涡轮壳体部件及其修理方法

文档序号:1878980 发布日期:2021-11-23 浏览:28次 >En<

阅读说明:本技术 涡轮壳体部件及其修理方法 (Turbine casing component and repair method thereof ) 是由 K·戴纳克 S·T·斯威德 朴俊永 M·米库斯 T·M·斯威茨克 R·莱布科夫斯基 于 2020-04-13 设计创作,主要内容包括:本发明公开一种壳体部件,该壳体部件被构造成形成涡轮中的流动路径的一部分。该壳体部件包括由结节状铸铁制成的基部(12)和位于该基部中的修理区域(14)。该修理区域包括施加在该基部上的黄油层(32)和施加在该黄油层上的填充层(34)。(A housing component is configured to form a portion of a flow path in a turbine. The housing component comprises a base (12) made of nodular cast iron and a repair zone (14) located in the base. The repair area includes a butter layer (32) applied on the base and a filling layer (34) applied on the butter layer.)

涡轮壳体部件及其修理方法

技术领域

本公开整体涉及涡轮或涡轮机壳体部件,并且更具体地讲,涉及其材料组成、构造和修理方法。

背景技术

结节状铸铁(诸如GGG40(DIN)级延性铸铁)是用于制造在发电时使用的涡轮的壳体的常见材料。壳体通常较大,并且以非序列生产铸造。这常常导致铸造缺陷,因为该工艺未完全优化。此外,由于切削工具受损或工艺设置不正确,铸件在机加工期间可能会被损坏。

涡轮壳体在操作期间暴露于高机械负载。振动可能导致材料疲劳,并且因此导致裂纹的形成。在气体涡轮的开始和停止顺序期间发生热应力。这些温度波动以及外壳/壳体的伴随膨胀和收缩可能有助于裂纹形成并促使现有裂纹扩展。如果裂纹超出设计限制,则壳体可能报废并且需要新的壳体,这不仅由于制造成本而且还由于涡轮的开始操作的延迟而导致高成本。如果可能的话,由于工艺困难,有缺陷的铸件以机械方式并且不常通过焊接进行修理。焊缝通常在焊接过程期间、在冷却时或在维修时间期间不久开裂。

存在两种典型的用于焊接铸铁的方法,称为冷焊和热焊。热焊包括将结节状铸铁材料沉积在有缺陷的区域中。该工艺需要594℃(1,100°F)或更高的高预热,这可能导致壳体变形。鉴于此,不能对精加工零件执行热焊。冷焊涉及使用由Ni、Ni-Fe或Ni-Fe-Mn合金制成的焊丝或电极。Ni合金通常具有比结节状铸铁更低的强度。Ni-Fe和Ni-Fe-Mn合金与结节状铸铁的强度相匹配,但那些合金具有非常低的热膨胀系数(CTE)。这使得焊接更容易,然而,由于CTE失配引起的应力增加,在大型修理中将很可能在壳体的热循环期间导致失败。

发明内容

本发明提供了结节状铸铁壳体的成分和制造方法及其修理方法。

根据一个方面,壳体部件是气体涡轮或蒸汽涡轮的一部分。壳体部件包括由结节状铸铁制成的基部和基部中的修理区域。修理区域包括施加在基部上的黄油层和施加在黄油层上的填充层。

根据另一方面,提供了一种用于修理壳体部件的方法,该壳体部件是气体涡轮或蒸汽涡轮的一部分。该方法包括用于将黄油层施加在基材上的步骤。以第一焊层间温度施加黄油层。第二步骤将填充层施加在黄油层上,并且以第二焊层间温度施加填充层。第一焊层间温度低于第二焊层间温度。

从以下结合以举例的方式例示本发明的示例性方面或实施方案的附图进行的描述中,本公开的其他方面和优点将变得显而易见。

附图说明

以举例的方式,下文参考附图更全面地描述本公开的实施方案,其中:

图1例示了可应用本公开的示例性方面的蒸汽涡轮的一部分的剖视图;

图2例示了图1的区段的放大视图,其示出了示例性方面的修理区域;

图3例示了根据示例性方面的包括一个或多个黄油层以及填充层的修理区域的剖视图;

图4例示了用于修理形成蒸汽或气体涡轮中的流动路径的一部分的壳体部件的方法的流程图。

具体实施方式

现在参考附图描述本公开的示例性实施方案,其中在全文中类似的附图标号始终用于指代类似的元件。在以下描述中,出于解释的目的,阐述了许多具体细节以提供对本公开的透彻理解。然而,可以在没有这些具体细节的情况下实践本公开,并且本公开不限于本文所公开的示例性实施方案。

如本文所用的冠词“一个(a和an)”意味着在本发明的说明书和权利要求中所描述的实施方案中当应用到任何特征时的一个或多个。“一个(a和an)”的使用不将含义限于单个特征,除非具体声明这种限制。单数或复数名词或名词短语之前的冠词“所述”代表一个或多个具体指定的特征,并且可根据其所使用的环境而具有单数或复数含义。形容词“任何”不加选择地意味着一个、一些或全部的任何数量。

图1例示了可应用示例性实施方案的轴流蒸汽涡轮的区段。示出了壳体部件10、蒸汽流动路径22以及包括静止叶片列16和下游旋转叶片列18的末级20。

壳体部件10形成轴向蒸汽流动路径22的径向外界限,从而部分地限定轴向蒸汽流动路径22。壳体部件10可另外提供用于承载一个或多个静止叶片列16的载体装置。壳体部件10可仅形成蒸汽涡轮的壳体的一部分。即,壳体部件10是若干部件中的一个部件。另选地,壳体部件10可限定蒸汽涡轮的壳体。

如图1所示,包含在轴向蒸汽流动路径22内的是静止叶片列16或通过流动路径22的工作流体,通过旋转刀片列18使这些静止叶片列各自向下游延伸,该延伸是对应于标称流动方向的轴向方向。包含在流动路径22内的最后一个叶片列16/刀片列18组合限定涡轮的末级20。

在图2所示的示例性实施方案中,壳体部件10包括:基部12,该基部由结节状铸铁(或延性铸铁)制成;和修理区域14,该修理区域位于基部12的暴露于蒸汽流动路径22的区域中。修理区域14由位于填料或填充层下面的黄油层组成。在示例性实施方案中,修理区域14位于径向介于旋转刀片列18和基部12之间的区域中,其中径向方向被限定为垂直于旋转刀片列18的旋转轴线的方向。然而,修理区域14可位于壳体10中或该壳体上的任何位置。

图3例示了根据本公开的方面的包括一个或多个黄油层32以及一个填充层34的修理区域14的剖视图。基板或基部12包含结节状铸铁,该结节状铸铁也可称为延性铁、延性铸铁、球状石墨铁或球状石墨铸铁。在延性铸铁或结节铸铁中,石墨呈球体或结节的形式,而不是像灰铸铁中那样的薄片。在灰铸铁中,锋利的石墨薄片在金属基体内产生应力集中点。相比之下,结节铸铁中的圆形或球形结节抑制裂纹的产生,从而提供增强的延展性和优异的机械性能。在修理之前,区域14可表现为腔体或凹陷的形式,并且可进一步挖掘该凹陷以提供在其上建设修理的稳定基部。接着可使基板或部件经受任选的预热步骤,其中将基板加热至最高204℃(400°F)。该任选的加热步骤有利于去除不期望的水分含量。

在获得令人满意的基部形状之后,将两个或更多个黄油层或隔离(buttering)层32施加到基部12。每个黄油层32可包含镍、镍合金、镍铁合金或镍铁锰合金。黄油层32相对较软,并且由于来自铸铁基部14的较大增碳而不形成脆性微观结构。黄油层32优选地以低热输入、小于204℃(400°F)的焊层间温度和低至无预热来施加。焊层间温度是沉积后续焊道的焊接部位的温度,并且选择具体地最大焊层间温度以控制焊接金属微观结构显影并最小化奥氏体镍和镍合金的固化或液化开裂的风险。如果局部温度高于期望的焊层间温度,则焊工必须等待焊接部位冷却,之后进行另一个阶段。

将填充层34施加在黄油层32上。填充层34可包含1个或多个低碳钢层。低碳钢材料或焊接电极是其中碳含量不超出约0.25%并且锰含量不超出约1.65%的材料或焊接电极。碳钢材料具有与结节状铸铁相似的平均热膨胀系数,从而确保焊接区域将在壳体的热循环期间以与基材大致相同的速率膨胀和收缩。可在一个或多个阶段中施加填充层34,直到获得期望的轮廓为止。使用填充层34的优点在于,其可以比黄油层32较高的速率并且以高达400℃(750°F)的较高的焊层间温度沉积。

可通过使用焊接电极或焊丝来沉积黄油层32。用于焊接/隔离电极的材料组成(按重量计)的一个示例为铁(Fe)平衡、约56.8%的镍(Ni)、约1.18%的碳(C)、约0.49%的硅(Si)和约0.49%的锰(Mn)。所得焊接金属的机械性能为约480N/mm2或70ksi的拉伸强度、约18%的伸长率和约170HV至190HV或85HRB至90HRB的硬度。焊接/隔离电极材料组成的附加示例为:Ni平衡、0.80%至5.3%的Fe、0.43%至1.2%的C、0.25%至2.5%的锰、0.32%至0.70%的Si。此外,镍或镍合金焊接/隔离电极也可在用于黄油层32的具体应用中采用。合适的Ni合金具有至少85%的Ni的组成,Ni-Fe合金具有45%-75%的Ni,其余为Fe,并且Ni-Fe-Mn合金具有最少35%的Ni、10%至15%的Mn,其余为Fe。镍合金可具有微量或少量的C、Si、Mn、Cu、Al和高达3%的强碳化物形成元素。

图4例示了用于修理形成涡轮中的流动路径的一部分的壳体部件的方法40的流程图。涡轮可以是气体涡轮或蒸汽涡轮。该方法包括制备基材的制备步骤42。基材10为延性铸铁或结节状铸铁。制备步骤42可包括识别需要修理或维修的区域,挖掘该区域并清洁该区域。挖掘可能需要去除松散的基材或将区域的形状剖绘为期望的形状以用于后续修理/维修。在制备基材之后,施加步骤44将一个或多个黄油层32施加到基材10。以第一预热温度和第一焊层间温度将(一个或多个)黄油层32施加在基材10上。第一预热温度可以是约室温或高达204℃(400°F)的环境温度。焊层间温度在环境温度至204℃(400°F)的范围内。

第二施加步骤46将一个或多个填充层34施加在黄油层32上。以范围在环境温度至400℃(750°F)之间的第二焊层间温度施加填充层34。第一热输入水平可低于第二热输入水平。也可以高于第一沉积速率的第二沉积速率施加填充层34。精加工步骤48可用于将修理区域的表面机加工或抛光成期望的形状轮廓或表面粗糙度。

当元件或层被称为“在...上”、“接合到”、“连接到”或“联接到”另一个元件或层,它可直接在另一个元件或层上、接合到、连接到或联接到另一个元件或层,或者可存在居间元件或层。相比之下,当元件被称为“直接在...上”、“直接接合到”、“直接连接到”或“直接联接到”另一个元件或层时,可不存在居间元件或层。用于描述元件之间关系的其他词语应以类似的方式解释(例如,“在...之间”与“直接在...之间”,“相邻”与“直接相邻”等)。如本文所用,术语“和/或”包括一个或多个相关联的所列项目的任何和所有组合。

本书面描述使用示例来公开本发明,包括最佳模式,并且还使得本领域的任何技术人员能够实践本发明,包括制造和使用任何设备或系统以及执行任何结合的方法。本发明的可专利范围由权利要求书限定,并且可以包括本领域技术人员想到的其他示例。如果此类其他示例具有与权利要求书的字面语言没有不同的结构元件,或者如果它们包括与权利要求书的字面语言无实质差别的等效结构元件,则此类其他示例预期在权利要求书的范围内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:牙科用金刚砂车针

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!