标系的旋转和平移矩阵,R2、T2表示相机坐标系到全站仪纵轴坐标系的旋转和平移矩阵,ZC表示物距,f表示相机的焦距。

更进一步地,在所述步骤S3中,太阳质心的提取流程具体如下:

S31:对工业相机拍到的彩色图像进行灰度化处理;

S32:使用高斯低通滤波器滤除杂波干扰;

S33:采用自动计算阈值的方法进行图像分割;

S34:对图像灰度二值化后,创建一个半径为5个像素的圆形结构元进行开操作;

S35:进行边缘检测,提取太阳质心。

本发明相比现有技术具有以下优点:该基于图像处理的自动天文定向系统,利用十轴惯性导航姿态传感器输出磁角给全站仪水平方位角概略定向,同时输出时间和经纬度,通过天文算法计算出太阳在地平坐标系下的方位角和天顶距,控制全站仪自动指向太阳,使太阳出现在相机的视场范围内,拍摄太阳图像,通过图像处理提取太阳质心坐标,得到待测目标真北方位角,采用了基于图像处理自动定向的方法,减少了人工干预,操作简单,实现了定向的自动化和快速化,值得被推广使用。

附图说明

图1是本发明实施例二中系统结构示意图;

图2是本发明实施例二中系统硬件架构图;

图3是本发明实施例二中太阳图像质心提取算法流程图。

图中:1、全站仪;2、计算机;3、全站仪纵轴;4、转接板;5、一分二的连通电缆;6、通信连接盒;7、串口通信电缆;8、太阳;9、待测目标。

具体实施方式

下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

实施例一

本实施例提供一种技术方案:一种基于图像处理的自动天文定向系统,包括计算机、全站仪、工业相机、十轴惯性导航姿态传感器、通信连接盒,所述计算机与全站仪通过串口通信,所述计算机与通信连接盒通过网络通信,所述工业相机可以采用PoE供电,工业相机选用可调遮光镜,根据太阳的光强,调节灰度,十轴惯性导航姿态传感器使用3.3V-5V供电,能够接收BDS、GPS和GLONASS,能够输出时间、经纬度和磁角(磁方位角),工业相机和十轴惯性导航姿态传感器分别通过网口和串口与通信连接盒连接,通过一分二的连通电缆连接在通信连接盒上,所述工业相机、十轴惯性导航姿态传感器通过转接板安装在全站仪纵轴的粗瞄镜位置上,所述通信连接盒包括电源模块和串口服务器,电源模块把220VAC转换为5VDC和24VDC,串口服务器可把串口转为网络接口,可做网络交换机并提供PoE供电,计算工业相机图像像素坐标和全站仪度盘坐标的转换关系。本系统采用基于图像处理自动定向的方法,减少了人工干预,操作简单,实现了定向的自动化和快速化。

在本实施例中,所述全站仪具有马达驱动组件,通过马达驱动组件能够自动地沿水平和垂直方向转动。

在本实施例中,所述计算机和全站仪通过串口通信用来传输数据。通过串口通信计算机获得全站仪测得的坐标数据,并通过串口通信使全站仪自动对准太阳,拍摄太阳图像。

在本实施例中,所述工业相机可以采用PoE供电,通过网络接口进行通信和供电。工业相机选用可调遮光镜,根据太阳的光强,调节灰度。十轴惯性导航姿态传感器使用3.3V-5V供电,能够接收BDS、GPS和GLONASS信号,输出时间、经纬度和磁角。工业相机和十轴惯性导航姿态传感器分别通过网口和串口与通信连接盒连接。

在本实施例中,所述工业相机、十轴惯性导航姿态传感器通过转接板安装在全站仪纵轴的粗瞄镜位置上,通过一分二的连通电缆连接在通信连接盒上。十轴惯性导航姿态传感器输出磁角给全站仪水平方位角概略定向,计算机程序同时采集时间和经纬度,通过天文算法计算出此时太阳在地平坐标系下的方位角和天顶距,控制全站仪自动指向太阳,使相机能够拍摄太阳图像,通过图像处理提取太阳质心坐标,得到目标方位角。

在本实施例中,工业相机像素坐标(u,v)和全站仪坐标(x1,y1,z1)的转换关系如下式所示:

式中(u0,v0)表示图像中心的像素坐标,dx*dy表示工业相机感光元件中像元的物理尺寸,R1、T1表示全站仪纵轴坐标系到全站仪坐标系的旋转和平移矩阵,R2、T2表示相机坐标系到全站仪纵轴坐标系的旋转和平移矩阵,ZC表示物距,f表示相机的焦距。

实施例二

如图1所示,为本发明系统结构示意图,转接板4安装在全站仪纵轴3的粗瞄镜位置上,工业相机和十轴惯性导航姿态传感器安装在转接板4上,把数据通过一分二的连通电缆5传给通信连接盒6,然后通过网线传给计算机2。全站仪1与计算机2通过串口通信电缆7进行串口通信,计算机2获得全站仪1测得的坐标数据和图片,同时控制全站仪1自动对准太阳8。通过天文算法已知此时此地太阳8与真北夹角,通过全站仪1测得数据并通过相关的计算得到待测目标9与太阳8的位置关系,从而得到待测目标9与真北夹角,完成待测目标9的定向。

上述通过的天文定向算法即球面定位三角形公式,公式如下:

cosV=sinφsinδ+cosφcosδcost

其中,δ、t、φ分别为太阳赤纬、太阳时角和测站纬度。求得A和V分别为太阳8真北方位角和天顶距。

在本实施例中,十轴惯性导航姿态传感器尺寸73mm*38mm*27mm,重量60g。

如图2所示,为本发明系统硬件架构图,工业相机和十轴惯性导航姿态传感器通过转接板安装在全站仪纵轴的粗瞄镜位置上,通过一分二的连通电缆连接在通信连接盒上,通信连接盒包括串口服务器和电源模块,电源模块给串口服务器和十轴惯性导航姿态传感器供电,串口服务器通过串口和十轴惯性导航姿态传感器通信,十轴惯性导航姿态传感器输出时间、经纬度和磁方位角,计算机采集全站仪水平方位角,此时上述十轴惯性导航姿态传感器输出的磁方位角给全站仪水平方位角概略定向。通过天文算法计算此时此地太阳在地平坐标系下的水平方位角和天顶距,计算得到的太阳水平方位角和天顶距作为全站仪需要转动到的水平方位角和垂直角,通过全站仪控制指令驱动全站仪,此时太阳出现在相机视场范围内,拍摄太阳图像,同时记录拍摄时间。利用拍摄时间和上述获得的经纬度计算太阳真北方位角。通过拍摄的太阳图像,提取太阳质心,利用工业相机像素坐标(u,v)和全站仪坐标(x1,y1,z1)的转换关系得出太阳质心在全站仪中的水平方位角,同时利用全站仪测出待测目标的水平方位角,从而得出待测目标与太阳质心在全站仪坐标系下的水平方位角差值,进而得出待测目标的真北方位角。

如图3所示,为本发明太阳图像质心提取算法流程图,该算法包括彩色图像灰度化、高斯低通滤波器、自动计算阈值、灰度图二值化、开操作和提取太阳质心等步骤。拍摄的太阳图像是彩色图像,为了降低计算量,通常先把彩色图像灰度化。图像灰度化后使用高斯低通滤波器滤除杂波干扰。为了能够提取太阳质心,需要把太阳从背景图像中分割出来,因此需要对太阳图像进行阈值分割,阈值分割是一种区域分割技术,是机器视觉系统中一个常用的预处理步骤,其中感兴趣的区域灰度值相较其他元素较高或较低,依据灰度值对图像进行分割。本系统得到的太阳图像的直方图是一个双峰形状,可以采用自动计算阈值的方法进行图像分割。图像灰度二值化后,创建一个半径为5个像素的圆形结构元进行开操作,最后进行边缘检测,提取太阳质心。

综上所述,上述实施例的基于图像处理的自动天文定向系统,利用十轴惯性导航姿态传感器输出磁角给全站仪水平方位角概略定向,同时输出时间和经纬度,通过天文算法计算出太阳在地平坐标系下的方位角和天顶距,控制全站仪自动指向太阳,使太阳出现在相机的视场范围内,拍摄太阳图像,通过图像处理提取太阳质心坐标,得到待测目标真北方位角,采用了基于图像处理自动定向的方法,减少了人工干预,操作简单,实现了定向的自动化和快速化。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:基于OPTICS算法的磁罗盘椭圆拟合误差补偿方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!