一种X8R MLCC用BaTiO3基陶瓷材料的制备方法

文档序号:182466 发布日期:2021-11-02 浏览:29次 >En<

阅读说明:本技术 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法 (BaTiO for X8R MLCC3Preparation method of base ceramic material ) 是由 郑兴华 张欢 钟诗琪 朱培树 于 2021-09-02 设计创作,主要内容包括:本发明涉及一种X8R MLCC用BaTiO-(3)基准纳米陶瓷材料的制备方法,属于电子信息技术领域。上述制备方法包括以下步骤:1)将BaTiO-(3)粉体与MAS堇青石玻璃粉体混合、球磨、烘干,得到陶瓷粉末;2)在陶瓷粉末中加入粘结剂,造粒、过筛、成型、排胶、烧结,得到陶瓷样品,抛光、镀银后制得X8R MLCC用BaTiO-(3)基陶瓷材料。本发明通过添加MgO-Al-(2)O-(3)-SiO-(2)(MAS)堇青石玻璃成功地改善BaTiO-(3)陶瓷材料的温度稳定性;在-55℃~150℃范围内满足了容温变化率≤±15%;介电常数较高,室温下介电常数大于700;介电损耗较低,室温下介电损耗小于2%;体系不含铅,具有良好的应用前景。(The invention relates to BaTiO for X8R MLCC 3 A preparation method of a reference nano ceramic material belongs to the technical field of electronic information. The preparation method comprises the following steps: 1) mixing BaTiO 3 Mixing the powder with MAS cordierite glass powder, ball-milling and drying to obtain ceramic powder; 2) adding binder into ceramic powder, granulating, sieving, molding, removing binder, sintering to obtain ceramic sample, polishing, and silver-plating to obtain BaTiO 8R for X8R MLCC 3 A base ceramic material. The invention adds MgO-Al 2 O 3 ‑SiO 2 (MAS) cordierite glasses successfully improved BaTiO 3 Temperature stability of the ceramic material; within the range of-55 ℃ to 150 ℃, meets the requirementThe temperature change rate is less than or equal to &#43;/-15 percent; the dielectric constant is higher and is more than 700 at room temperature; the dielectric loss is low and is less than 2% at room temperature; the system does not contain lead and has good application prospect.)

一种X8R MLCC用BaTiO3基陶瓷材料的制备方法

技术领域

本发明属于电子信息技术领域,具体涉及一种X8R MLCC用BaTiO3基准纳米陶瓷材料的制备方法。

背景技术

电子元器件分为有源和无源两种,其中电容器占无源电子元器件的50%以上。电容器广泛用于储能器、滤波器、旁路和耦合器,对电路的正常运行至关重要。随着电容器制造技术的进步,多层陶瓷电容器(MLCC)领域取得了许多突破,其朝着小型化、高容量、高压化方向发展。然而,随着这些高端MLCC产品电气特性的改善,人们对其高温稳定性更加关注。高温稳定型MLCC主要应用于各类车载电子控制装置、国防军工、航空航天以及勘探领域,均要求器件的工作温度能达到150℃,因此传统MLCC用X7R型介质材料125℃的工作上限已经难以满足很多领域的应用需求。而根据美国电子工业协会(EIA)定义的X8R MLCC(在-55~150°C范围内,∆C / C25°C <±15%)具有良好的温度稳定性,可以满足大多数电子设备的严格工作温度要求,其研究也一直备受关注。

钛酸钡(BaTiO3)具有高介电常数、低烧结温度并且便宜的优点,被广泛用作具有高容量陶瓷电容器的主体材料。有三种常用方法可以提高BaTiO3的介电性能温度稳定性,使其适用于X8R MLCC陶瓷材料:(i)使用有效的居里温度掺杂剂提高Tc值,例如高居里温度的PbTiO3、Na0.5Bi0.5TiO3、Bi4Ti3O12;(ii)掺杂含Bi的氧化物可在较宽的温度范围内产生稳定的介电性能,例如Bi(Li0.5Nb0.5 )O3、Bi(Mg2/3Ta1/3 )O3;(iii)在BaTiO3晶粒内形成核-壳结构,抑制居里点的峰值介电常数,从而导致稳定的介电性能。主要通过添加Tm、Yb、Lu、Er和Y等元素形成核-壳结构。申请号为CN 201510563648.4的发明专利文献,公开了一种高可靠X8R型多层陶瓷电容器用介质材料及其制备方法;这种材料的组分包括Ba1-xCaxTiO3,添加剂为MnCO3、MgO、SiO2、Al2O3、ZrO2、Y2O3、Ho2O3、Er2O3、Yb2O3、Gd2O3、WO3、MoO3、V2O5中的至少一种或几种化合物,该介质材料制造的多层陶瓷电容器符合X8R特性,在高温负荷下的平均寿命在48h以上,可靠性优良。申请号为CN 201810105535.3的发明专利文献,公开了一种低温烧结的温度稳定X8R型MLCC介质材料,这种材料组分包括BaTiO3、Na0.5Bi0.5TiO3、CaTiO3、Nb2O5、MnCO3、Co2O3和MgO,该发明的材料保持了良好的介电性能、较低的损耗、较高的绝缘电阻率。申请号为CN 201811245120.2的发明专利文献,公开了一种低损耗X8R型电介质材料的制备方法,这种材料组分含有BaTiO3、MnCO3、MgO、CaZrO3、SiO2、Al2O3、BaCO3,该发明的材料性能达到了室温介电常数约2461、介电损耗约0.96%,绝缘电阻率3.68×1011Ω·cm。

许多专利文献中提出的MLCC介质材料虽然能够满足X8R特性要求,但仍存在以下缺点:1)材料配方复杂,多种添加剂,众多添加剂在规模化生产时容易造成混合均匀难题。2)通常,这些材料中需要添加一定量的稀土氧化物,如Ho2O3、Dy2O3。而这些稀土氧化物价格较高,引起成本的大幅度上升,不利于市场竞争。3)一些材料中含Bi的化合物,这些化合物在高温下易挥发,甚至部分与金属电极发生反应,不利于后续MLCC生产。4)更重要的一点,目前MLCC朝着小型化、高容量、高压化方向发展,单层介质陶瓷厚度朝1μm以下发展。这样就要求MLCC中介质陶瓷晶粒尺寸低于200nm,以避免共烧过程中电极的扩散,从而导致器件失效。总的来说,目前X8R MLCC陶瓷材料的制备方法存在配方复杂、制备工艺繁琐、介电常数较低和损耗偏大的问题。

发明内容

本发明针对现有技术的不足,提供了一种X8R MLCC用BaTiO3基准纳米陶瓷材料的制备方法。本发明采用纳米BaTiO3粉体(粒径不超过100nm)为基体,然后添加少量MgO-Al2O3-SiO2(MAS)堇青石玻璃结合快速烧结和两步烧结法制备BaTiO3基准纳米陶瓷材料。本发明采用简单的配方和制备工艺制取具有较高的介电常数和较低的介电损耗的陶瓷材料。并且该陶瓷材料在-55℃~150℃范围内满足了容温变化率≤±15%,具有环境友好、原料成本低、易于工业化生产的特点。

本发明解决上述问题的技术方案如下:

一种X8R MLCC用BaTiO3基陶瓷材料的制备方法,包括以下步骤:

1)将BaTiO3粉体与MAS堇青石玻璃粉体以100:(0.5~2)的质量比例混合,加去离子水进行球磨,然后烘干,得到陶瓷粉末;

2)在陶瓷粉末中加入粘结剂,然后造粒、过筛、成型、排胶,随后烧结、保温,得到陶瓷样品,抛光、镀银后制得X8R MLCC用BaTiO3基陶瓷材料。

本发明采用纳米BaTiO3粉体(粒径不超过100nm)为基体,然后添加少量MgO-Al2O3-SiO2(MAS)堇青石玻璃结合快速烧结和两步烧结法制备BaTiO3基准纳米陶瓷材料。这是因为:1)具有低软化温度的堇青石玻璃降低BaTiO3陶瓷烧结温度,2)堇青石玻璃可以显著BaTiO3中Ba离子迁移,3)快速烧结和两步烧结法缩短烧结保温时间或进一步降低了烧结温度;这三方面显著抑制BaTiO3陶瓷晶粒的生长,从而获得BaTiO3基准纳米陶瓷材料(粒径小于200nm),适用于小型化、高容量的0201、01005等型号的MLCC。

作为上述技术方案的优选,所述粘结剂为PVA或PVB,粘结剂添加量为陶瓷粉末质量的3%~5%。

作为上述技术方案的优选,步骤1)中球磨时间为2~12小时。

作为上述技术方案的优选,步骤2)中的烧结为1000~1250℃,保温时间为2~6小时。

作为上述技术方案的优选,所述的BaTiO3粉体为纳米级粉体(粒径不超过100nm)。

作为上述技术方案的优选,制备原料均采用分析纯的原料。

综上所述,本发明具有以下优点:

(1)本发明所述的材料体系配方简单,通过只添加MgO-Al2O3-SiO2(MAS)堇青石玻璃成功地改善BaTiO3陶瓷材料的温度稳定性。本发明所述的材料在-55℃~150℃范围内满足了容温变化率≤±15%;

(2)本发明所述的X8R MLCC用BaTiO3基准纳米陶瓷材料介电常数较高,室温下介电常数大于700;介电损耗较低,室温下介电损耗小于1.5%;

(3)本发明所述的BaTiO3基准纳米陶瓷材料粒径小于200nm,适用于小型化、高容量的0201、01005等X8R型MLCC;

(4)本发明所述的材料体系不含铅,属于环境友好型,具有良好的应用前景;且制备工艺简单、可控,便于工业化生产。

附图说明

图1为实施例1-6和对比例1制备的BaTiO3基陶瓷材料的XRD图;

图2为实施例1、实施例4和对比例制备的BaTiO3基陶瓷材料的SEM图;

图3为实施例1-6制备的BaTiO3基陶瓷材料在1kHz下的介电常数和介电损耗随温度的变化图;

图4为实施例1-6制备的BaTiO3陶瓷材料在1kHz下的容温变化率(TCC,以25℃为基准)随温度的变化图;

图5为对比例1制备的BaTiO3基陶瓷材料在1kHz下的介电常数和介电损耗随温度的变化图;

图6为对比例1制备的BaTiO3陶瓷材料在1kHz下的容温变化率(TCC,以25℃为基准)随温度的变化图。

具体实施方式

为了使本发明所述的内容更加便于理解,下面结合实施例对本发明做进一步说明。

实施例1

一种X8R MLCC用BaTiO3基陶瓷材料制备方法,其具体步骤为:

(1)将BaTiO3、MgO-Al2O3-SiO2(M AS)堇青石玻璃按质量比100:0.5配料,与去离子水混合球磨4h后烘干、过筛,得到陶瓷粉末。

(2)将步骤(1)得到的陶瓷粉末外加质量比5%的PVA粘结剂,造粒、成型,制得直径~10mm、厚度~1mm的陶瓷坯体。陶瓷坯体在600℃下保温2小时排胶,随后升温至1100℃烧结,保温3小时,抛光、镀银后得到BaTiO3基准纳米陶瓷材料。

实施例2

一种X8R MLCC用BaTiO3基陶瓷材料制备方法,其具体步骤为:

(1)将BaTiO3、MgO-Al2O3-SiO2(M AS)堇青石玻璃按质量比100:1配料,与去离子水混合球磨4h后烘干、过筛,得到陶瓷粉末。

(2)将步骤(1)得到的陶瓷粉末外加质量比5%的PVA粘结剂,造粒、成型,制得直径~10mm、厚度~1mm的陶瓷坯体。陶瓷坯体在600℃下保温2小时排胶,随后升温至1150℃烧结,保温3小时,抛光、镀银后得到BaTiO3基准纳米陶瓷材料。

实施例3

一种X8R MLCC用BaTiO3基陶瓷材料制备方法,其具体步骤为:

(1)将BaTiO3、MgO-Al2O3-SiO2(M AS)堇青石玻璃按质量比100:0.5配料,与去离子水混合球磨4h后烘干、过筛,得到陶瓷粉末。

(2)将步骤(1)得到的陶瓷粉末外加质量比5%的PVA粘结剂,造粒、成型,制得直径~10mm、厚度~1m m的陶瓷坯体。陶瓷坯体在600℃下保温2小时排胶,随后升温至1200℃保温30min后快速冷却,抛光、镀银后得到BaTiO3基准纳米陶瓷材料。

实施例4

一种X8R MLCC用BaTiO3基陶瓷材料制备方法,其具体步骤为:

(1)将BaTiO3、MgO-Al2O3-SiO2(M AS)堇青石玻璃按质量比100:0.5配料,与去离子水混合球磨4h后烘干、过筛,得到陶瓷粉末。

(2)将步骤(1)得到的陶瓷粉末外加质量比5%的PVA粘结剂,造粒、成型,制得直径~10mm、厚度~1m m的陶瓷坯体。陶瓷坯体在600℃下保温2小时排胶,随后升温至1250℃保温30min后快速冷却,抛光、镀银后得到BaTiO3基准纳米陶瓷材料。

实施例5

一种X8R MLCC用BaTiO3基陶瓷材料制备方法,其具体步骤为:

(1)将BaTiO3、MgO-Al2O3-SiO2(M AS)堇青石玻璃按质量比100:0.5配料,与去离子水混合球磨4h后烘干、过筛,得到陶瓷粉末。

(2)将步骤(1)得到的陶瓷粉末外加质量比5%的PVA粘结剂,造粒、成型,制得直径~10mm、厚度~1m m的陶瓷坯体。陶瓷坯体在600℃下保温2小时排胶,然后升温至1200℃保温10分钟后,接着快速冷却到1000℃保温6小时,抛光、镀银后得到BaTiO3基准纳米陶瓷材料。

实施例6

一种X8R MLCC用BaTiO3基陶瓷材料制备方法,其具体步骤为:

(1)将BaTiO3、MgO-Al2O3-SiO2(M AS)堇青石玻璃按质量比100:1配料,与去离子水混合球磨4h后烘干、过筛,得到陶瓷粉末。

(2)将步骤(1)得到的陶瓷粉末外加质量比5%的PVA粘结剂,造粒、成型,制得直径~10mm、厚度~1m m的陶瓷坯体。陶瓷坯体在600℃下保温2小时排胶,然后升温至1200℃保温10分钟后,接着快速冷却到1000℃保温6小时,抛光、镀银后得到BaTiO3基准纳米陶瓷材料。

对比例1

一种BaTiO3陶瓷材料制备方法,其具体步骤为:

将纯BaTiO3粉末外加质量比5%的PVA粘结剂,造粒、成型,制得直径~10mm、厚度~1mm的陶瓷坯体。陶瓷坯体在600℃下保温2小时排胶,然后升温至1225℃保温2小时,抛光、镀银后得到BaTiO3陶瓷材料。

将实施例1~6和对比例制备得到的BaTiO3基陶瓷材料进行XRD测试,XRD图谱如图1所示,分析表明:所有陶瓷样品均为单一的钙钛矿相。

实施例1制备的BaTiO3基陶瓷材料平均晶粒尺寸为148nm;实施例2制备的BaTiO3基陶瓷材料平均晶粒尺寸为136nm;实施例3制备的BaTiO3基陶瓷材料平均晶粒尺寸为144nm;实施例4制备的BaTiO3基陶瓷材料平均晶粒尺寸为148nm;实施例5制备BaTiO3基陶瓷材料平均晶粒尺寸为150nm;实施例6制备的BaTiO3基陶瓷材料平均晶粒尺寸为136nm。对比例1制备的BaTiO3陶瓷材料平均晶粒尺寸为2560nm。其中实施例1、实施例4和对比例1制备的BaTiO3基陶瓷材料进行SEM扫描,SEM图分别如图2中(a)、(b)、(c)图所示。由此可见实施例获得的BaTiO3陶瓷材料晶粒尺寸远小于对比例,其晶粒尺寸均不超过150nm,表明获得了准纳米BaTiO3基陶瓷材料。

将制备的BaTiO3基陶瓷材料样品抛光制备银电极后进行介电性能测试,其在1kHz下介电常数和介电损耗随温度的变化以及容温变化率(TCC,以25℃为基准)如图3-图6所示。由图可知,对比例1在125℃附近有尖锐的介电峰,故其介电常数温度稳定性较差,未能满足X7R、X8R的温度稳定性要求;而实施例1-6相应介电峰明显降低,使得-55℃~150℃的温度范围介电常数变化较小,其中图4表明实施例2~6介电性能容温特性满足X8R电容器要求(即-55℃~150℃的温度范围内为容温变化率不超过±15%的范围,虚线框所示),而且在-55℃~150℃温度范围内均具有低介电损耗(低于2.0%);

其中表1为实施例1-6和对比例1制备BaTiO3基陶瓷样品的介电性能对比:

25℃下1kHz介电常数和介电损耗分别为832和0.65%(实施例1)、801和0.76%(实施例2)、806和0.80%(实施例3)、1385和1.51%(实施例4)、998和0.65%(实施例5)、755和1.04%(实施例6)、3307和3.14%(对比例1)。由表1可知,实施例1~6制备的BaTiO3基陶瓷材料相比于对比例1制备的BaTiO3陶瓷材料,其介电常数和介电损耗均降低,介电性能温度稳定性明显提高,在-55~150℃温度范围内具有良好的温度稳定性,其中实施例2~6制备的BaTiO3基陶瓷材料满足X8R(在-55~150°C范围内,∆C / C25°C <±15%)标准要求。同时,实施例获得的BaTiO3陶瓷材料晶粒尺寸不超过150nm,表明获得了准纳米BaTiO3基陶瓷材料,适用于小型化、高容量的0201、01005等X8R型的MLCC。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:微波介质陶瓷材料及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!