一种熔喷无纺布的制备方法

文档序号:1856017 发布日期:2021-11-19 浏览:18次 >En<

阅读说明:本技术 一种熔喷无纺布的制备方法 (Preparation method of melt-blown non-woven fabric ) 是由 郑海刚 徐悦 于 2021-08-28 设计创作,主要内容包括:本申请涉及一种熔喷无纺布的制备方法。通过预先使用[N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺]Ce催化制备均聚丙烯树脂,确保均聚丙烯树脂的分子量介于180000-200000之间;分子量分布为1.3-1.4之间;熔体指数介于18-22g/10min;残余应力比不高于0.03%。所得到的均聚丙烯树脂的分子量分布、熔体指数、残余应力比、柔性触感等性能均处于更为优异的水平,特别适于熔喷无纺布的制备,并可以得到兼具强度和柔性触感的无纺布。(The application relates to a preparation method of melt-blown non-woven fabric. Preparing homopolymerized propylene resin by using [ N, N-bis (2-ethyl-7-phenyl-1H-indenyl) p-ethylbenzene sulfonamide ] Ce for catalysis in advance, and ensuring that the molecular weight of the homopolymerized propylene resin is between 180000-200000; the molecular weight distribution is between 1.3 and 1.4; the melt index is between 18 and 22g/10 min; the residual stress ratio is not higher than 0.03%. The obtained homopolymerized propylene resin has more excellent molecular weight distribution, melt index, residual stress ratio, flexible touch feeling and other performances, is particularly suitable for preparing melt-blown non-woven fabrics, and can obtain the non-woven fabrics with both strength and flexible touch feeling.)

一种熔喷无纺布的制备方法

技术领域

本申请属于无纺布制造的技术领域,具体涉及一种熔喷无纺布的制备方法。

背景技术

无纺布是由定向或随机的纤维不经过纺织而是通过机械和化学处理得到的一种外观与传统纺织布料相似的布。目前,主要有7类无纺布生产工艺,分别是水刺无纺布、热合无纺布、浆粨气流成网无纺布、湿法无纺布、纺粘无纺布、熔喷无纺布、针刺无纺布。其中,熔喷无纺布具有纤维网均匀度好、手感柔软,过滤性和液体吸纳性良好等优点,广泛应用于医疗卫生、服装等领域。

用于制备无纺布的纤维通常是高分子材料合成纤维,如聚丙烯、壳聚糖、纤维素等。聚烯烃树脂类合成纤维是最常用的无纺布纤维,具有良好的柔韧性、透气性,广泛应用于医疗卫生、服装、汽车、建筑等领域。其中,聚烯烃树脂的性能直接决定了所得到的聚烯烃类无纺布的性能。

通过使用常规齐格勒-纳塔催化剂来合成均聚烯烃类树脂,特别是通过齐格勒-纳塔催化剂催化聚丙烯和聚乙烯双组分共聚,可以获得改善的柔软性。但是,由于强度的劣化,是的这种方法得到的树脂纤维不适于制备高强度的无纺布。

通过使用茂金属催化剂来制备均聚丙烯树脂,可以获得具有窄的分子量分布的丙烯酸树脂,进而能够生产细且均匀的纤维,并用于制备高强度的无纺布。但是,这种高强度的无纺布的柔性触感较差,不适于在服装、卫生用品等领域的应用。

为此,本申请旨在提供一种特别适于服装、卫生用品等领域应用的熔喷无纺布的制备方法。

发明内容

针对相关技术中所存在的不足,本申请提出了一种熔喷无纺布的制备方法,所制备得到的熔喷无纺布具有优异的强度和柔性触感。

为了实现本申请,作为本申请的一个方面,首先提供了一种由稀土有机催化剂催化制备得到的均聚丙烯树脂,其中,所述稀土有机催化剂为式(I)所示的稀土有机化合物;

(I)

所得到的均聚丙烯树脂的分子量介于180000-200000之间;分子量分布为1.3-1.4之间;熔体指数介于18-22g/min;残余应力比不高于0.03%。

为了实现本申请,作为本申请的另一个方面,提供了一种式(I)所示的稀土有机化合物的制备方法。

在该制备方法中,所使用的原料包括:N,N-二氯对乙苯磺酰胺,2-乙基-7-苯基-1H-茚,苯,甲苯,环己烷,四氢呋喃,正丁基锂,硝酸铈氨,叔丁醇钠。其中,N,N-二氯对乙苯磺酰胺、2-乙基-7-苯基-1H-茚的结构式分别如下式(II)、式(III)所示。

(II); (III)。

所述式(I)所示的稀土有机化合物的制备方法,包括以下步骤:

(1)按照体积比7:3配制甲苯/四氢呋喃混合溶剂,并将0.05摩尔2-乙基-7-苯基-1H-茚溶于100毫升所述甲苯/四氢呋喃混合溶剂,得到溶液A,

(2)将10毫升2mol/L的正丁基锂的环己烷溶液滴加至所述溶液A中,搅拌3-12小时;

(3)在-20℃以下的环境下,将100毫升浓度为0.025mol/L的N,N-二氯对乙苯磺酰胺的苯溶液缓慢滴加至步骤(2)得到的溶液中,搅拌5分钟后,在室温下持续搅拌12-24小时,待反应完成后,得到中间产物N,N-二(2-乙基-7-苯基-1H-茚基)苯磺酰胺,在减压下去除反应溶液中的溶剂,然后用甲苯溶剂进行再次溶解和重结晶,即可得到高纯度的N,N-二(2-乙基-7-苯基-1H-茚基)苯磺酰胺;

(4)通过硝酸铈氨与叔丁醇钠以摩尔比为1:6的比例反应,得到四叔丁氧基铈;

(5)将0.025摩尔步骤(3)制得的N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺溶于200毫升四氢呋喃溶液中得到溶液B,再将100毫升浓度为0.125mol/L的四叔丁氧基铈的四氢呋喃溶液与溶液B混合,搅拌反应12-24小时,即可得到式(I)所示的稀土有机化合物;

(6)在减压下去除反应溶液中的溶剂,然后用甲苯溶剂进行再次溶解和重结晶,即可得到高纯度的[N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺]Ce。

为了实现本申请,作为本申请的又一个方面,提供了一种由稀土有机催化剂催化制备均聚丙烯树脂的方法,包括以下步骤:

(1)将[N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺]Ce负载在氧化铝或氧化硅颗粒表面,得到固体颗粒负载的稀土有机催化剂;

(2)将固体颗粒负载的稀土有机催化剂用于催化均聚丙烯树脂的制备,聚合温度为25-40℃。

最后,为了实现本申请,提供了一种熔喷无纺布的制备方法,包括以下步骤:

(1)将由稀土有机催化剂催化制备得到的均聚丙烯树脂与驻极母粒按照重量比为(95-99):(1-5)的比例置于混料机中混合,所述混料机的转速为90-180rpm,混合时间为10-15min;

(2)将混合后的原料通过双螺杆挤出进一步机熔融混合,并挤出造粒,得到熔喷母粒,所述双螺杆挤出机的熔融温度为215-235℃,螺杆转速为120-180rpm;

(3)将步骤(2)制得的熔喷母粒通过螺杆挤出机熔喷纺丝,通过周围的冷空气介质冷却固化成纤维长丝,在接收装置上铺设成网,形成多层复合纤维网,熔喷过程中空气压力为0.3-0.5MPa,接收距离为11-15cm。

(4)对所述多层复合纤维网进行热轧加固处理,得到无纺布,所述热轧加固处理的温度为170℃,压力为5MPa,热轧时间为15s。

有益效果:

发明人在实践中发现,现有的齐格勒-纳塔催化剂或茂金属催化剂所催化制备得到的聚烯烃类树脂存在强度不足或柔性触感较差的缺陷。根据本申请的方案,通过使用特定的稀土有机催化剂催化制备均聚丙烯树脂,所得到的均聚丙烯树脂的分子量分布、熔体指数、残余应力比、柔性触感等性能均处于更为优异的水平,特别适于熔喷无纺布的制备,并可以得到兼具强度和柔性触感的无纺布。

具体实施方式

以下结合具体实施例对本申请作进一步的详细说明,本申请的保护内容不限于以下实施例。在不背离本申请构思的范围下,本领域技术人员能够想到的变化都被包括在本申请中。

发明人在实践中发现,熔喷方法制备的无纺布虽然具有较高柔软度,但是其强度相对较差。而且,现有的齐格勒-纳塔催化剂制备得到的聚烯烃类树脂本身就存在强度不足的缺陷,现有的茂金属催化剂所催化制备得到的聚烯烃类树脂又存在柔性触感较差的缺陷。为此,发明人在为改善上述问题的研究过程中发现,具有特定结构的稀土有机化合物作为催化剂催化制备得到的均聚丙烯树脂的分子量介于180000-200000之间,分子量分布为1.3-1.4之间,熔体指数介于18-22g/10min,残余应力比不高于0.03%。其中,同时将分子量、分子量分布、熔体指数和残余应力比分别优化至180000-200000、1.3-1.4、18-22g/10min和不高于0.03%,可以同时实现高强度和优异的柔性触感。

因此,根据根据本申请的第一实施方式,提供了一种用于催化制备具有上述优异性能的均聚丙烯树脂的稀土有机催化剂。所述稀土有机催化剂为[N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺]Ce,具有式(I)所示的结构式,

(I)。

实施例1

[N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺]Ce的制备,具体步骤如下:

(1)按照体积比7:3配制甲苯/四氢呋喃混合溶剂,并将0.05摩尔2-乙基-7-苯基-1H-茚溶于100毫升所述甲苯/四氢呋喃混合溶剂,得到溶液A,

(2)将10毫升2mol/L的正丁基锂的环己烷溶液滴加至所述溶液A中,搅拌12小时;

(3)在-20℃以下的环境下,将100毫升浓度为0.025mol/L的N,N-二氯对乙苯磺酰胺的苯溶液缓慢滴加至步骤(2)得到的溶液中,搅拌5分钟后,在室温下持续搅拌24小时,待反应完成后,得到中间产物N,N-二(2-乙基-7-苯基-1H-茚基)苯磺酰胺,在减压下去除反应溶液中的溶剂,然后用甲苯溶剂进行再次溶解和重结晶,即可得到高纯度的N,N-二(2-乙基-7-苯基-1H-茚基)苯磺酰胺;

(4)通过硝酸铈氨与叔丁醇钠以摩尔比为1:6的比例反应,得到四叔丁氧基铈;

(5)将0.025摩尔步骤(3)制得的N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺溶于200毫升四氢呋喃溶液中得到溶液B,再将100毫升浓度为0.125mol/L的四叔丁氧基铈的四氢呋喃溶液与溶液B混合,搅拌反应18小时,即可得到式(I)所示的稀土有机化合物;

(6)在减压下去除反应溶液中的溶剂,然后用甲苯溶剂进行再次溶解和重结晶,即可得到高纯度的[N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺]Ce。

实施例2

[N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺]Ce的制备,具体步骤如下:

(1)按照体积比7:3配制甲苯/四氢呋喃混合溶剂,并将0.05摩尔2-乙基-7-苯基-1H-茚溶于100毫升所述甲苯/四氢呋喃混合溶剂,得到溶液A,

(2)将10毫升2mol/L的正丁基锂的环己烷溶液滴加至所述溶液A中,搅拌10小时;

(3)在-20℃以下的环境下,将100毫升浓度为0.025mol/L的N,N-二氯对乙苯磺酰胺的苯溶液缓慢滴加至步骤(2)得到的溶液中,搅拌5分钟后,在室温下持续搅拌18小时,待反应完成后,得到中间产物N,N-二(2-乙基-7-苯基-1H-茚基)苯磺酰胺,在减压下去除反应溶液中的溶剂,然后用甲苯溶剂进行再次溶解和重结晶,即可得到高纯度的N,N-二(2-乙基-7-苯基-1H-茚基)苯磺酰胺;

(4)通过硝酸铈氨与叔丁醇钠以摩尔比为1:6的比例反应,得到四叔丁氧基铈;

(5)将0.025摩尔步骤(3)制得的N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺溶于200毫升四氢呋喃溶液中得到溶液B,再将100毫升浓度为0.125mol/L的四叔丁氧基铈的四氢呋喃溶液与溶液B混合,搅拌反应24小时,即可得到式(I)所示的稀土有机化合物;

(6)在减压下去除反应溶液中的溶剂,然后用甲苯溶剂进行再次溶解和重结晶,即可得到高纯度的[N,N-二(2-乙基-7-苯基-1H-茚基)对乙苯磺酰胺]Ce。

为了比较稀土金属有机化合物与过渡金属有机化合物之间的效果区别,设置了对比例1、对比例2。其中,对比例2为现有的齐格勒-纳塔催化剂。

对比例1

N,N-二(2-乙基-7-苯基-1H-茚基)对甲苯磺酰胺二氯化锆的制备

具体制备步骤如下:

(1)按照体积比7:3配制甲苯/四氢呋喃混合溶剂,并将11克2-乙基-7-苯基-1H-茚溶于100毫升所述甲苯/四氢呋喃混合溶剂,得到溶液A,

(2)将10毫升2mol/L的正丁基锂的环己烷溶液滴加至所述溶液A中,搅拌10小时;

(3)在-20℃以下的环境下,将100毫升浓度为60g/L的N,N-二氯对甲苯磺酰胺的苯溶液缓慢滴加至步骤(2)得到的溶液中,搅拌5分钟后,在室温下持续搅拌16小时,待反应完成后,得到中间产物N,N-二(2-乙基-7-苯基-1H-茚基)苯磺酰胺;

(4)在-20℃以下的环境下,将100毫升浓度为0.025mol/L的四氯化锆的四氢呋喃溶液加入到步骤(3)得到的溶液中,搅拌20分钟后,在室温下持续搅拌24小时,待反应完成后,即可得到N,N-二(2-乙基-7-苯基-1H-茚基)对甲苯磺酰胺二氯化锆的制备;

(5)在减压下去除反应溶液中的溶剂,然后用甲苯溶剂进行再次溶解和重结晶,即可得到高纯度的N,N-二(2-乙基-7-苯基-1H-茚基)对甲苯磺酰胺二氯化锆。

根据本申请的第二实施方式,提供一种均聚丙烯树脂。为了与第一实施方式中的实施例1-2和对比例1-2相对应,设置了实施例3-4和对比例3-4。所述均聚丙烯树脂的制备方法如下:

(1)将实施例1-2和对比例1所制备得到的最终产物分别负载在氧化硅颗粒表面,得到对应的固体颗粒负载的金属有机催化剂;

(2)将(1)中得到的3种固体颗粒负载的金属有机催化剂和对比例2的齐格勒-纳塔催化剂分别用于催化均聚丙烯树脂的制备,聚合温度为25℃,得到的均聚丙烯树脂分别标记为实施例3-4和对比例3-4。

根据本申请的第三实施方式,提供了一种熔喷无纺布。为了与第二实施方式中的实施例3-4和对比例3-4相对应,设置了实施例5-6和对比例5-6。所述熔喷无纺布的制备方法如下:

(1)将实施例3-4和对比例3-4的均聚丙烯树脂分别与驻极母粒按照重量比为98:2的比例置于混料机中混合,所述混料机的转速为120rpm,混合时间为10min;

(2)将混合后的原料通过双螺杆挤出进一步机熔融混合,并挤出造粒,得到熔喷母粒,所述双螺杆挤出机的熔融温度为225℃,螺杆转速为120rpm;

(3)将步骤(2)制得的熔喷母粒通过螺杆挤出机熔喷纺丝,通过周围的冷空气介质冷却固化成纤维长丝,在接收装置上铺设成网,形成多层复合纤维网,熔喷过程中空气压力为0.4MPa,接收距离为12cm。

(4)对所述多层复合纤维网进行热轧加固处理,所述热轧加固处理的温度为170℃,压力为5MPa,热轧时间为15s,得到五种无纺布,分别标记为实施例5-6和对比例5-6。

均聚丙烯树脂和无纺布的测试

测试例1

均聚丙烯树脂的性质测评,包括以下三个方面。

(1)分子量分布(MWD)

使用凝胶渗透色谱测量聚合物的重均分子量(Mw)和数均分子量(Mn),用重均分子量除以数均分子量计算分子量分布(MWD)。

(2)熔体指数(g/10min)

根据ASTM D 1238在230℃,2.16Kg负载下测量,并表示为10分子内熔融并流出的聚合物的质量(g)。

(3)残余应力比

在200℃下施加200%的应变,然后测量在10秒后的残余应力的变化。采用沃特世科技有限公司的DHR设备,将样品加载在具有25mm直径上、下板之间,然后将间隙固定为5mm以测量残余应力数据,并基于测量的残余应力数据计算残余应力比。残余应力比的计算方法为:

残余应力比=初始残余应力/一分钟后的残余应力

其中,初始残余应力是在施加200%的应变后的0.1秒时的残余应力。

实施例3-4和对比例3-4的均聚丙烯树脂的性质测评结果如表1所示。

表1

分子量分布 熔体指数(g/10min) 残余应力比(%)
实施例3 1.3 19 0.02
实施例4 1.3 20 0.02
对比例3 2.4 28 0.04
对比例4 3.1 33 0.16

从表1可以看出,实施例3-4的均聚丙烯树脂具有更为优化的分子量分布,为1.3,同时具有更为优化的熔体指数,介于19-20g/10min之间,具有更为优化的残余应力比,为0.02%。相较于对比例3-4的均聚丙烯树脂而言,本申请制备得到的均聚丙烯树脂特别适于熔喷无纺布的制备,并有利于得到兼具强度和柔性触感的无纺布。

测试例2

无纺布的性能评价,包括以下三个方面。

(1)无纺布的强度

根据ASTM D-5035的切割方法,通过5cm宽的切割条方法测量无纺布的纵向和横向的拉伸强度。

(2)无纺布的手感

采用上海品魁机电科技有限公司NO.070型号织物手感舒适度测试仪进行手感测试,分别从韧度、软度、滑度进行评估,韧度的评分为0-100,评分越高,韧度越好;软度的评分为0-100,评分越高,软度越好;滑度的评分为0-100,评分越高,滑度越好。

(3)无纺布的摩擦系数

使用摩擦系数测量装置测量无纺布的摩擦系数。具体使用MXD-01摩擦系数仪进行测量。

实施例5-6和对比例5-6的无纺布的性质评价结果如表2所示。

表2

从表2可以看出,实施例5-6的熔喷无纺布具有更为优异的拉伸强度、手感和摩擦系数,是一种兼具更高强度和更优柔性触感的无纺布。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种有机聚合物材料及其制备方法和光催化应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!