用于碳捕获与封存的制氢设备用合成气分离方法

文档序号:1865632 发布日期:2021-11-19 浏览:4次 >En<

阅读说明:本技术 用于碳捕获与封存的制氢设备用合成气分离方法 (Synthesis gas separation method for hydrogen production equipment for carbon capture and sequestration ) 是由 塞尔盖·维克托罗夫·阿尔卡达克斯基 努沙德·昆麻 齐亚德·塔雷克·艾哈迈德 于 2020-04-05 设计创作,主要内容包括:利用合成气组分的水溶性差异对合成气进行气体分离的方法和系统,该方法包括由烃燃料源产生包含氢气和二氧化碳的产物气体;通过使比氢气更易溶于水的组分溶解在水中,从而从产物气体中分离出氢气,以产生氢气产物流和副产物流;将副产物流注入含有镁铁质岩石的储层中;以及使副产物流的组分与镁铁质岩石的组分发生原位反应,以使副产物流的组分沉淀并封存在储层中。(Methods and systems for gas separation of syngas utilizing water solubility differences of syngas components, the methods comprising producing a product gas comprising hydrogen and carbon dioxide from a hydrocarbon fuel source; separating hydrogen from the product gas by dissolving in water a component more soluble in water than hydrogen to produce a hydrogen product stream and a byproduct stream; injecting the byproduct stream into a reservoir containing mafic rock; and reacting components of the byproduct stream in situ with components of the mafic rock to precipitate and sequester the components of the byproduct stream in the reservoir.)

用于碳捕获与封存的制氢设备用合成气分离方法

技术领域

本公开的实施方案涉及协同进行制氢和碳捕获。特别地,本公开的实施方案涉及通过基于水的合成气分离而由化石燃料制氢、以及经由镁铁质岩石(例如玄武岩)的碳捕获。

背景技术

氢气或H2是一种环境友好的燃料,其具有替代排放温室气体的烃燃料的潜力。例如,氢气可用于为燃料电池供能。目前生产的几乎所有H2(超过约95%)都来自烃类,并且主要来自天然气。排放到大气中的废CO2(每生产一吨H2伴随大约7吨至12吨CO2)部分抵消了H2的“清洁燃料”优势。为了减轻制H2时伴随的碳足迹,已经提出了经济上不切实际的制H2方法和系统,该方法和系统将捕获共同产生的CO2、将其压缩成液体并注入深部(深度大于地下约800米至850米)沉积岩储层中组合于一个工艺中,这一工艺被称为碳捕获与封存(“CCS”)。然而,常规的CCS会显著增加本已高耗能的制H2方法的成本,从而使该组合技术在当前市场和监管条件下不可行。

对于先前提出的烃类制H2与CO2的常规CCS的组合,例如在枯竭的含烃储层或含盐地下水含水层中的CO2的CCS,增加了与CO2的纯化、压缩、运输和注入相关的高昂成本。采用了许多耗能步骤来确保满足常规CCS要求所需的高纯度CO2(大于约98mol%)。而且,由于标准变压吸附(“PSA”)H2-CO2分离技术本身并不能为CCS生产质量和纯度足够高的CO2,因此需要进一步纯化,该纯化涉及酸性气体吸收试剂,例如SelexolTM(用于重质烃类和固体烃类)和甲基二乙醇胺(MDEA)。

常规的CCS中CO2的安全且经济的运输、以及注入和长期封存都依赖于将CO2压缩到超临界(液体)状态,这也显著增加了成本。因此,地下CO2封存储层必须位于地表以下垂直距离至少约850米处,以确保有足够的压力使CO2保持液态,从而增加了注入井和处置井的成本。

由于常规的CCS中的CO2会保持液体状态和/或压缩气体状态达数百年或数千年,因此需要复杂的长期监测程序,以确保将CO2真正限制在给定的CCS储层中并且不会迁移到覆岩(overlying)含水层或地表。

发明内容

本公开提供了在由烃化石燃料制氢期间从合成气中有效分离H2而几乎没有温室气体排放的系统和方法。在一些实施方案中,该方法的第一步骤是由气态、液态或固态烃类同时产生H2和废物或副产物CO2(例如天然气蒸汽重整)。由烃类同时产生H2和CO2可以通过多种工艺完成。在第二步骤中,使用基于水的分离技术,基于气体-水溶解度的差异将H2与其他气体组分(例如CO2和H2S)分离。在该方法的第三步骤中,将用副产物组分(例如CO2和H2S)饱和的水注入反应性镁铁质岩石或超镁铁质岩石中,CO2和/或其他废气在反应性镁铁质岩石或超镁铁质岩石中作为沉淀的碳酸盐矿物质而永久固定。

术语镁铁质岩概括性地描述富含镁和铁的硅酸盐矿物岩或火成岩。镁铁质矿物质颜色可能较深,而形成岩石的镁铁质矿物质包括橄榄石、辉石、角闪石和黑云母。镁铁质岩石的实例包括玄武岩、辉绿岩和辉长岩,而超镁铁质岩石的实例包括纯橄榄岩、橄榄岩和辉石岩。在化学上,镁铁质岩石和超镁铁质岩石可以富含铁、镁和钙。

本发明的碳捕获与封存(“CCS”)系统和方法的用途广泛,还能够使来自诸如精炼、发电和脱盐之类的其他来源的CO2经济且永久地固定在例如玄武岩中。在本文描述的系统和方法的实施方案中,通过使合成气通过有水的反应容器(例如洗涤塔),CO2和酸性气体溶解在水中,其可以永久地封存在玄武岩中,在一些实施方案中,未进行或不存在进一步的分离、纯化或压缩。分离出的H2产物可根据需要进行进一步处理,并最终进行运输以作为燃料产品使用。在系统和方法的实施方案中,产生的氢气能够可逆地转化为氨,以便于以更小的体积安全储存和运输。

为了提高协同进行的制H2和CO2去除的效率,制H2在可供选择的CCS工艺之前进行,在该CCS工艺中,将CO2注入由反应性玄武岩和超镁铁质岩石组成的天然地质宿体(geological sink)中,在该天然地质宿体中,CO2迅速反应以形成稳定的矿物相,例如沉淀的碳酸盐。与其他CCS系统和工艺相比,玄武岩中的碳封存(“CSB”)消耗的能源明显更少,有利地对酸性气体杂质(即H2S)具有较高的耐受性,不需要深井,例如850m深或更深的井,并且不需要长期的储层监测。

与常规的CCS相比,玄武岩和超镁铁质岩石中的CO2封存是独特的,因为它在某种程度上依赖于快速进行将CO2气体转化为固体的化学反应,而不是依赖于随时间推移的CO2本身的物理封存。经济估算表明,与常规的CCS相比,本公开的系统和方法捕获一公吨CO2的成本要低得多。

在一些实施方案中,在将CO2气体注入含玄武岩的储层之前或在此期间,将CO2气体溶解在水中,这避免了包括压缩和保持CO2为液体状态在内的一些困难。通过将CO2溶解在水相中,有助于避免如常规CCS所要求的钻探地表以下深度大于约850m的深的处置井。换句话说,使足够量的CO2保持溶解于水中所需的压力远远更低,并且对于本公开的实施方案,注入区可以浅至地表以下垂直距离350米。

将CO2快速固定为稳定的固体碳酸盐矿物质,不仅确保从环境中永久去除CO2,而且排除了对于常规CCS现场所需的复杂监测程序的需要。本技术的对存在高达约40mol%的诸如H2S之类的其他水溶性废气的极端耐受性也对效率具有重要的影响,这些水溶性废气能够像CO2一样,在玄武岩和超镁铁质岩中迅速且基本完全地矿化。

CSB不需要昂贵且耗能的步骤来从制H2过程中产生的CO2和其他气体中去除硫/H2S杂质。另一个重要的优点是,与液态CO2(液态CO2密度低于储层水,因此具有浮力)不同的是,富含CO2的水的密度高于环境地下水。因此,当注入富含CO2的水时,其将沉入储层而不是向上移动,这在一些实施方案中消除了对冠岩的需要,而冠岩是所有常规CCS储层的极其重要的地质特征。在本公开的实施方案中,在玄武岩和镁铁质岩石中注入并封存CO2对存在于那些岩石中的地下水的质量没有影响。当将这些含水层用于供应饮用水或其他目的用水时,这一点尤为重要。

因此,本文公开了一种利用合成气组分的水溶性差异对合成气进行气体分离的方法,该方法包括由烃燃料源产生包含氢气和二氧化碳的产物气体;通过使比氢气更易溶于水的组分溶解在水中,从而从产物气体中分离出氢气,以产生氢气产物流和副产物流;将副产物流注入含有镁铁质岩石的储层中;以及使副产物流的组分与镁铁质岩石的组分发生原位反应,以使副产物流的组分沉淀并封存在储层中。在一些实施方案中,分离步骤包括使用至少一个具有产物气体和水的逆流的立式洗涤塔,产物气体在约20℃流动。在其他实施方案中,通过将CO2和H2S溶解在水的逆流中,从而使至少约50%的CO2和约95%的H2S从产物气体中除去并与氢气产物流分离。

还在其他实施方案中,分离步骤包括使用至少两个串联的具有产物气体和水的逆流的立式洗涤塔。在一些实施方案中,镁铁质岩石包括玄武岩。在一些其他实施方案中,在将副产物流注入储层的步骤之前,进一步处理副产物流以将CO2与其他组分分离并纯化,以提高用于注入储层中的副产物流的CO2浓度。该方法的其他实施方案包括将用于注入储层中的副产物流中的CO2液化的步骤。某些实施方案包括使分离出的氢气与氮气反应以形成压缩液氨的步骤。

在该方法的其他实施方案中,包括运输压缩液氨的步骤、以及通过电解法使压缩液氨再次转变为氢气和氮气以将氢气用作氢燃料源的步骤。在一些实施方案中,产生产物气体的步骤包括蒸汽重整或部分氧化。其他实施方案包括使副产物流的组分与镁铁质岩石的组分发生原位反应以沉淀选自由碳酸钙、碳酸镁、碳酸铁以及它们的组合组成的组中的产物的步骤。在另外的其他实施方案中,储层在地表以下约250m和约700m之间,或在约400m和约500m之间,并且在约150℃和约280℃之间,或更低。合适的储层中的温度可低至约30℃。在其他实施方案中,储层在地表以下约700m和约2,200m之间并且低于约325℃。

本文另外公开的是一种利用合成气组分的水溶性差异对合成气进行气体分离的系统,该系统包括:具有烃燃料入口的制氢单元,该制氢单元能够由烃燃料产生包含氢气和二氧化碳的产物气体;氢气分离单元,该氢气分离单元能够通过使比氢气更易溶于水的组分溶解在水中,从而从产物气体中分离出氢气,以产生氢气产物流和副产物流;和注入井,该注入井能够将副产物流注入包含镁铁质岩石的储层,以使副产物流的组分与镁铁质岩石的组分发生原位反应,从而使副产物流的组分沉淀并封存在储层中。

在该系统的一些实施方案中,氢气分离单元包括至少一个具有产物气体和水的逆流的立式洗涤塔,产物气体在约20℃流动。在一些实施方案中,通过单次经过一个洗涤塔使CO2和H2S溶解在水的逆流中,从而将至少约50%的CO2和约95%的H2S从产物气体中除去并与氢气产物流分离。在另外的其他实施方案中,氢气分离单元包括至少两个串联的具有产物气体和水的逆流的立式洗涤塔。在该系统的一些实施方案中,镁铁质岩石包括玄武岩。

一些实施方案包括副产物处理单元以处理副产物流,从而将CO2与其他组分分离并纯化,并且提高用于注入储层中的副产物流的CO2浓度。其他实施方案包括压缩机,以液化用于注入储层中的副产物流中的CO2。其他实施方案包括反应单元,以使分离出的氢气与氮气反应从而形成压缩液氨。在该系统的某些实施方案中,包括运输单元,以运输压缩液氨并通过电解法使压缩液氨再次转变为氢气和氮气,以将氢气用作氢燃料源。

在其他实施方案中,制氢单元包括蒸汽重整器或部分氧化反应器。在一些实施方案中,所产生的副产物流的组分与镁铁质岩石的组分发生原位反应,以沉淀选自由碳酸钙、碳酸镁、碳酸铁以及它们的组合组成的组中的产物。另外在其他实施方案中,储层在地表以下约250m和约700m之间,或在约400m和约500m之间,并且在约150℃和约280℃之间,或更低。合适的储层中的温度可低至约30℃。在其他实施方案中,储层在地表以下约700m和约2,200m之间并且低于约325℃。

附图说明

参照以下说明书、权利要求和附图,将更好地理解本公开的这些和其他特征、方面和优点。然而,需要注意的是,附图仅示出了本公开的几个实施方案,因此不应被视为对本公开范围的限制,因为本公开可以包括其他同样有效的实施方案。

图1示出用于同时进行制H2、基于H2水溶性的分离和CO2封存的系统的示例性实施方案的示意流程图,该系统用于烃类制H2且几乎零温室气体排放。

具体实施方式

因此,通过参考构成本说明书的一部分的附图中示出的实施方案,可对之前简要概括的本公开的实施方案进行更具体的描述,从而可更详细地理解将变得明显的用于在由烃化石燃料制氢的过程中从合成气中有效分离H2且几乎没有温室气体排放的系统和方法的实施方案的特征和优点以及其他特征和优点的方式。然而,需要注意的是,附图仅示出了本公开的各种实施方案,因此不应被认为是对本公开范围的限制,因为本公开还可以包括其他有效的实施方案。

通过使用诸如蒸汽重整或部分氧化/气化的技术由烃类制H2包括三个步骤。在蒸汽重整中,在H2O(蒸汽)和催化剂的存在下加热烃(例如甲烷),以释放由氢气(H2)、一氧化碳(CO)、少量二氧化碳(CO2)和/或其他杂质组成的粗合成气,如方程式1和2所示:

和/或

然后处理粗合成气以除去硫化合物并且/或者进一步纯化。然后,根据方程式3,通过使粗合成气与H2O蒸汽在催化剂的存在下反应以产生H2和CO2,从而使H2产率最大化:

CO+H2O→CO2+H2 方程式3

这被称为水煤气变换反应,因此产物被称为“变换”合成气。在部分氧化中,根据方程式4,烃与少量(非化学计量)的氧气(O2)反应,以产生由H2和CO组成的粗合成气:

CH4+1/2O2→CO+2H2 方程式4

该粗合成气还包含少量的CO2和/或氮气(N2,如果使用空气代替纯O2的话)。然后纯化粗合成气,并通过方程式3的反应使其H2含量最大化。表1列出了由两种方法(蒸汽重整和部分氧化)生产的示例性变换合成气的组成:

表1.来自蒸汽重整或部分氧化的示例性变换合成气的组成。

组分 H<sub>2</sub> CO CO<sub>2</sub> N<sub>2</sub> O<sub>2</sub> Ar H<sub>2</sub>S H<sub>2</sub>O 其他
Mol.% 40.9 1 29.8 2.4 0 0.4 0.01 25.4 0.11

在水煤气变换之后,通常通过采用吸附、吸收和/或膜过滤的方法使H2与CO2和其他杂质分离,从而纯化H2。已经开发出了膜技术,但尚未在工业规模上得到广泛应用。一个示例性的方法是变压吸附(“PSA”),该方法利用了诸如活性炭、二氧化硅和沸石等材料的压力相关的选择性吸附特性。在PSA过程中,与H2分离的废物或副产物CO2和其他杂质随后被排放到大气中。遗憾的是,如果要使用常规的CCS方案来封存CO2,则必须进一步纯化CO2并将其压缩成液体(超临界)状态,以便运输和注入深部储层中。然而在本文中,当改为采用CSB时,这两个步骤都可以被避免(或显著简化)。

PSA的能量消耗大,并且增加了获得最终基本上纯的H2产物的成本和复杂性。在本公开的系统和方法中,PSA或其他常规的H2-合成气分离系统可以减小尺寸、或完全被一种令人惊讶且出乎意料的有效技术取代,该技术利用了H2和CO2(和/或其他酸性气体)之间的水溶性显著差异。在本公开的实施方案中,将水煤气变换后产生的合成气冷却至约20℃并注入立式加压容器(例如洗涤塔)的底部,在该容器中,分散的气体与从容器顶部进料并分散在整个容器中的水流相互作用并密切混合。为了最大限度地增加分散的气体和水之间的接触,塔内填充有填充物或具有形成高度曲折路径的通道。因此,CO2

(和/或其他水溶性气体)溶解在水中,而H2(和/或其他不溶性气体)积聚在容器顶部,以用于收集和/或进一步处理/纯化。

常规CCS主要依赖于物理过程,例如将单相液态CO2注入并封存在非反应性岩石储层(例如砂岩、石灰岩)中,而CSB依赖于CO2与镁铁质岩石和超镁铁质岩石之间发生的天然化学反应以沉淀固体碳酸盐。反应包括如下:如方程式5至7所示,首先,CO2溶解到水(地表处的具有CO2气体的水或原位存在于镁铁质岩储层中的水中的任一种水、或者这两种水)中并与水发生反应,以形成弱碳酸:

根据方程式8,酸化水溶解富含Ca、Fe和Mg的硅酸盐相(矿物质和/或火山玻璃),这使得溶液中释放出二价金属离子:

(Mg,Fe,Ca)2SiO4+4H+→2(Mg,Fe,Ca)2++2H2O+SiO2(aq) 方程式8

方程式7所示的反应过程中形成的CO3 2-与二价金属阳离子反应,使得碳酸盐矿物质沉淀,如方程式9中所示:

(Ca,Mg,Fe)2++CO3 2-→(Ca,Mg,Fe)CO3 方程式9

地球化学反应-运输模型表明,矿物相(例如方解石、菱铁矿和菱镁矿)在一般的地下条件下将保持稳定,因此可以从大气中安全地去除CO2达数十万至数百万年。其他碳酸盐矿物质包括铁白云石Ca[Fe,Mg,Mn](CO3)2。此外,CSB对其他水溶性酸性气体杂质(例如H2S,其也可矿化为硫化物)具有极高的耐受性。这种有利的品质不仅进一步简化了工艺,消除了从离开制H2过程的气体混合物中去除这些杂质的需要,而且还同时封存了所有其他能够通过与玄武岩/镁铁质岩反应而形成稳定矿物相的H2O可溶性气体污染物。

CSB在水中的CO2溶解可以通过以下任一方式实现:a)将CO2和水分别注入到注入井的管道和环形空间中,并在进入储层之前使它们在井筒中约350m深度处或更深处混合;或b)在加压容器中、在地表溶解CO2和水,然后将溶液注入玄武岩/超镁铁质岩储层中。前一种方法通常适用于纯CO2和/或CO2与其他水溶性酸性气体的混合物,而后一种方法用于有效地将CO2(和其他水溶性气体)与不溶性或微溶性杂质分离,因此可以用于处理复杂的烟气混合物(例如变换合成气)。

由于CO2在水中的溶解存在某些热力学限制,因此这两种方法每封存1吨的CO2都需要约27吨的H2O。在水供给短缺的地区,可以通过在玄武岩或超镁铁质岩中注入超临界(液态)CO2来进行CSB;然而,由于需要通过压缩使CO2液化,因此这会增加能源需求。

关于制得的H2,常规来说H2以温度约-253℃的液体形式储存和运输,这需要特殊的双壁隔离容器和/或持续制冷。然而,通过H2向液氨(NH3)的可逆化学转化,使得H2的储存和运输可在低压和环境温度下以大大减少的体积进行。H2到NH3的可逆储存和运输方法本质上是更安全且有利的,特别是在要储存和运输大量H2的情况下。

由于CSB对CO2流中的杂质(例如H2S和其他气体)的高度耐受性,因此来自诸如精炼、发电和脱盐之类的其他来源的富含CO2的尾气可以在有限的处理后添加到主要废物流中,或者独立注入反应性岩石中,以便永久固定和处置。

对于在使用CSB在玄武岩和超镁铁质岩中永久固定CO2的同时由烃类制H2,其意外且令人惊讶的优势包括显著降低的预计能源用量和成本,原因在于:因为不需要压缩和液化CO2,使得能源消耗较低且井成本较低;由于对CO2流中杂质的耐受性高,因此操作复杂性较低;通过沉淀为固体,同时在储层中去除了H2S和CO2;不需要储层冠岩;并且不需要复杂的长期监测程序。当在地表或井筒中将CO2溶解于水中时,无需将CO2液化,但如果将CO2作为超临界流体直接注入地下,则可以将CO2液化。

图1示出用于同时进行制H2、H2分离和CO2封存的系统的示例性实施方案的示意流程图,以用于由烃类制H2而几乎零温室气体排放。在系统100中,烃入口102向制氢系统104提供烃源,例如天然气。制氢系统104可以包括蒸汽重整或部分氧化、以及水煤气变换反应,例如如方程式1至4中所示。产生的气体经由出口106离开并进入分离单元108。分离单元108能够将氢气与CO2和其他副产物(例如酸性气体)分离。

PSA的能量消耗大,并且增加了获得最终基本上纯的H2产物的成本和复杂性。在本公开的系统和方法中,PSA或其他常规的H2-合成气分离系统可以减小尺寸、或完全被一种令人惊讶且出乎意料的有效技术取代,该技术利用了H2和CO2(和/或其他酸性气体)之间的水溶性显著差异。在图1中,将在制氢系统104中于水煤气变换后产生的合成气冷却至约20℃,并由出口106注入分离单元108的底部。分离单元108包括至少一个立式加压容器,例如洗涤塔,在该容器中,分散的气体与从容器顶部以料流107进料的水流相互作用并密切混合。为了最大限度地增加分散气体(包括H2、CO2和酸性气体,如H2S)与水之间的接触,塔内填充有填充物或具有形成高度曲折路径的通道。因此,CO2(和/或其他水溶性气体)溶解在水中,而H2(和/或其他不溶性气体)积聚在分离单元108的顶部,以用于以出口流118进行收集和/或进一步处理/纯化。

洗涤塔的一个目的是促进CO2和其他酸性气体(例如H2S)从气相到液相的有效质量转移。这是通过专门为此目的进行了优化的填充有高比表面积介质(例如或Lantec )的接触塔和/或通过低剖面有回路起泡器(lowprofile tortuous path air bubbler)设计进行的。通过促进整个填充床中液滴的连续形成,在气体和洗涤液(例如水)之间提供了最大程度的表面接触,从而得到了高洗涤效率,并最大限度地降低了填充深度。

在洗涤塔中合适的停留时间可介于约5秒和约120秒之间,这取决于合成气的组成和流动模式。在约1个大气压至约6个大气压的压力范围内,温度可在约2℃至约55℃的范围内。获得的H2纯度范围为约50mol%至99.9mol%,这取决于运行条件和合成气的组成。包括至少一个洗涤塔的分离单元的实施方案可以在所有的气相的CO2浓度范围内工作,会受到影响并且能够调节的一个变量是所需的水量,这也取决于运行压力和温度。

水溶性CO2和另外的水溶性气体(例如酸性气体)与来自料流107的水混合,并经由出口110离开分离单元108,并且可以任选地行进到进一步的CO2纯化和液化单元112,但并不是必须的。水可以通过供水井供应,并且在一些实施方案中,可以通过玄武岩储层中的水供应,并最终循环回到同一玄武岩储层中并且水中含有CO2和H2S溶解组分。在使用单个洗涤塔的一些实施方案中,在分离单元108中从合成气中回收约40%和约60%之间、或约50%和约70%之间的CO2以及约90%和100%之间或约97%和约100%之间的H2S,这些CO2和H2S与来自料流107的水混合并经由出口110继续行进。在一些实施方案中,分离单元108可具有1个洗涤塔,但在其他实施方案中,分离单元108可具有多于1个并联或串联运行的洗涤塔。

在具有进一步的CO2纯化和液化单元112的情况下,将液化的CO2通过注入井114注入玄武岩地层116中,从而根据方程式5至9形成固体沉淀金属碳酸盐。在没有任选的进一步CO2纯化和液化单元112的情况下,CO2和诸如酸性气体之类的其他气体经由出口110离开分离单元108,并且经由注入井114直接进入玄武岩地层116中,从而根据方程式5至9形成固体沉淀金属碳酸盐。CO2可以在地表处以气体形式与水混合,或者以气体形式在玄武岩地层116中原位与水混合,或者这两种方式兼有。在注入井周围的玄武岩的溶洞和岩脉中形成固体碳酸盐结核,并由注入井向外延伸。

玄武岩溶解和矿物碳酸化反应的速率可以随着温度升高而增加,因此更高温度的玄武岩储层可能是有利的,而并不需要超过约850m的深储层,因为不需要用高压来使CO2保持在加压状态或液体状态。示例性的合适的储层温度为约185℃,或者例如在约150℃和约280℃之间,或更低。如所解释的,注入的CO2本身、或者CO2和其他气体与注入井(例如注入井114)附近的水一起形成酸性环境。注入井114附近的酸性流体对于玄武岩矿物质和火山玻璃保持不饱和状态。

不饱和以及酸性导致注入井(例如注入井114)附近的主体岩石玄武岩溶解。在热交换和主体玄武岩的充分溶解中和了酸性水并使地层水中的碳酸盐和硫矿物质饱和后,矿化主要发生在远离注入井一定距离处(这使得能够在例如玄武岩地层116之类的储层中连续注入CO2)。

氢气以出口流118离开分离单元108并行进至反应单元120,氢气在反应单元120中与氮气反应以形成氨(NH3)。在一些实施方案中,在H2行进至诸如反应单元120之类的反应单元之前,根据对H2产物的要求,根据需要进行其他H2纯化技术,如PSA、吸附或膜分离。氨在出口122处离开反应单元120,从而使H2以NH3的形式以更小的体积运输。反应单元120可包括加压多级氨生产系统(PMAPS),以生产加压液相形式的氨。加压液态NH3可以通过加压罐车运输,并且在需要氢气的地方,通过使用NH3电解槽,NH3能够可逆地再次转变为N2和H2

除非上下文另外明确指出,否则单数形式“一(a)”、“一个(an)”和“该(the)”包括复数指示物。

术语“约”在用于值或范围时是指包括给定值或范围的正负5%的值。

在附图和说明书中,已经公开了本公开的系统和方法的实施方案,该系统和方法用于在由烃化石燃料制氢的过程中从合成气中有效分离H2而几乎没有温室气体排放,并且尽管采用了具体术语,但这些术语仅用于描述性意义而不是用于限制目的。具体参考这些示出的实施方案,已经相当详细地描述了本公开的实施方案。然而,显而易见的是,在如前述说明书中描述的本公开的精神和范围内可以进行各种修改和改变,并且认为这样的修改和改变为本公开的等同形式并且是本公开的一部分。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:采用湿法清洁来自船舶发动机的废气的方法和设备

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!