用于有机光电器件的透明顶电极复合薄膜材料及制备方法

文档序号:1892160 发布日期:2021-11-26 浏览:18次 >En<

阅读说明:本技术 用于有机光电器件的透明顶电极复合薄膜材料及制备方法 (Transparent top electrode composite film material for organic photoelectric device and preparation method thereof ) 是由 陈梦茹 顾德恩 杜晓松 张赫 周鑫 蒋亚东 王洋 于 2021-08-26 设计创作,主要内容包括:本发明公开一种用于有机光电器件的透明顶电极复合薄膜材料及制备方法,涉及有机半导体光电器件技术领域。本发明的透明顶电极复合薄膜材料包括衬底、和设于衬底上的MoO-(x)薄膜层、掺杂Ag基薄膜层、HfO-(x)薄膜层。本发明还提供一种用于有机光电器件的透明顶电极复合薄膜材料的制备方法,所述方法均采用真空低温制备工艺。本发明方法的透明顶电极复合薄膜材料制备工艺能与有机光电器件兼容。所制备的透明顶电极复合薄膜材料在可见-近红外区域的平均透过率高达77%,且具有良好的导电性,其方阻小于20Ω/□。依据本发明方法制备的透明顶电极复合薄膜材料及其制备工艺方法适于制备高性能的有机阵列化光电器件。(The invention discloses a transparent top electrode composite film material for an organic photoelectric device and a preparation method thereof, and relates to the technical field of organic semiconductor photoelectric devices. The transparent top electrode composite film material comprises a substrate and a transparent top electrodeMoO on a substrate x Film layer, Ag-doped film layer, HfO x A thin film layer. The invention also provides a preparation method of the transparent top electrode composite film material for the organic photoelectric device, and the method adopts a vacuum low-temperature preparation process. The preparation process of the transparent top electrode composite film material of the method can be compatible with an organic photoelectric device. The average transmittance of the prepared transparent top electrode composite film material in a visible-near infrared region is up to 77%, the transparent top electrode composite film material has good conductivity, and the sheet resistance of the transparent top electrode composite film material is less than 20 omega/□. The transparent top electrode composite film material prepared by the method and the preparation process method thereof are suitable for preparing high-performance organic arrayed optoelectronic devices.)

用于有机光电器件的透明顶电极复合薄膜材料及制备方法

技术领域

本发明涉及有机光电器件透明电极薄膜技术领域,具体涉及一种用于有机光电器件的透明顶电极复合薄膜材料及制备方法。

背景技术

随着有机半导体材料的不断探索,有机光电器件应运而生。经历数年来的研究,有机光电器件得到了迅速的发展。相比于无机光电探测,有机光电器件具有高耐用性、高柔性和低成本的特点。除了在可穿戴电子设备方向上的应用,有机光电器件还在人工视觉、夜视、光通信网络、生物医疗等领域应用非常广泛。

典型的有机光电器件包括有机光电探测器、OLED、有机太阳能电池等器件。这类器件的经典结构包括以下几个部分:顶电极、空穴传输层/电子阻挡层、活性层、电子传输层/空穴传输层、底电极。有机器件的阵列化通常需要与CMOS(互补金属氧化物半导体,Complementary Metal Oxide Semiconductor,以下简称CMOS)信号处理电路集成,以增强器件的性能。为了与CMOS工艺进行集成,有机光电器件的底电极应与CMOS电路互联。因此,有机光电器件的顶电极材料必须是具有良好的透明性和电导率。

透明导电薄膜不但可以用在上述有机光电器件上,在太阳能电池、柔性太阳能电池、建筑涂层、触摸屏,平板显示器件、柔性LCD中也有广泛的用途。常用的透明导电薄膜包括ITO等透明导电氧化物薄膜、金属纳米线薄膜、超薄金属薄膜等。其中,透明导电氧化物薄膜和超薄金属薄膜适于大面积、批量制备,特别适于在批量化有机器件中的应用。ITO等透明氧化物导电薄膜的光电性能与薄膜的沉积温度密切相关。通常而言,沉积温度越高,其薄膜的透光率和电导率越高。而对于有机光电器件,由于有机活性层通常无法承受高温,如果使用ITO等透明导电氧化物薄膜作为其顶电极,受器件工艺温度的限制,ITO等透明导电氧化物薄膜的透过率和电导率都有所下降,从而影响器件的性能。

金属薄膜的厚度较薄时,具有良好的光学透过率和高的电导率,而且通常可以在较低的工艺温度下制备。但由于金属薄膜本身的特性,超薄金属薄膜在较长波方向上的透射率随波长的增大会逐渐下降,从而导致超薄金属薄膜在可见-近红外范围内的平均透过率较低。因此,为了适应研制高性能的有机光电器件的需要,急需开发一种具有高可见-近红外范围内的平均透过率、工艺温度与有机材料兼容(不超过120℃)的新型透明导电薄膜材料。

发明内容

本发明要解决的技术问题是:提供一种具有高透光率、导电性良好的透明顶电极复合薄膜材料,且其制备工艺温度不超过100℃,从而适于研制与CMOS电路互联集成的高性能有机光电器件。

为了解决上述技术问题,本发明采用以下技术方案:

一方面,本发明提供一种用于有机光电器件的透明顶电极复合薄膜材料,所述透明顶电极复合薄膜材料主要由衬底,及依次设于衬底上的MoOx薄膜层、掺杂Ag基薄膜层、HfOx薄膜层构成。

进一步地,所述掺杂Ag基薄膜层中的掺杂元素的原子百分含量为2~10%,其余为Ag元素。

进一步地,所述掺杂元素为Cu、Al、Mo、V中的至少一种。

优选地,所述掺杂Ag基薄膜层的厚度为8~15nm。

进一步地,所述MoOx薄膜层中Mo的原子百分含量为25~30%,其余为氧元素。

优选地,所述MoOx薄膜层的厚度为10~50nm。

进一步地,所述HfOx薄膜层中Hf的原子百分含量为33~38%,其余为氧元素。

优选地,所述HfOx薄膜层的厚度为50~150nm。

另一方面,本发明还提供一种上述用于有机光电器件的透明顶电极复合薄膜材料的制备方法,所述透明顶电极复合薄膜材料均采用真空低温制备工艺制得,所述真空低温制备工艺包括如下步骤:

S1、先在衬底上采用热蒸发或电子束蒸发工艺沉积MoOx薄膜层;具体是将衬底放入到真空热蒸发或电子束蒸发设备的真空室内后抽真空,在衬底不进行加热的情况下采用热蒸发或电子束蒸发工艺沉积MoOx薄膜层;

S2、然后采用溅射或蒸发工艺在MoOx薄膜层上沉积掺杂Ag基薄膜层;具体是将步骤S1制备好的MoOx薄膜放入磁控溅射的溅射室或真空热蒸发设备的真空室内后抽真空,衬底温度为20~60℃采用溅射或蒸发工艺沉积掺杂Ag基薄膜层;

S3、最后采用反应溅射工艺在掺杂Ag薄膜层上沉积HfOx薄膜层,即得;

具体是将步骤S2制备好的掺杂Ag基薄膜放入到磁控溅射舱室内后抽真空,衬底温度为20~100℃采用反应溅射工艺沉积HfOx薄膜层。

进一步地,步骤S1的沉积MoOx薄膜层的热蒸发或电子束蒸发工艺中,真空室抽真空至本底真空气压小于或等于1×10-4Pa。

更进一步地,步骤S1中MoOx的沉积速率为

优选地,MoOx薄膜层的沉积厚度为10~50nm。

优选地,S1的沉积过程中控制MoOx薄膜中Mo的原子质量百分含量为25~30%,其余为氧元素。

进一步地,步骤S2沉积掺杂Ag基薄膜层,若采用溅射工艺,真空室抽真空至本底真空气压小于或等于2×10-3Pa。

更进一步地,步骤S2沉积掺杂Ag基薄膜层的溅射工艺中掺杂Ag基薄膜层的沉积速率为

进一步地,步骤S2沉积掺杂Ag基薄膜层,若采用蒸发工艺,真空室抽真空至本底真空气压小于或等于1×10-4Pa。

更进一步地,步骤S2沉积掺杂Ag基薄膜层的蒸发工艺中,掺杂Ag基薄膜的沉积速率为

优选地,掺杂Ag基薄膜层的沉积厚度为8~15nm。

优选地,沉积掺杂Ag基薄膜层的过程中控制薄膜层中的掺杂元素的原子百分含量为2~10%,其余为Ag元素。

优选地,所述掺杂元素为Cu、Al、Mo、V中的至少一种。

进一步地,步骤S3沉积HfOx薄膜的反应溅射工艺中,真空室抽真空至本底真空气压小于或等于3×10-3Pa。

更进一步地,步骤S3中HfOx薄膜的沉积速率为

优选地,HfOx薄膜层的沉积厚度为50~150nm。

优选地,步骤S3的沉积过程中,控制HfOx薄膜层中Hf的原子质量百分含量为33~38%,其余为氧元素。

本发明的有益效果如下:

1、本发明提供的复合薄膜材料具有衬底及依次设于衬底上的MoOx薄膜层、掺杂Ag基薄膜层、HfOx薄膜层的多层复合结构,在可见-近红外波段范围(380nm~1100nm)具有较高的透过率和较小的方阻,能够很好地用作有机光电器件的顶电极材料。

2、本发明提供的制备透明导电薄膜材料的方法,制备工艺简单,采用热蒸发、电子束蒸发、溅射、反应溅射工艺即可实现,适于大面积有机光电器件的批量制备。

3、本发明提供的制备透明顶电极复合薄膜材料的制备工艺温度不超过100℃,且在真空环境下进行,能与有机光电器件的有机活性层材料完全兼容。

4、依据本发明方法所制备的透明顶电极复合薄膜材料,在可见-近红外波段范围(380nm~1100nm)的平均透过率高,最高达77%,显著高于掺杂Ag基透明导电薄膜的平均透过率(40~50%);该薄膜同时具有良好的电导率,其方阻为10~20Ω/□。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明透明顶电极复合薄膜材料的结构示意图;

图2为实施例1所制备的MoOx/Ag-Cu/HfOx透明复合薄膜的可见-近红外透射谱图;

图3为实施例2所制备的MoOx/Ag-Cu/HfOx透明复合薄膜的可见-近红外透射谱图;

图4为实施例3所制备的MoOx/Ag-Cu/HfOx透明复合薄膜的可见-近红外透射谱图;

图5为实施例4所制备的MoOx/Ag-V/HfOx透明复合薄膜的可见-近红外透射谱图;

图6为实施例5所制备的MoOx/Ag-Mo/HfOx透明复合薄膜的可见-近红外透射谱图;

图7为实施例6所制备的MoOx/Ag-Al/HfOx透明复合薄膜的可见-近红外透射谱图;

图8为实施例7所制备的Ag-Cu透明薄膜的可见-近红外透射谱图。

附图标记说明:1-衬底、2-MoOx薄膜层、3-掺杂Ag基薄膜层、4-HfOx薄膜层。

具体实施方式

为了更好地阐述该发明的内容,下面通过具体实施例对本发明进一步的验证。特在此说明,实施例只是为更直接地描述本发明,它们只是本发明的一部分,不能对本发明构成任何限制。

如图1所示,本发明提供一种用于有机光电器件的透明顶电极复合薄膜材料,所述透明顶电极复合薄膜材料由衬底1,及依次设于衬底1上的MoOx薄膜层2、掺杂Ag基薄膜层3、HfOx薄膜层4构成。

在具体实施例中,衬底1能设置为石英片以及带有有机功能层的石英片、ITO衬底片、硅片。为了准确评价透明顶电极薄膜的性能参数(透过率和方阻),以下制备实施例中都以石英片为衬底。但依据本发明所获得的透明顶电极材料及制备方法采用的衬底不限于石英片,还包括带有有机功能层的石英片、硅片、ITO衬底片。

作为优选实施例,掺杂Ag基薄膜层3中的掺杂元素的原子百分含量为2~10%,其余为Ag元素。作为优选实施例,所述掺杂元素为Cu、Al、Mo、V中的至少一种。

作为优选实施例,掺杂Ag基薄膜层3的厚度为8~15nm。

作为优选实施例,MoOx薄膜层2中Mo的原子百分含量为25~30%,其余为氧元素。作为优选实施例,MoOx薄膜层2的厚度为10~50nm。

作为优选实施例,HfOx薄膜层4中Hf的原子百分含量为33~38%,其余为氧元素。作为优选实施例,HfOx薄膜层4的厚度为50~150nm。

本发明还提供以上用于有机光电器件的透明顶电极复合薄膜材料的制备方法的实施例。以下具体制备实施例中:

在步骤S1的沉积过程中,一般通过控制热蒸发或电子束蒸发工艺所用原材料的组分即可实现控制MoOx薄膜中Mo的原子质量百分含量为25~30%。

在步骤S2沉积掺杂Ag基薄膜层的溅射工艺中,掺杂Ag基薄膜中掺杂元素引入以现有双靶共溅射(Ag靶和掺杂元素金属靶同时溅射)、或使用嵌有掺杂元素金属块Ag基复合靶溅射来实现。若采用蒸发工艺,掺杂Ag基薄膜中掺杂元素引入现有的以双源共蒸发来实现。

一般地,步骤S2沉积掺杂Ag基薄膜层,如果采用溅射工艺,以双靶共溅射引入掺杂元素时,通过调整掺杂元素靶与Ag靶的溅射功率比,以调整掺杂元素在掺杂Ag基薄膜中的原子百分含量;使用嵌有掺杂元素金属块Ag基复合靶溅射引入掺杂元素时,通过调整掺杂元素金属块相对于Ag靶的投影面积比,以调整掺杂元素在掺杂Ag基薄膜中的原子百分含量。如果采用蒸发工艺,则一般通过调整双源蒸发时掺杂元素源和Ag源的蒸发速率比,以调整掺杂元素在掺杂Ag基薄膜中的原子百分含量。

在步骤S3的沉积过程中,一般通过控制反应溅射时氧气/氩气的流量比即可实现控制HfOx薄膜层中Hf的原子质量百分含量为33~38%。

实施例1:

首先,将清洗干净的石英片放入真空热蒸发设备的真空室,抽真空至真空室内本底真空气压≤1×10-4Pa,在衬底不进行加热的情况下,以的沉积速率在石英衬底上沉积10nmMoOx(x=2.9)薄膜。

然后,将带有MoOx薄膜的石英片放入磁控溅射的溅射室,抽真空直至真空室内的本底真空气压≤2×10-3Pa,再以的薄膜沉积速率采用双靶共溅射沉积铜掺杂量为5%的掺Cu银基薄膜(记为Ag-Cu薄膜),衬底温度为35℃,Ag-Cu薄膜厚度为8nm。

最后,将上述Ag-Cu薄膜放入磁控溅射舱室后抽真空,直至真空室内的本底真空气压≤3×10-3Pa时,衬底温度为50℃,采用反应溅射工艺以的沉积速率沉积HfOx(x=1.8)薄膜,HfOx薄膜厚度为100nm。即得MoOx/Ag-Cu/HfOx复合薄膜。

样品取出后,使用四探针测试其方阻,测得薄膜方阻为14.8Ω/□。使用光谱仪测试其可见光到近红外区域(380nm-1100nm)的透射谱(见图2),根据该透射谱数据,在380nm-1100nm范围内以算术平均法求得其可见-近红外区域的平均透过率为68.4%。

实施例2:

首先,将清洗干净的石英片放入真空热蒸发设备的真空室,抽真空至真空室内本底真空气压≤1×10-4Pa,在衬底不进行加热的情况下,以的沉积速率在衬底上沉积10nmMoOx(x=2.9)薄膜。

然后,将带有MoOx薄膜的石英片放入磁控溅射的溅射室,抽真空直至真空室内的本底真空气压≤2×10-3Pa,再以的薄膜沉积速率采用双靶共溅射沉积铜含量为5%的Ag-Cu薄膜,衬底温度为50℃,Ag-Cu薄膜厚度为8nm。

最后,将上述Ag-Cu薄膜放入磁控溅射舱室后抽真空,直至真空室内的本底真空气压≤3×10-3Pa时,衬底温度为100℃,采用反应溅射工艺以约为的沉积速率沉积HfOx(x=1.9)薄膜,HfOx薄膜厚度为50nm。即得MoOx/Ag-Cu/HfOx复合薄膜。

样品取出后,使用四探针测试其方阻,测得薄膜方阻为15.9Ω/□。使用光谱仪测试其可见光到近红外区域(380nm-1100nm)的透射谱(见图3),根据该透射谱数据,在380nm-1100nm范围内以算术平均法求得其可见-近红外区域的平均透过率为77.4%。

实施例3:

首先,将清洗干净的石英片放入真空热蒸发设备的真空室,抽真空至真空室内本底真空气压≤1×10-4Pa,在衬底不进行加热的情况下,以的沉积速率在石英衬底上沉积10nm MoOx(x=2.5)薄膜。

然后,将带有MoOx薄膜的石英片放入磁控溅射的溅射室,抽真空直至真空室内的本底真空气压≤2×10-3Pa,再以的薄膜沉积速率使用嵌有Cu金属块的Ag基复合靶溅射沉积铜掺杂量为2%的Ag-Cu薄膜,衬底温度为20℃,银铜薄膜厚度为15nm。

最后,将上述Ag-Cu薄膜放入磁控溅射舱室后抽真空,直至真空室内的本底真空气压≤3×10-3Pa时,衬底温度为20℃,采用反应溅射工艺以的沉积速率沉积HfOx(x=1.7)薄膜,HfOx薄膜厚度为150nm,即得MoOx/Ag-Cu/HfOx复合薄膜。

样品取出后,使用四探针测试其方阻,薄膜方阻为14.2Ω/□。使用光谱仪测试其可见光到近红外区域(380nm-1100nm)的透射谱(见图4),根据该透射谱数据,在380nm-1100nm范围内以算术平均法求得其可见-近红外区域的平均透过率为59%。

实施例4:

首先,将清洗干净的石英片放入电子束蒸发设备的真空室,抽真空至真空室内本底真空气压≤1×10-4Pa,在衬底不进行加热的情况下,采用电子束蒸发工艺以的沉积速率在石英衬底上沉积50nm的MoOx(x=2.8)薄膜。

然后,将带有MoOx薄膜的石英片放入磁控溅射的溅射室,抽真空直至真空室内的本底真空气压≤2×10-3Pa,再以的沉积速率使用嵌有钒金属块的Ag基复合靶溅射沉积钒掺杂量为5%的掺钒银基薄膜(记为Ag-V薄膜),衬底温度为60℃,Ag-V薄膜厚度为12nm。

最后,将上述Ag-V薄膜放入磁控溅射舱室后抽真空,直至真空室内的本底真空气压≤3×10-3Pa时,衬底温度为50℃,采用反应溅射工艺以为的沉积速率沉积HfOx(x=1.8)薄膜,HfOx薄膜厚度为50nm。即得MoOx/Ag-V/HfOx复合薄膜。

样品取出后,使用四探针测试其方阻,薄膜方阻为14.4Ω/□。使用光谱仪测试其可见光到近红外区域(380nm-1100nm)的透射谱(见图5),根据该透射谱数据,在380nm-1100nm范围内以算术平均法求得其可见-近红外区域的平均透过率为67.2%。

实施例5:

首先,将清洗干净的石英片放入电子束蒸发设备的真空室,抽真空至真空室内本底真空气压≤1×10-4Pa,在衬底不进行加热的情况下,以的沉积速率在石英衬底上沉积50nm的MoOx(x=2.9)薄膜。

然后,将带有MoOx薄膜的石英片放入热蒸发真空室,抽真空直至真空室内的本底真空气压≤1×10-4Pa,再以的沉积速率以双源电子束蒸发工艺沉积钼掺杂量为10%的掺Mo银基薄膜(Ag-Mo薄膜),衬底温度为60℃,Ag-Mo薄膜厚度为12nm。

最后,将上述Ag-Mo薄膜放入磁控溅射舱室后抽真空,直至真空室内的本底真空气压≤3×10-3Pa时,衬底温度为50℃,采用反应溅射工艺以的沉积速率沉积HfOx薄膜,HfOx(x=2.0)薄膜厚度为100nm。即得MoOx/Ag-Mo/HfOx复合薄膜。

样品取出后,使用四探针测试其方阻,薄膜方阻为11.5Ω/□。使用光谱仪测试其可见光到近红外区域(380nm-1100nm)的透射谱(见图6),根据该透射谱数据,在380nm-1100nm范围内以算术平均法求得其可见-近红外区域的平均透过率为73%。

实施例6:

首先,将清洗干净的石英片放入真空热蒸发设备的真空室,抽真空至真空室内本底真空气压≤1×10-4Pa,在衬底不进行加热的情况下,以的沉积速率在石英衬底上沉积50nm的MoOx(x=2.9)薄膜。

然后,将带有MoOx薄膜的石英片放入热蒸发的真空室,抽真空直至真空室内的本底真空气压≤1×10-4Pa,再以的沉积速率以双源热蒸发工艺沉积Al掺杂量为5%的掺Al的银基薄膜(记为Ag-Al薄膜),衬底温度为35℃,Ag-Al薄膜厚度为8nm。

最后,将上述Ag-Al薄膜放入磁控溅射舱室后抽真空,直至真空室内的本底真空气压≤3×10-3Pa时,衬底温度为50℃,采用反应溅射工艺以约为的沉积速率沉积HfOx(x=1.7)薄膜,HfOx薄膜厚度为150nm。即得MoOx/Ag-Al/HfOx复合薄膜。

样品取出后,使用四探针测试其方阻,薄膜方阻为13.4Ω/□。使用光谱仪测试其可见光到近红外区域(380nm-1100nm)的透射谱(见图7),根据该透射谱数据,在380nm-1100nm范围内以算术平均法求得其可见-近红外区域的平均透过率为67.5%。

实施例7:

本实施例作为对比例。

首先,将清洗干净的石英片放入磁控溅射的溅射室,抽真空直至真空室内的本底真空气压≤2×10-3Pa,再以的薄膜沉积速率采用双靶共溅射沉积铜含量为5%的Ag-Cu薄膜,衬底温度为35℃,Ag-Cu薄膜厚度为8nm。

样品取出后,使用四探针测试其方阻,薄膜方阻为18.0Ω/□。使用光谱仪测试其可见光到近红外区域(380nm-1100nm)的透射谱(见图8),根据该透射谱数据,在380nm-1100nm范围内以算术平均法求得其可见-近红外区域的平均透过率为48.1%。

需要说明的是,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种二氧化锡核壳结构纳米晶的低温制备方法及在钙钛矿太阳电池中的应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!