用于3d打印系统的箱组件及其部件

文档序号:1820827 发布日期:2021-11-09 浏览:21次 >En<

阅读说明:本技术 用于3d打印系统的箱组件及其部件 (Tank assembly for 3D printing system and components thereof ) 是由 I·梅达尔西 C·霍兰德 于 2020-04-02 设计创作,主要内容包括:用于3D打印系统的箱组件(10,12)可以包括膜组件(48,50),该膜组件(48,50)可释放地固定到箱组件(10,12)的箱侧壁(12,13)的底部边缘(14)。固定机构可以包括摩擦配合耦合和磁性耦合中的一种或多种。膜组件(48,50)可以包括框架(50,52,80,82)、辐射透明柔性膜(72,74)以及膜固定构件(100,76,78)。柔性膜(72,74)的周边部分(74)可以通过膜固定构件(100,76,78)固定在框架(50,52,80,82)的槽(16,62)内。箱侧壁(12,13)可以包括一个或多个用于向箱组件(10,12)供应新鲜树脂的部件(26,30,34,44,4)以及一个或多个用于从箱组件(10,12)排出用过的树脂的部件(26,30,34,44,4)。(A tank assembly (10, 12) for a 3D printing system may include a membrane assembly (48,50), the membrane assembly (48,50) being releasably secured to a bottom edge (14) of a tank sidewall (12, 13) of the tank assembly (10, 12). The securing mechanism may include one or more of a friction fit coupling and a magnetic coupling. The membrane assembly (48,50) may include a frame (50,52,80,82), a radiation transparent flexible membrane (72,74), and a membrane securing member (100,76, 78). The peripheral portion (74) of the flexible membrane (72,74) may be secured within the channel (16,62) of the frame (50,52,80,82) by a membrane securing member (100,76, 78). The tank sidewall (12, 13) may include one or more components (26,30,34,44,4) for supplying fresh resin to the tank assembly (10, 12) and one or more components (26,30,34,44,4) for draining used resin from the tank assembly (10, 12).)

用于3D打印系统的箱组件及其部件

技术领域

本发明涉及用于3D(即,三维)打印系统的箱组件以及箱组件的部件,并且更具体地,涉及可释放地固定到箱组件的箱侧壁的底部边缘的膜组件。

背景技术

3D打印变得越来越普遍,其允许在任何场所(即,房间、车库、实验室等)中制造3D物体(通常在短时间内)。通常,三维物体的横截面被建模并保存为数字格式,并使用横截面模型逐层制造三维物体。

发明内容

在本发明的一个实施例中,用于3D打印系统的箱组件可以包括膜组件,该膜组件可释放地固定到箱组件的箱侧壁的底部边缘(即,可以固定到底部边缘并且稍后从底部边缘移除)。

在膜组件的第一实施例中,膜组件包括框架、辐射透明(radiation-transparent)柔性膜以及膜固定构件。柔性膜的周边部分可以通过膜固定构件固定于布置在框架的底部表面上的槽内。框架的尺寸和形状可以与箱侧壁的底部边缘的尺寸和形状互补。更具体地,框架的内侧表面可以压靠底部边缘的外侧表面。在框架接触底部边缘的区域中,肋可以存在于框架和/或底部边缘上。可以另外使用磁性耦合机构以更牢固地将框架固定到箱侧壁的底部边缘。

在膜组件的第二实施例中,膜组件包括框架、辐射透明柔性膜以及膜固定构件。框架可以包括接合到空心轴部分的凸缘部分。柔性膜的周边部分可以通过膜固定构件固定到空心轴部分的外侧表面,并且另外固定到凸缘部分的底部表面。框架的尺寸和形状可以与箱侧壁的底部边缘的尺寸和形状互补。更具体地,框架的内侧表面可以压靠底部边缘的外侧表面。在框架接触底部边缘的区域中,肋可以存在于框架和/或底部边缘上。可以另外使用磁性耦合机构以更牢固地将框架固定到箱侧壁的底部边缘。

在膜组件的第三实施例中,膜组件包括辐射透明柔性膜以及膜固定构件。膜固定构件配置为将膜直接固定到箱侧壁的底部边缘。

箱侧壁可以包括一个或多个用于将新鲜的(或冷却的)树脂供应到箱组件中的部件以及一个或多个用于从箱组件排出用过的(或热的)树脂的部件。在树脂供应路径中,通道可以将第一管耦合构件流体地耦合到将新鲜树脂供应到箱组件的腔体中的入口。第一管耦合构件转而可以耦合到供应新鲜树脂的管。在树脂排出路径中,通道可以将第二管耦合构件流体地耦合到将树脂排出箱组件的腔体的出口。第二管耦合构件转而可以耦合到从箱组件的腔体排出用过的树脂的管。

下面结合附图更全面地描述本发明的这些和其他实施例。

附图说明

图1描绘了根据本发明的一个实施例的3D打印系统的横截面图。

图2A描绘了根据本发明的一个实施例的箱组件的透视分解图,示出了箱组件部件的底部表面和侧表面上的细节。

图2B描绘了根据本发明的一个实施例的箱组件的透视分解图,示出了箱组件部件的顶部表面和侧表面上的细节。

图2C描绘了根据本发明的一个实施例的箱组件的横截面透视分解图。

图2D描绘了根据本发明的一个实施例的箱组件的横截面透视分解图(当在垂直于横截面表面的方向上观察时)。

图3A描绘了根据本发明的一个实施例的箱组件的透视图,示出了箱组件的底部表面和侧表面上的细节。

图3B描绘了根据本发明的一个实施例的图3A的放大部分。

图3C描绘了根据本发明的一个实施例的箱组件的横截面透视图(当在垂直于横截面表面的方向上观察时)。

图3D描绘了根据本发明的一个实施例的箱组件的半透明透视图,示出了箱组件内的细节。

图4A描绘了根据本发明的一个实施例的箱侧壁的透视图,示出了箱侧壁的顶部表面和侧表面上的细节。

图4B描绘了根据本发明的一个实施例的箱侧壁的俯视图。

图4C描绘了根据本发明的一个实施例的箱侧壁的仰视图。

图4D描绘了根据本发明的一个实施例的箱侧壁的横截面透视图。

图4E描绘了根据本发明的一个实施例的图4D的放大部分。

图4F-4K描绘了根据本发明的一个实施例的箱侧壁的横截面透视图。

图5A描绘了根据本发明的一个实施例的框架的透视图,示出了框架的顶部表面和侧表面上的细节。

图5B描绘了根据本发明的一个实施例的框架的俯视图。

图5C描绘了根据本发明的一个实施例的框架的仰视图。

图5D描绘了根据本发明的一个实施例的图5A的放大部分。

图5E描绘了根据本发明的一个实施例的沿图5D的平面A的横截面透视图。

图5F描绘了根据本发明的一个实施例的沿图5D的平面B的横截面透视图。

图5G描绘了根据本发明的一个实施例的沿图5D的平面C的横截面透视图。

图6A描绘了根据本发明的一个实施例的膜组件的分解透视图。

图6B描绘了根据本发明的一个实施例的膜组件的透视图。

图6C描绘了根据本发明的一个实施例的膜组件的俯视图。

图6D描绘了根据本发明的一个实施例的膜组件的仰视图。

图6E描绘了根据本发明的一个实施例的图6A的放大部分。

图6F描绘了根据本发明的一个实施例的沿图6E的平面D的横截面透视图。

图6G描绘了根据本发明的一个实施例的沿图6E的平面E的横截面透视图。

图6H描绘了根据本发明的一个实施例的沿图6E的平面F的横截面透视图。

图7A描绘了根据本发明的一个实施例的框架组件的分解透视图。

图7B描绘了根据本发明的一个实施例的框架组件的透视图。

图7C描绘了根据本发明的一个实施例的框架组件的俯视图。

图7D描绘了根据本发明的一个实施例的框架组件的仰视图。

图7E描绘了根据本发明的一个实施例的图7A的放大部分。

图7F描绘了根据本发明的一个实施例的沿图7E的平面G的横截面透视图。

图7G描绘了根据本发明的一个实施例的沿图7E的平面H的横截面透视图。

图7H描绘了根据本发明的一个实施例的沿图7E的平面I的横截面透视图。

图8A描绘了根据本发明的一个实施例的膜组件的分解透视图。

图8B描绘了根据本发明的一个实施例的膜组件的透视图。

图8C描绘了根据本发明的一个实施例的图8B的放大部分(进一步切掉膜固定构件的一部分以示出框架的结构)。

图8D描绘了根据本发明的一个实施例的膜组件的横截面透视图。

图9描绘了根据本发明的一个实施例的箱组件的分解透视图。

具体实施方式

在以下优选实施例的详细描述中,参考了形成其一部分的附图,并且其中通过示例的方式示出了可以实践本发明的特定实施例。应当理解,可以利用其他实施例并且可以进行结构改变而不脱离本发明的范围。与任何一幅附图相关联的描述可以应用于包含相似或相似组件/步骤的不同附图。

图1描绘了3D打印系统1的横截面,其中电磁辐射(例如,紫外光)用于固化光固化液体聚合物4(也称为“树脂”)以制造物体3(例如,3D物体)。可以逐层制造物体3(即,通过光固化与物体3底部表面相邻的一层树脂4可以形成新的一层物体;可以通过提取板2升起物体3,以允许在新形成的层下方绘制一层新的树脂4;并且可以重复该过程以形成物体3的附加层)。

3D打印系统1可以包括用于容纳树脂4的箱组件10。箱组件10的底部可以包括电磁透明(electromagnetic transparent)开口以允许来自光源8的电磁辐射进入箱组件10。可部分地使用辐射透明(radiation-transparent)背衬构件6以形成电磁透明开口。在一个实施例中,背衬构件6可由硼硅酸盐玻璃制成。掩模7(例如,液晶层)可以布置在光源8和树脂4之间,从而允许树脂的选择性固化(这允许形成具有复杂形状/图案的3D物体)。在各种实施例中,准直和漫射元件(例如,透镜、反射器、滤光器和/或膜)可以定位在掩模7和光源8之间。这些元件未在图示中示出,以免不必要地混淆附图。

3D打印系统面临的一个挑战是,新形成的层除了粘附到物体上之外,还具有粘附到箱组件10的底部的趋势,这是不期望的,因为由提取板2升起物体3时,会从物体3上撕下新形成的层。为了解决这个问题,柔性膜72(也称为自润滑膜)可以邻近背衬构件6布置。在一些实施例中,柔性膜72可以是硅凝胶膜、用润滑剂(例如,硅油)处理的硅凝胶膜或随时间流逝将一层润滑剂5释放到柔性膜72的表面上的硅凝胶膜。柔性膜72和/或润滑剂层5可以降低新形成的层粘附到箱组件10底部的可能性。液体润滑剂5和柔性膜72中的一个或两个可以富含聚四氟乙烯(PTFE),以进一步提高柔性膜72和/或润滑剂层5的“不粘”质量。柔性膜72和液体润滑剂5二者均是辐射透明的,以允许来自光源8的电磁辐射进入箱组件10,从而固化树脂4。

在以下的讨论中,将讨论箱组件10的特定实施例。将不再描绘箱组件10的背衬构件6,但应理解,箱组件10可以包括背衬构件6。已经在图1中讨论了3D打印系统1的其他部件(例如,提取板2、物体3、树脂4、掩模7和光源8),以提供一些用于理解本发明的各种实施例的背景,但是为了简明将不再进一步描绘这些部件。

图2A描绘了箱组件10的透视分解图,示出了箱组件部件的底部表面和侧表面上的细节。箱组件10可包括箱侧壁12和膜组件48。箱侧壁12可以围绕中心腔13。膜组件48可包括框架50、柔性膜72和膜固定构件76。如下文将详细解释的,膜固定构件76可配置为将柔性膜72的周边部分74固定到框架50。此外,如下文将详细解释的,膜组件48可以配置为耦合到箱侧壁12的底部边缘14。更具体地,膜组件48可以配置为密封箱侧壁12的底部边缘14的中心开口15,其中中心开口15与箱侧壁12的中心腔13连接。膜组件48和箱侧壁12之间的耦合可以是摩擦-配合耦合,框架50的内侧表面上的肋70可以增加膜组件48和箱侧壁12之间的摩擦程度。

在一个实施例中,槽16可以存在于箱侧壁12的底部表面上,并且膜组件48的框架50可以插入到这种槽内。膜组件48的尺寸和形状可以与箱侧壁12的底部边缘14的尺寸和形状互补。更具体地,膜组件48的轮廓和底部边缘14的轮廓在形状上都可以是矩形(甚至更具体地,具有圆角的矩形)。膜组件48的尺寸(即,在长度和宽度方面的尺寸)可以比底部边缘14的尺寸稍大,从而允许框架50的内侧表面与底部边缘14的外侧表面接触。

图2A的分解透视图中还描绘了位于箱侧壁12的底部表面上的某些容器。支腿容器44可以配置为容纳箱组件的支腿。管耦合构件容器40可以配置为容纳管耦合构件30(稍后在图3A中描绘),管耦合构件30用于耦合供应新鲜树脂的管,并且管耦合构件容器42可以配置为容纳管耦合构件32(稍后在图3A中描绘),管耦合构件32用于耦合排出用过的树脂的管。此外,可以存在端口34,用于向新鲜树脂供应添加剂或其他物质。在描绘了管耦合构件的后续附图中,这些细节将变得更清楚。虽然在图2A中不可见,但是管耦合构件容器42还可以与端口相关联,并且在此情况下,端口可以用作除了管耦合构件32之外的另一排放口(稍后在图3A中描绘)。

箱侧壁12还可以包括在两个相对侧上的把手18(尽管在图2A的视图中仅可见一个把手)以供人移动和/或运输箱组件10和/或箱侧壁12。

图2B描绘了箱组件10的透视分解图,示出了箱组件部件的顶部表面和侧表面上的细节。在图2B的视图中另外可见的是磁体64(或被磁体吸引的材料,例如铁、镍和钴),其可以存在于框架50上以增加膜组件48和箱侧壁12之间的耦合强度。虽然在图2B中不可见,但是与磁体64相反极性的磁体(或被磁体吸引的材料)可以存在于箱侧壁12的槽16中,以允许膜组件48和箱侧壁12彼此可释放地耦合。可以理解,上述摩擦配合和磁性耦合方式只是两种可能的耦合机制,其他的耦合机制也是可能的,例如静电耦合、吸力耦合、使用弱粘合剂的耦合等。

图2C描绘了箱组件10的横截面透视分解图。如图所示,框架50的槽62的横截面可以具有与膜固定构件76的横截面互补的倒置的U形轮廓。类似地,箱侧壁12的槽16的横截面可以具有与框架50的横截面互补的轮廓。在图2C的横截面视图中,槽16具有倒置的L形轮廓或r形轮廓(由于形成把手18的切口)。然而,在箱侧壁12的其他区域中,槽16也可以具有倒置的U形轮廓,这在随后的其他视图中将更加明显。

图2D描绘了在垂直于横截面表面的方向上观察时的箱组件10的横截面透视分解图。在图2D中可见箱侧壁12的底部边缘14和槽16的横截面轮廓,以及框架50的槽62的横截面轮廓。

图3A描绘了箱组件10的透视图,其示出了箱组件的底部表面和侧表面的细节。与图2A-2D相比,图3A描绘处于组装状态的箱组件10。如图所示,膜72通过膜固定构件76固定到框架50。膜组件48又插入(并固定在)箱侧壁12的槽16(不可见)中。管耦合构件30(用于供应新鲜树脂)插入管耦合构件容器40中;管耦合构件32(用于排出用过的树脂)插入管耦合构件容器42中;并且支腿38插入到支腿容器44中。在一种解释中,可认为箱侧壁12具有四条支腿,其中四条支腿中的两条具体化为管耦合构件30、32。注意,支腿38的位置在一些实施例中可以不同。在一些实施例中,支腿38可以位于对角线的角处,而在其他实施例中支腿38位于箱侧壁12一侧的两个角处。事实上,可以跨不同的附图观察到这种设计的变化(对比图3A和4A)。

在一个实施例中,所有四个支腿的高度可以相同,使得箱组件10在处于离线状态时可以稳定地搁置在表面上。当处于操作状态时,箱组件10通常不会搁置在四个支腿中的任何一个上,而是搁置在背衬构件6上(如图1所示)。

正如图3A所示,膜72形成箱组件10的底部表面。如先前描述的,膜72可由诸如用润滑剂处理过的硅的材料制成,以形成不粘表面。然而,随着时间的推移,由于润滑剂逐渐消散到树脂4中和/或粘附到物体3上,膜72可能会失去其不粘性质。膜72也可能由于物体3与箱底反复分离时膜72的弯曲而开始磨损。本发明的一个优点是,在现有的膜组件达到其使用寿命后,可以用新的膜组件替换膜组件48。就此,膜组件48类比于打印机墨盒或剃刀刀片(或其他消耗品),随着旧部件磨损而定期更换新部件。另一方面,箱侧壁12连同管耦合构件30、32和支腿38(很像没有打印机墨盒的打印机或没有剃刀刀片的剃刀)的更换频率通常比膜组件48的更换频率低得多。在下面描述的其他实施例中,也可能仅有膜72是消耗品(即,框架50和膜固定构件76可以和新膜一起重复使用)。

图3B描绘了图3A的放大部分。如图所示,柔性膜72在被夹持并固定在框架50和膜固定构件76之间的紧密空间中之前跨底部边缘14以及跨框架50的底部表面的一部分延伸。在图3B中也非常详细地可见管耦合构件30的结构,其具有增加管耦合构件30和用于供应新鲜树脂的管(未示出)之间的摩擦的环。

图3C描绘了在垂直于横截面表面的方向上观察时箱组件10的横截面透视图。该视图示出了膜固定构件76插入(并固定)在框架50的槽内,并且框架50又插入到箱侧壁12的槽中。柔性膜72的横截面由黑线表示,并且如果仔细观察附图,将看到柔性膜72跨底部边缘14以及框架50的底部表面的一部分延伸。

图3D描绘了箱组件10的半透明透视图,其示出了箱组件内的细节。在此视图中可见用于输送新鲜树脂的部件的结构,该结构包括流体地耦合管耦合构件30和入口22的通道26。虽然在图3D的配置中塞子36存在于端口34中(实际上使端口34闲置),但是端口34可用于向通道26中的新鲜树脂提供添加剂或其它化学品。在某些情况下,端口34还可用作排放口。箱侧壁12的磁体20(或被磁体吸引的其他材料)示为紧邻框架50布置,并且用于将框架50固定在箱侧壁12的槽内。箱侧壁12的磁体20可以被框架50的磁体64(在当前视图中不可见)吸引。

图4A描绘了箱侧壁12的透视图,其示出了箱侧壁的顶部表面和侧表面上的细节。在所描绘的实施例中,管耦合构件30(用于供给新鲜树脂)和管耦合构件32(用于排出用过的树脂)位于箱侧壁12的第一侧上,而支腿38位于箱侧壁12的第二侧(相对于第一侧)上。

图4B描绘了箱侧壁12的俯视图。在俯视图中可见供人运送箱侧壁和/或箱组件的把手18。图4C描绘了箱侧壁12的仰视图。槽16示出为围绕底部边缘14。磁体20可以布置在槽16的表面内。入口22和出口24可存在于箱侧壁12的相对侧上。尽管在仰视图中不可见,但是入口22通过通道26流体地耦合到管耦合构件容器40,并且出口24通过通道28流体地耦合到管耦合构件容器42。

图4D描绘了箱侧壁12的横截面透视图,并且图4E描绘了图4D的放大部分,其更详细地示出了底部边缘14、槽16和把手18的结构。图4F描绘了箱侧壁12的另一个横截面透视图,并且示出了通过支腿38的横截面。图4G描绘了箱侧壁12的另一个横截面透视图,并且示出了通过管耦合构件30的横截面。在图4G中也可见用于输送新鲜树脂的组件的结构,并且该结构包括流体地耦合管耦合构件30和入口22的通道26。

图4H描绘了箱侧壁12的另一横截面透视图,并且示出了入口22、出口24、底部边缘14和槽16的横截面轮廓。图4I描绘了箱侧壁12的另一横截面透视图,并示出了通道26、通道28、底部边缘14和槽16的横截面轮廓。图4J描绘了箱侧壁12的另一横截面透视图,并示出了管耦合构件30和32的横截面轮廓。图4K描绘了具有沿水平面布置的横截表面的箱侧壁12的横截面透视图,并且示出了围绕底部边缘14的槽16。

图5A描绘了框架50的透视图,其示出了框架的顶部表面和侧表面上的细节。框架50围绕中心开口52。框架50包括顶部表面54、背向中心开口52的外侧表面58以及面向中心开口52的内侧表面60。肋70可以位于内侧表面60上,并且如上所说明的,其可以增加框架50和箱侧壁的底部边缘14之间的摩擦程度。在图5A的视图中可见通孔68(更具体地,其端部),其可以存在从而在膜固定构件76插入槽中时允许空气从框架50的槽快速逸出。在图5A中,磁体尚未插入框架50中。相反,可见的是用于容纳磁体的磁体容器66(孔、凹陷等)。

图5B描绘框架50的俯视图。在俯视图中可见顶部表面54以及磁体容器66和通孔68。图5C描绘框架50的仰视图。在仰视图中可见底部表面56、槽62以及通孔68。图5D描绘了图5A的放大部分。图5E描绘了沿图5D的平面A的横截面透视图。在图5E中可见穿过通孔68的横截面,通孔68流体地连接框架50的顶面54和槽62。图5F描绘了沿图5D的平面B的横截面透视图。在图5F中可见槽62的倒置U形轮廓。图5G描绘了沿图5D的平面C的横截面透视图。在图5G中可见穿过磁体容器66的横截面。

图6A描绘了膜组件48的分解透视图。在分解图中,膜72示出为在框架50和膜固定构件76之间。如将在下面的附图中更清楚描绘的,膜72的外周边部分74可以通过膜固定构件76固定在框架50的槽内。在将膜固定构件76插入框架50的槽中之前,膜72可以抵靠框架50以拉紧的方式被拉动和/或拉伸,使得膜72的表面中存在一些张力。当膜固定构件76将膜72的外周边部分74固定到框架50的槽中时,可以保持和/或增加膜72的表面中的这种张力。当然,这种张力低于会导致膜72撕裂的张力。而且,框架50由具有足够刚度的材料制成以保持膜72的张力。

图6B描绘了膜组件48的透视图,其中膜72通过膜固定构件76固定到框架50(尽管在该视图中不可见膜固定构件)。图6C描绘了膜组件48的俯视图,图6D描绘了膜组件48的仰视图,其中膜固定构件76是可见的。在图6D的仰视图中可见穿过膜固定构件76的通孔78,并且通孔78可以用作与框架50的通孔68类似的目的,即在膜固定构件76插入槽中时,允许空气从膜72和膜固定构件76之间(和/或槽62和膜固定构件76之间)快速逸出。

图6E描绘了图6A的放大部分。图6F描绘了沿图6E的平面D的横截面透视图,并示出了膜固定构件76,膜固定构件76插入在框架50的槽内以将膜72的周边部分74固定在框架的槽内。横截面还示出了框架50的通孔68与膜固定构件76的通孔78对齐。虽然通孔68和通孔78的对齐可以存在于一些实施例中,但是这种对齐也可以不存在于其它实施例(未示出)中。图6G描绘了沿图6E的平面E的横截面透视图,并示出了膜固定构件76,膜固定构件76插入在框架50的槽内以将膜72的周边部分74固定在框架的槽内。图6H描绘了沿图6E的平面F的横截面透视图,并示出了穿过磁体64的横截面。

图7A描绘了框架组件46的分解透视图,该框架组件46包括框架50和膜固定构件76。框架组件46除了其不包括膜72外,与膜组件48基本相同。框架组件46的动机是框架组件46可以与膜72分开出售。当然,当箱组件10组装好时,膜72将固定到框架组件46,从而将框架组件46转换成膜组件48。图7B描绘了框架组件46的透视图,其中膜固定构件76(在图7B中不可见)已经插入了框架50的槽中,但在其间没有膜72。

图7C描绘了框架组件46的俯视图,图7D描绘了框架组件46的仰视图。在仰视图中,膜固定构件76示出为插入框架50的槽内。图7E描绘了图7A的放大部分。图7F描绘了沿图7E的平面G的横截面透视图,其示出了插入框架50的槽内的膜固定构件76。图7G描绘了沿着图7E的平面H的截面透视图,并且图7H描绘了沿着图7E的平面I的截面透视图。

图8A描绘了膜组件48'的分解透视图,其具有不同于之前描述的膜组件48的某些特征。首先,膜组件48'的矩形轮廓的角比膜组件48的矩形轮廓的角更圆。圆角提供了最小化膜72的外周边部分中的膜72的起皱和/或聚集的优点,这种起皱和/或聚集偶尔发生在矩形轮廓的角附近。其次,框架80的结构和膜固定构件100不同于先前描述的框架50和膜固定构件76。这种结构将在下面的图8D中详细描述。另一方面,膜组件48'的某些特征与膜组件48相同。特别地,膜组件48'的尺寸和形状仍然与箱侧壁的底部边缘的尺寸和形状互补。没有描绘与膜组件48'互补的箱侧壁,但预计读者将理解如何修改箱侧壁12使得底部边缘与膜组件48'的尺寸和形状互补。类似地,由于膜72安装在框架80上的方式以及框架80的刚度,膜72中可以存在一定程度的张力。

图8B描绘了膜组件48'的透视图。图8C描绘了图8B的放大部分(进一步切掉了膜固定构件100的一部分以示出膜72的周边部分74和框架80的结构)。如图8C所示,膜72的周边部分74固定在框架80和膜固定构件100之间的区域中。该区域中的多个槽有助于增加可以(通过框架80和膜固定构件100)施加到膜72的周边部分74的摩擦量,以将膜72牢固地固定到框架80。

图8D描绘了膜组件48'的横截面透视图,其更详细地示出了框架80的结构和膜固定构件100。框架80包括两个部分:凸缘部分84和空心轴部分86。已绘制虚线85以指示这两个部分之间的“描述性”边界。这样的边界是为了描述,并且应当理解,在凸缘部分84和空心轴部分86之间不存在物理边界(即,框架80可以注射成型为单个整体部件)。

凸缘部分84可以包括上表面88,磁体64可以布置在该上表面88内。凸缘部分84还可包括面向中心开口82的内侧表面90,肋70可布置在该内侧表面上以增加框架80与箱侧壁的底部边缘之间的摩擦程度。凸缘部分84还可以包括背向中心开口82的外侧表面92。凸缘部分84还可以包括接触膜72的周边部分74的底部表面93。凸缘部分84的底部部分可以连接到空心轴部分86的顶部部分。

空心轴部分86可以包括内侧表面94,肋70可布置在该内侧表面94上。空心轴部分86还可以包括外侧表面96和底部表面98,它们都与膜72的周边部分74接触。如图8D中可见的,膜固定构件100的多个槽可以与框架80的多个槽互补。

图9描绘了箱组件10'的分解透视图。箱组件10'与箱组件10的不同之处在于,膜72的周边部分74通过膜固定构件76'固定到箱侧壁12的底部边缘14。换而言之,膜组件48”包括膜72和膜固定部件76',但将框架50从(前面描述的)膜组件48中去掉。更具体地,膜组件48”配置为密封箱侧壁12的底部边缘14的中心开口15,其中中心开口15与箱侧壁12的中心腔13相连。膜固定构件76'的尺寸和形状可以与箱侧壁12的底部边缘14的尺寸和形状互补。事实上,膜固定构件76'的尺寸和形状可以类似于(前面描述的)箱组件10的框架50。然而,相比于框架50,膜固定构件76'可以不包括肋或槽。注意,在箱组件10'中,唯一的消耗部件可以是膜72,并且即使在更换膜72之后,箱侧壁12和膜固定构件76'也可以重复使用。类似于前面描述的实施例,由于膜72安装到箱侧壁12的底部边缘14上的方式,膜72中可能存在某种程度的张力。

因此,已经描述了3D打印系统的箱组件的各种实施例。应当理解,以上描述旨在说明性而非限制性。在阅读以上描述后,许多其他实施例对于本领域技术人员来说将是显而易见的。因此,本发明的范围应参考所附权利要求以及这些权利要求所赋予的等效物的全部范围来确定。

参考序号列表

1 3D打印系统

2 提取板

3 物体

4 光固化液体聚合物

5 液体润滑剂

6 背衬构件

7 掩模

8 光源

10,10' 箱组件

12 箱侧壁

13 (箱侧壁的)中心腔

14 箱侧壁底部边缘

15 (底部边缘的)中心开口

16 箱侧壁底部槽

18 把手

20 (箱侧壁的)磁体

22 入口(用于新鲜树脂)

24 出口(用于用过的树脂)

26 通道(用于新鲜树脂)

28 通道(用于用过的树脂)

30 管耦合构件(用于新鲜树脂)

32 管耦合构件(用于用过的树脂)

34 端口

36 塞子

38 支腿

40 管耦合构件容器(用于新鲜树脂)

42 管耦合构件容器(用于用过的树脂)

44 支腿容器

46 框架组件

48,48',48” 膜组件

50 框架

52 (框架的)中心开口

54 (框架的)顶部表面

56 (框架的)底部表面

58 (框架的)外侧表面

60 (框架的)内侧表面

62 (框架的)槽

64 (框架的)磁体

66 (框架的)磁体容器

68 (框架的)通孔

70 肋

72 柔性膜

74 膜的周边部分

76,76' 膜固定构件

78 (膜固定构件的)通孔

80 框架

82 中心开口

84 凸缘部分

85 虚线

86 空心轴部分

88 顶部表面(凸缘部分)

90 内侧表面(凸缘部分)

92 外侧表面(凸缘部分)

93 底部表面(凸缘部分)

94 内侧表面(空心轴部分)

96 外侧表面(空心轴部分)

98 底部表面(空心轴部分)

100 膜固定构件

62页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:包括用于接收粉末并优化以保留粉末颗粒的可移动表面的增材制造设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!