成形用基材

文档序号:1820818 发布日期:2021-11-09 浏览:22次 >En<

阅读说明:本技术 成形用基材 (Base material for molding ) 是由 仓井翔平 于 2019-03-26 设计创作,主要内容包括:本发明是强化纤维(F)以互不相同的3个以上的取向角度取向的成形用基材(M1、M2)。在该基材(M1、M2)中,以上述3个以上的取向角度中的1个或两个取向角度取向的强化纤维(F)是连续纤维(CF),以除此之外的取向角度取向的强化纤维(F)是不连续纤维(DF)。(The present invention is a molding substrate (M1, M2) in which reinforcing fibers (F) are oriented at 3 or more different orientation angles from each other. In the base materials (M1, M2), the reinforcing fibers (F) oriented at 1 or two orientation angles out of the 3 or more orientation angles are Continuous Fibers (CF), and the reinforcing fibers (F) oriented at other orientation angles are Discontinuous Fibers (DF).)

成形用基材

技术领域

本发明涉及一种成形用基材。

背景技术

日本特开2014-4797公开了一种成形用复合材。该成形用复合材是使表层和芯层层叠一体化而构成的。表层是使作为强化纤维的长纤维并丝成面状并利用作为基质树脂的热塑性树脂材料一体形成的。

芯层是分布成面状的短纤维利用作为基质树脂的热塑性树脂材料一体形成的。

发明内容

发明要解决的问题

不过,若将使树脂浸渗于进行了二维取向的强化纤维而成的基材赋形成三维形状,则至少该基材的局部在与强化纤维的取向平行的面内剪切变形。在其变形部分,对于在面内的主应力方向或接近面内的主应力方向的方向上取向的强化纤维,产生比在除此之外的方向上取向的强化纤维大的压缩力或拉伸力。并且,在剪切变形量超过了某限度的情况下,由于上述压缩力而强化纤维压曲,或由于上述拉伸力而在基材表面产生褶皱,存在成形品的外观恶化的可能性。

本发明的目的在于提供能够抑制成形品的外观的恶化的成形用基材。

用于解决问题的方案

本发明的一形态是强化纤维以互不相同的3个以上的取向角度取向的成形用基材。在该基材中,以上述3个以上的取向角度中的1个或两个取向角度取向的强化纤维是连续纤维,以除此之外的取向角度取向的强化纤维是不连续纤维。

发明的效果

根据上述成形用基材,能够抑制成形品的外观的恶化。

附图说明

图1是第1实施方式的成形用基材的分解立体图。

图2是用于说明第1实施方式的图案要素的图。

图3是表示图案要素剪切变形后的状态的图。

图4是用于说明使成形品的外观恶化的主要原因的图。

图5是表示第1实施方式及其变形例的图案要素的图。

图6是第2实施方式的成形用基材的分解立体图。

图7是表示第2实施方式及其变形例的图案要素的图。

具体实施方式

以下,一边参照附图一边对几个实施方式的成形用基材进行说明。

<第1实施方式>

第1实施方式的成形用基材M1具备进行了二维取向的强化纤维F和浸渗到强化纤维F的树脂R。基材M1例如通过热压法、高压釜法、热成形法等与所使用的树脂R的种类相应的公知的成形方法成形,从而被成形成具有所期望的三维形状的成形品。

如图1所示,基材M1能够层叠例如8张预浸料1~8而形成。各预浸料1~8是使作为基质材料的树脂R浸渗到在一方向上并丝且实质上相互平行地配置的强化纤维F而成的片状的复合材料。各预浸料1~8的厚度并没有特别限定,例如是0.2mm~0.4mm左右。

预浸料1~8中的强化纤维F在与预浸料1~8的层叠方向正交的方向、即与基材M1的厚度方向正交的方向(以下,也称为面方向)上延伸。强化纤维F的种类并没有特别限定,例如,能够使用碳纤维、玻璃纤维、聚芳酰胺纤维、氧化铝纤维、碳化硅纤维、硼纤维、碳化矽纤维等。碳纤维例如能够使用聚丙烯腈(PAN系)、沥青系、纤维素系、由碳化氢形成的气相生长系碳纤维、石墨纤维等。也可以组合使用两种以上的这些纤维。强化纤维F的纤度、纤维根数、强度、杨氏模量等并没有特别限定。各预浸料1~8中的强化纤维F的体积含有率并没有特别限定,但为了抑制成形时的强化纤维F的过剩的流动、且确保树脂R的适度的浸渗状态,能够设定成例如30%~80%。

作为基质材料的树脂R并没有特别限定,例如,能够使用环氧树脂、苯酚树脂、不饱和聚酯树脂、乙烯基酯树脂、聚酰亚胺树脂、聚碳酸酯树脂、聚酰胺树脂、聚苯硫醚(PPS)树脂等公知的热固性树脂、热塑性树脂。

预浸料1~8的制造方法并没有特别限定,能够根据所使用的树脂R的种类等采用公知的方法。例如,在树脂R是热固性树脂的情况下,能够使用将热固性树脂膜层叠成形为片状的纤维基材并进行浸渗的热熔法、使用适当的溶剂而使热固性树脂成为清漆状并使其向纤维基材浸渗的溶剂法等。另外,在树脂R是热塑性树脂的情况下,能够使用热熔法、溶剂法、粉末法、树脂膜浸渗法、混合法等。

如图1所示,8张预浸料1~8以预浸料1~8中的强化纤维F以互不相同的4个取向角度取向的方式层叠。预浸料1~8能够以强化纤维F例如从图1的上方起依次以0°/45°/90°/-45°/-45°/90°/45°/0°的取向角度取向且从基材M1获得的成形品在面方向上在强度方面具备各向同性的方式层叠。

此外,“取向角度”是厚度方向观察时的强化纤维F的取向方向的角度。即,是将某作为基准的强化纤维F的取向方向的角度设为0°、作为对象的强化纤维F的取向方向相对于该基准所成的角度。角度的取法在从基材M1的表侧(图1的上侧)观察时相对于基准的取向方向将逆时针设为正,设为比-90°大且90°以下的角度。

另外,强化纤维F“以某取向角度取向的”状态是指,强化纤维F的纤维取向参数fp是0.95以上的状态。纤维取向参数fp是表示强化纤维F的取向状态的参数,在fp=1.0时,是指强化纤维F与随后论述的基准线平行地取向,在fp=0.0时,是指强化纤维F完全随机地取向。

纤维取向参数fp能够利用如下方法求出。首先,从基材M1切出包括作为评价对象的强化纤维F的、与面方向平行的面。并且,利用光学显微镜等观察该面,测定能在预定的测定区域中视觉辨认的全部强化纤维F(纤维数量:N根)相对于基准线的角度θi。其中,角度θi相对于基准线以逆时针为正,设为比-90°大且90°以下的角度。

接着,将所获得的角度θi代入下式(1)。

fp=2×Σ(cos2θi/N)-1···式(1)

其中,i=1~N

基准线的方向选择为,对作为评价对象的预定的测定区域内的强化纤维F的纤维取向参数fp赋予最大值。所选择的方向定义为作为该评价对象的强化纤维F的取向方向。

在本实施方式中,如图1所示,以4个取向角度中的、0°/90°的取向角度取向的强化纤维F是连续纤维CF(以两个取向角度取向的连续纤维CF各自的取向角度之差是90°)。另外,以4个取向角度中的、除了0°/90°以外的45°/-45°的取向角度取向的强化纤维F是不连续纤维DF。图1中的虚线表示不连续纤维DF,实线表示连续纤维CF。

其中,“连续纤维CF”是构成强化纤维F的长丝的平均纤维长度为500mm以上的纤维,“不连续纤维DF”是构成强化纤维F的长丝的平均纤维长度为10mm以上且小于500mm的纤维。平均纤维长度是构成强化纤维F的各长丝的纤维长度的平方的总和除以各长丝的纤维长度的总和而得到的值。各长丝的纤维长度能够通过利用光学显微镜等观察长丝各自的长度来测定。本实施方式中的不连续纤维DF的长丝的平均纤维长度设定在10mm以上且200mm以下为佳。优选是15mm以上且100mm以下,进一步优选20mm以上且100mm以下。通过将不连续纤维DF的平均纤维长度设定在上述范围内,能够维持基材M1的优异的赋形性,且使成形品的强度良好。

也可以是,作为不连续纤维DF的强化纤维F在与各自的取向角度相对应的方向上并丝,与树脂R一起形成不与作为连续纤维CF的强化纤维F交叉的层。例如,如图1所示,第2、4、5、7层的预浸料2、4、5、7中的不连续纤维DF也可以形成不与第1、3、6、8层的预浸料1、3、6、8中的连续纤维CF交叉的层。另外,以互不相同的取向角度取向的作为不连续纤维DF的强化纤维F也可以分别形成不同的层。例如,如图1所示,第2、7层的预浸料2、7中的作为不连续纤维DF的强化纤维F也可以形成与第4、5层的预浸料4、5中的作为不连续纤维DF的强化纤维F不同的层。

以某取向角度取向的不连续纤维DF例如能够利用以下的方法获得。即,向使树脂R浸渗于在一方向上并丝了的连续纤维CF而成的一方向预浸料例如按压刀、或照射激光,沿与纤维交叉的角度形成切口、将连续纤维CF分割开的方法。由此,能够获得在一方向上并丝、实质上相互平行地配置的不连续纤维DF。各切口的长度、切口彼此之间的间隔能够根据需要的不连续纤维DF的纤维长度等适当设定。另外,作为其他方法,例如,存在如下方法等:在塑性区域中挤压成形含有预先调整了纤维长度的不连续纤维DF和树脂R的组合物,将该组合物加压成形成片状,从而获得不连续纤维DF在一定的方向上取向的预浸料。

以下,对本实施方式的作用效果进行说明。

首先,为了方便说明,定义强化纤维F的二维取向的“图案要素”。图2是用于说明根据以4个取向角度(0°/45°/90°/-45°)取向的强化纤维F定义的图案要素的图。在该图2中也是,虚线表示不连续纤维DF,实线表示连续纤维CF。若现在选择4个取向角度(0°/45°/90°/-45°)中的任意3个取向角度,则能够根据所选择的取向角度的组合定义各两个三角形状的图案要素。例如,在选择了0°/45°/90°的情况下,能够定义三角形ABC和三角形ACD作为图案要素。另外,在选择了0°/45°/-45°的情况下,能够定义三角形ABE和三角形CDE作为图案要素。同样地能够定义三角形ABD、BCD、BCE、以及ADE作为其他图案要素。即,根据进行了二维取向的强化纤维F定义的图案要素的最简单的形状是将所选择的3个取向角度的强化纤维F设为边、将该强化纤维F彼此相交的点设为顶点的三角形。

(1)在以4个取向角度取向的强化纤维F全部是连续纤维CF的基材(比较例)被赋形成三维形状时,如图3(特别是U部)所示,各图案要素欲在与强化纤维F的取向平行的面内剪切变形。在其变形部分,三角形的角的大小变化,在构成三角形的边的强化纤维F中产生压缩力或拉伸力。因此,在剪切变形量超过了某限度的情况下,如图4所示,存在如下可能性:因压缩力而强化纤维F压曲(参照图4的V部),或因拉伸力而在基材表面产生褶皱(参照图4的W部),成形品的外观恶化。

相对于此,在本实施方式中,以4个取向角度中的、两个取向角度(0°/90°)取向的强化纤维F是连续纤维CF,以除此之外的取向角度(45°/-45°)取向的强化纤维F是不连续纤维DF。因此,在任一图案要素的三角形中都是,至少一边由不连续纤维DF构成。不连续纤维DF的分割开的纤维彼此能够相互在纤维方向上相对移动,因此,与连续纤维CF相比,难以传递轴向力(压缩力和拉伸力)。因而,在图案要素进行面内剪切变形之际,经由三角形的顶点即与不连续纤维DF之间的交点而作用于连续纤维CF的力被降低。因此,在成形时,在基材M1被赋形成三维形状时在强化纤维F产生的轴向力被降低,抑制强化纤维F压曲、或在基材M1表面产生褶皱。由此,抑制成形品的外观的恶化。另外,在强化纤维F产生的轴向力被降低,从而约束图案要素的面内剪切变形的力被降低,因此,提高基材M1的赋形性。

(2)另外,在本实施方式中,以4个取向角度中的两个取向角度取向的强化纤维F是连续纤维CF,以除此之外的取向角度取向的强化纤维F是不连续纤维DF。因此,与仅以1个取向角度(例如0°)取向的强化纤维F是连续纤维CF的情况相比较,提高对基材M1进行成形而获得的成形品的抗拉强度。另外,连续纤维CF的取向角度之差是90°,该差的绝对值处于85°以上且95°以下的范围内,因此,与处于该范围外的情况相比较,提高成形品的机械特性的各向同性。

(3)而且,在本实施方式中,作为不连续纤维DF的强化纤维F在与各自的取向角度相对应的方向上并丝,与树脂R一起形成不与作为连续纤维CF的强化纤维F交叉的层。因而,与不连续纤维DF的层与连续纤维CF交叉的情况(例如仅在双轴织物预浸料的经线和纬线中的一者形成切口并将其设为不连续纤维DF的情况)相比较,各不连续纤维DF易于在其纤维方向上移动。因此,从不连续纤维DF作用于连续纤维CF的力被进一步降低,基材M1的赋形性进一步提高。

(4)另外,在本实施方式中,以互不相同的取向角度取向的作为不连续纤维DF的强化纤维F分别形成不同的层。也就是说,不连续纤维DF按照取向角度配置于不同的层。因而,与取向角度不同的不连续纤维DF配置到相同的层的情况(例如在双轴织物预浸料的经线和纬线这两者形成切口并将它们设为不连续纤维DF的情况)相比较,各不连续纤维DF易于在纤维方向上移动。因此,基材M1的赋形性更加提高。

此外,在第1实施方式中,连续纤维CF取向成0°/90°,不连续纤维DF取向成45°/-45°,但连续纤维CF和不连续纤维DF的取向角度的组合并不限定于此,。例如,如图5的图案P1~P10所示,能够将以4个取向角度中的任1个或两个取向角度取向的强化纤维F设为连续纤维CF、将以除了该1个或两个取向角度以外的取向角度取向的强化纤维F设为不连续纤维DF。在图5中,“CF”表示连续纤维CF,“DF”表示不连续纤维DF。“图案要素”的栏的第1列例示图2的三角形ABC的图案要素,第2~4列例示三角形ABD、三角形ABE、三角形ADE的图案要素。如从图5显而易见这样,在图案P1~P10任一个中都是,图案要素的三角形的至少一边由不连续纤维DF构成,因此,能够获得上述的效果。此外,该图5的图案P2相当于第1实施方式。

<第2实施方式>

参照图6和图7而对第2实施方式的基材M2进行说明。此外,在第2实施方式中,对与第1实施方式不同的结构进行说明,对于具有与已经进行了说明的结构同样的功能的结构,标注同样的附图标记而省略说明。

如图6所示,第2实施方式的成形用基材M2能够层叠例如6张预浸料11~16而形成。

如图6所示,6张预浸料11~16以预浸料11~16中的强化纤维F以互不相同的3个取向角度取向的方式层叠。预浸料11~16能够以强化纤维F例如从图6的上方起依次以0°/60°/-60°/-60°/60°/0°的取向角度取向且从基材M2获得的成形品在面方向上在强度方面具备各向同性的方式层叠。

在本实施方式中,如图6所示,以3个取向角度中的、0°/-60°的取向角度取向的强化纤维F是连续纤维CF。另外,以3个取向角度中的、除了0°/-60°以外的60°的取向角度取向的强化纤维F是不连续纤维DF。图6中的虚线表示不连续纤维DF,实线表示连续纤维CF。

另外,在本实施方式中,也可以是,作为不连续纤维DF的强化纤维F在与各自的取向角度相对应的方向上并丝,与树脂R一起形成不与作为连续纤维CF的强化纤维F交叉的层。例如,如图6所示,第2、5层的预浸料12、15中的不连续纤维DF也可以形成不与第1、3、4、6层的预浸料11、13、14、16中的连续纤维CF交叉的层。另外,以互不相同的取向角度取向的作为不连续纤维DF的强化纤维F也可以分别形成不同的层。例如,如图6所示,第2层的预浸料12中的不连续纤维DF也可以形成与第4层的预浸料14中的不连续纤维DF不同的层。

以下,对本实施方式的作用效果进行说明。在本实施方式中,能够根据取向成3个取向角度(0°/60°/-60°)的强化纤维F定义正三角形状的图案要素。

在本实施方式中,以3个取向角度中的、两个取向角度(0°/-60°)取向的强化纤维F是连续纤维CF,以除此之外的取向角度(60°)取向的强化纤维F是不连续纤维DF。因此,图案要素的三角形的至少一边由不连续纤维DF构成。因而,在本实施方式中,也能够获得上述(1)的效果。

另外,在本实施方式中,作为不连续纤维DF的强化纤维F在与各自的取向角度相对应的方向上并丝,与树脂R一起形成不与作为连续纤维CF的强化纤维F交叉的层。而且,以互不相同的取向角度取向的作为不连续纤维DF的强化纤维F分别形成不同的层。因而,在本实施方式中,也能够获得上述(3)和(4)的效果。

此外,在第2实施方式中,连续纤维CF取向成0°/-60°,不连续纤维DF取向成60°,但连续纤维CF和不连续纤维DF的取向角度的组合并不限定于此。例如,如图7的图案P11~P16所示,能够将以3个取向角度中的任1个或两个取向角度取向的强化纤维F设为连续纤维CF,将以除了该1个或两个取向角度以外的取向角度取向的强化纤维F设为不连续纤维DF。在图7中,“CF”表示连续纤维CF,“DF”表示不连续纤维DF。“图案要素”的栏例示有图案P11~P16的各图案要素。如从图7显而易见那样,在图案P11~P16任一个中都是,图案要素的三角形的至少一边由不连续纤维DF构成,由此,能够获得上述的效果。此外,该图7的图案P12相当于第2实施方式。

在以上的说明中,“进行了二维取向的强化纤维F”是指在基材的面方向上取向的强化纤维F。在基材的厚度方向上取向的强化纤维和随机取向的强化纤维不包含于“进行了二维取向的强化纤维F”。“进行了二维取向的强化纤维F”的形态并没有特别限定,除了如上述那样使强化纤维F在一方向上并丝并排列成片状的形态之外,也包括如双轴织物或三轴织物这样在面方向上延伸的强化纤维F相互交叉的情况。因而,上述实施方式和变形例的基材M1、M2中任一个以上的层中的强化纤维F的形态也可以双轴织物或三轴织物。作为双轴织物,例如,可列举出以平织、斜织、缎织等方法进行织造而成的织物。

而且,基材M1、M2的各层的强化纤维F的取向角度的顺序并不限定于上述实施方式和变形例的顺序。例如,在第1实施方式中,从图1的上方起依次是0°/45°/90°/-45°/-45°/90°/45°/0°,但也可以是45°/-45°/0°/90°/90°/-45°/45°。另外,基材M1、M2的层数、或预浸料的张数并不限于上述的情况。而且,基材M1、M2的各层也可以以成形品在面方向上在强度方面具备各向异性的方式层叠。另外,图5和图7所示的图案P1~P16也可以组合采用任两个以上。

以上,对几个实施方式和变形例进行了说明,但这些实施方式等只不过是为了容易理解发明所记载的一般的例示。发明的保护范围并不限于在上述实施方式等中所公开的具体的技术事项,也包括能由此容易地导出的各种变形、变更、替代技术等。

产业上的可利用性

成形用基材M1、M2能够成形成具有所期望的三维形状的成形品。所获得的成形品例如能够用作罩、地板、门板、保险杠、后备箱盖、后栏板、挡泥板、侧围板、车身顶盖等汽车等车辆的构成构件。另外,成形品能够用作航空器、船舶、铁道车辆等输送机、家庭用电器产品、发电设备、生产机械、住宅器材、家具、休闲用品等的构成构件。

附图标记说明

M1、M2、成形用基材;F、强化纤维;R、树脂;CF、连续纤维;DF、不连续纤维。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于飞行器的水和废料的无衬里、可变形的复合罐结构

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!