一种新型深部调驱凝胶及其制备方法

文档序号:1916235 发布日期:2021-12-03 浏览:9次 >En<

阅读说明:本技术 一种新型深部调驱凝胶及其制备方法 (Novel deep profile control and flooding gel and preparation method thereof ) 是由 侯胜珍 张健 王秀军 王姗姗 华朝 赵春花 孙哲 李仕超 陈翔宇 于 2021-09-27 设计创作,主要内容包括:本发明公开了一种新型深部调驱凝胶及其制备方法。所述深部调驱凝胶由酮类聚合物和酰肼类聚合物在矿化水中经交联得到;酮类聚合物的结构式如式Ⅰ所示,酰肼类聚合物的结构式如式Ⅱ所示,酮类聚合物中,双丙酮丙烯酰胺结构单元的摩尔含量为2~20%;酰肼类聚合物中,丙烯酰肼结构单元的摩尔含量为2~20%。本发明利用动态酰腙键凭借其特殊的性质—兼有化学键的稳定性和物理相互作用的可逆性,有望解决通过化学反应、物理相互作用增粘存在的问题,为聚合物驱及深部调剖的发展带来新突破。(The invention discloses a novel deep profile control and flooding gel and a preparation method thereof. The deep profile control gel is obtained by crosslinking a ketone polymer and a hydrazide polymer in mineralized water; the structural formula of the ketone polymer is shown as a formula I, the structural formula of the hydrazide polymer is shown as a formula II, and the molar content of a diacetone acrylamide structural unit in the ketone polymer is 2-20%; in the hydrazide polymer, the molar content of the acrylhydrazide structural unit is 2-20%. The invention utilizes the special properties of the dynamic acylhydrazone bond, namely the stability of a chemical bond and the reversibility of physical interaction, is expected to solve the problems of viscosity increasing through chemical reaction and physical interaction, and brings a new breakthrough to the development of polymer flooding and deep profile control.)

一种新型深部调驱凝胶及其制备方法

技术领域

本发明涉及一种新型深部调剖凝胶及其制备方法,属于深部调驱技术领域。

背景技术

油田开发中后期主要使用部分水解聚丙烯酰胺(HPAM)及其衍生物为主的EOR技术,世界范围内的油田在半个多世纪的聚合物驱应用中取得了巨大成果和效益。理论上HPAM分子量越高、粘度越大,调节水油流度比的能力越强,为此,从实验室到工厂,科研人员付出了大量的努力将聚合物的分子量提高至1000万以上。但超高分子量的聚合物在海上油田应用时存在三大问题:一、聚合物溶解速度慢,所需配注设备体积大,海上平台空间狭小,无法为聚合物提供充足的熟化时间;二、海上油田井距大、分大段开采、入井液排量大,聚合物注入能力受限;三、聚合物在溶解、泵送及注入地层流经孔隙构造过程中剪切降解严重,粘度损失大,地层有效粘度低,驱油效果受到影响。

通过注入易溶解的、具有反应活性的低分子量聚合物作为前驱体,前驱体在地层原位进一步反应来制备驱油聚合物,实现保粘、增粘、调剖,可以解决现存聚驱存在的问题。前驱体在地层原位发生的反应类型选择是关键,化学反应(例如聚丙烯酰胺、酚、醛交联反应)可控性差,反应过度会导致地层堵塞,同时化学键断裂不可逆转;物理相互作用(例如疏水相互作用、主客体相互作用)具有较强的浓度依赖性,经地层水稀释后,在较低的聚合物浓度下,交联点密度低,体系的增粘效果较差。

动态共价化学反应兼有化学键的稳定性和物理相互作用的可逆性,现已广泛应用在刺激响应形材料、自愈合材料、可回收热固性材料、形状记忆材料等。现已报道的动态共价键包括亚胺键、酰腙键、腙键、肟键、D-A反应产物、二硫键、硼酸酯键等。根据油田生产实际情况,选择的动态共价反应应具有反应可在中性、微碱性条件下进行,反应物便宜易得等特点。如此即可实现地面配注时前驱体聚合物粘度低,聚合物中具有反应活性的官能团在地下通过动态共价键键合后体系增粘的目的。因此有必要提供一种基于动态共价化学反应的驱油聚合物。

发明内容

本发明的目的是提供一种新型深部调驱凝胶,其基于酮类和酰肼类反应活性前驱体之间的动态酰腙键形成,将其用于油藏深部调剖时,可将酮类与酰肼类反应活性前驱体在油藏地带通过动态酰腙键反应进行原位制备。

本发明所提供的新型深部调驱凝胶,由酮类聚合物和酰肼类聚合物在矿化水中经交联得到;

所述酮类聚合物的结构式如式Ⅰ所示:

式Ⅰ中,m和n表示结构单元的数量;

所述酮类聚合物的数均分子量为1×106~3×106g/mol,重均分子量为2×106~5×106g/mol;

所述酰肼类聚合物的结构式如式Ⅱ所示:

式Ⅱ中,o和p表示结构单元的数量;

所述酰肼类聚合物的数均分子量为1×105~1×106g/mol,重均分子量为3×105~2×106g/mol。

所述酮类聚合物可按照下述反应方程式进行制备:

具体步骤为:

将丙烯酰胺和双丙酮丙烯酰胺溶于水中,然后抽真空并除氧,加入引发剂后加热至50~70℃反应3~6h;

所述引发剂可为2,2’-偶氮二异丁基脒二盐酸盐(AIBA)。

所述酰肼类聚合物可按照下述反应方程式进行制备:

具体步骤为:

将丙烯酰胺和丙烯酸甲酯溶于有机溶剂(如DMSO)中,然后抽真空并除氧,加入引发剂后加热至60~80℃反应5~8h;所述反应结束后,分离得到共聚物P(AM-co-MA),溶于水中,加入水合肼,加热至70~90℃反应24~72h,反应结束后将反应液置于MWCO 3500透析袋中在去离子水中透析三天除去过量的水合肼;

所述引发剂可为偶氮二异丁腈(AIBN)。

上述的深部调驱凝胶中,所述酮类聚合物中,双丙酮丙烯酰胺结构单元的摩尔含量为2~20%,优选5~20%、10~20%、15~20%、2%、5%、10%或20%;

所述酰肼类聚合物中,丙烯酰肼结构单元的摩尔含量为2~20%,优选5~20%、10~20%、15~20%、2%、5%、10%或20%。

上述的深部调驱凝胶中,所述矿化水的矿化度为5000~10000mg/L。

上述的深部调驱凝胶中,所述矿化水中,所述酮类聚合物的浓度为750~1000mg/L,所述酰肼类聚合物的浓度为750~1000mg/L,且两者相等或相近,优选为1000mg/L。

所述深部调驱凝胶可按照下述方法进行制备:

将所述酮类聚合物和所述酰肼类聚合物分散于所述矿化水中,经交联即得;

所述交联的温度为25~80℃,时间为48~72h。

本发明深部调驱凝胶具有较好的整体性和流动性,倾倒时有“吐舌”现象。

本发明深部调驱凝胶具有很强的弹性性质,反应活性前驱体中不同功能单体含量的体系的粘性模量和弹性模量都表现出了随着浓度的增加而增加的现象,而随着前驱体中功能单体含量的增加,体系的模量先增加后降低。

本发明基于动态酰腙键,采用酮类聚合物和酰肼类聚合物作为反应活性前驱体,得到了深部调驱凝胶体系,能够满足深部调剖剂所要求的容易注入地层,并且在地层深部对高渗大孔道形成封堵的要求;且酰腙键具有可逆形成-断裂性质,通过简单地调节pH即可实现键的断裂,避免了交联反应过度堵塞地层的风险。因此,利用动态酰腙键凭借其特殊的性质—兼有化学键的稳定性和物理相互作用的可逆性,有望解决通过化学反应、物理相互作用增粘存在的问题,为聚合物驱及深部调剖的发展带来新突破。

附图说明

图1为本发明实施例1制备的共聚物P(AM-co-DAAM)和P(AM-co-AH)的核磁共振氢谱。

图2为本发明实施例1制备的共聚物P(AM-co-DAAM)和P(AM-co-AH)的TG曲线和DTG曲线。

图3为本发明共聚物P(AM-co-DAAM)和P(AM-co-AH)在矿化水中交联后体系的图片。

图4为本发明共聚物P(AM-co-DAAM)和P(AM-co-AH)在矿化水中交联后体系的弹性模量及粘性模量随频率变化图。

图5为本发明深部调驱凝胶在注入4.5cm×4.5cm×30cm岩心过程中,注入过程中注入压力与PV数的关系。

图6为本发明深部调驱凝胶在注入3cm×6cm×900cm岩心过程中,注入过程中注入压力与PV数的关系。

具体实施方式

下述实施例中所使用的实验方法如无特殊说明,均为常规方法。

下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。

下述实施例中所用试剂双丙酮丙烯酰胺、丙烯酸甲酯、偶氮二异丁腈、2,2’-偶氮二异丁基脒二盐酸盐、氘代水等购于百灵威科技有限公司,葡聚糖购于默克生命科学(上海)有限公司,丙烯酰胺、85%水合肼溶液、DMSO、各类无机盐等购于国药集团化学试剂有限公司。

去离子水使用Milli-Q超纯水系统制得,电阻率为18.2MΩ·cm。

实验中采用的矿化水的总矿化度为9374.13mg/L,主要组成含量(mg/L)为:CaCl2766.41、MgCl2 628.21、Na2CO3 25.19、Na2SO4 126.18、NaHCO3 428.97、NaCl 7294.99、KCl 104.18。

实施例1、酮类和酰肼类反应活性前驱体的制备

1、P(AM-co-DAAM)的制备

(以共聚物P(AM-co-DAAM)-2%即投料时DAAM的摩尔比为2%为例):

称取10.0g丙烯酰胺(140.7mmol)和485.9mg双丙酮丙烯酰胺(2.9mmol)溶于250mL去离子中,置于500mL带支管圆底烧瓶中,抽真空通N2三次除氧。用注射器打入10.5mg预先用去离子水溶解的引发剂2,2’-偶氮二异丁基脒二盐酸盐(AIBA),加热至55℃反应4h。反应结束后向反应液中加水稀释至约2wt%备用,取少量样品冻干测其准确固含量。通过类似的合成步骤合成投料时DAAM的摩尔比分别为5%、10%、20%的共聚物,并命名为P(AM-co-DAAM)-5%、P(AM-co-DAAM)-10%、P(AM-co-DAAM)-20%。

2、P(AM-co-AH)的制备

(以共聚物P(AM-co-AH)-2%即投料时MA的摩尔比为2%为例):

称取10.0g丙烯酰胺(140.7mmol)用100mL DMSO溶解,量取260μL(2.9mmol)丙烯酸甲酯加入其中,置于250mL带支管圆底烧瓶中,抽真空通N2三次除氧。用注射器打入10.2mg预先用DMSO溶解的引发剂偶氮二异丁腈(AIBN),加热至70℃反应6h。反应结束后将反应液滴入1L丙酮中沉淀出共聚物P(AM-co-MA)-2%,过滤,将产物置于真空干燥箱中干燥至恒重。将干燥后的共聚物用200mL去离子水溶解,加入2mL(35.0mmol)85%水合肼溶液,加热至80℃搅拌回流48h。反应结束后将反应液置于MWCO 3500透析袋中在去离子水中透析三天除去过量的水合肼,透析液浓缩得到P(AM-co-AH)-2%共聚物溶液备用(因共聚物P(AM-co-MA)进行肼解反应时加入水合肼过量10倍以上,视为丙烯酸甲酯单元全部反应为丙烯酰肼),取少量样品冻干测其准确的固含量。通过类似的合成步骤合成投料时MA的摩尔比分别为5%、10%、20%的共聚物,并命名为P(AM-co-AH)-5%、P(AM-co-AH)-10%、P(AM-co-AH)-20%。

3、共聚物的测试表征

样品核磁氢谱用Burker公司AVANCE 400MHz超导核磁共振波谱仪测得,溶剂为D2O,测试温度为25℃。

共聚物的热重分析用Netzsch公司TG 209F3 Tarsus测得,测试温度为40~700℃,升温速率为10℃/min,吹扫气为N2(流速20mL/min),保护气为N2(流速20mL/min)。

共聚物分子量用SEC-MALS系统测得,配备Agilent公司液相和Wyatt公司DAWN多角度激光检测器和Optilab示差检测器,流动相为0.9wt%NaCl溶液,柱温为40℃。分子量为35000~45000mol/L的葡聚糖作为归一化试剂。P(AM-co-DAAM)系列共聚物经Shodex OHpakSB-804HQ和SB-806HQ色谱柱串联后分离,流速1mL/min,样品浓度为1-2mg/ml,进样体积为50μL。P(AM-co-AH)系列共聚物经SB-805HQ色谱柱分离,流速0.5mL/min,样品浓度为10mg/ml,进样体积为5μL。同一样品三次测试结果误差在5%以内视为测试结果可信。

反应活性前驱体共聚物P(AM-co-DAAM)s和P(AM-co-AH)s的核磁氢谱图如图1所示,可以明显得看到随着共聚物P(AM-co-DAAM)中双丙酮丙烯酰胺共聚比的增加,1.227ppm处双丙酮丙烯酰胺甲基的C-H信号峰的积分逐渐增加,这证明了合成的P(AM-co-DAAM)是丙烯酰胺与双丙酮丙烯酰胺的共聚物。

酰肼类共聚物P(AM-co-AH)是由共聚物P(AM-co-MA)与水合肼发生肼解反应制得,水合肼的加入使得反应溶液具有很强的碱性,共聚物中的酰胺基团在较高的反应温度(80℃)和较长的反应时间(48h)下会发生水解形成羧基。为验证共聚物P(AM-co-AH)是否发生水解,测定了2.0g/L的共聚物溶液在去离子水及矿化水中的Zeta电位值,测试结果如表1。酮类共聚物P(AM-co-DAAM)在水中和矿化水中都呈现出很低的Zeta电位值,即共聚物所形成的聚集体因不带电荷而倾向于发生团聚。而酰肼类共聚物P(AM-co-AH)在去离子水中都具有较高的Zeta电位值,证明了共聚物因带负电而使得其形成的聚集体具有很好的稳定性,即在肼解过程中,酰胺基团发生了水解反应而生成羧基,使得共聚物呈现出较强的负电性。而在矿化水中,由于盐对共聚物聚集体表面电荷的屏蔽而降低了其Zeta电位值。

表1共聚物(2.0g/L)在去离子水和矿化水中的Zeta电位。

共聚物P(AM-co-DAAM)结构中存在羰基,易与酰胺基团形成氢键,其热降解存在三个阶段(图2a):76℃左右主要为吸附水的挥发;267℃左右主要为酰胺和酮基的分解,在此失重阶段中四种具有不同双丙酮丙烯酰胺共聚比例的共聚物的失重率在TG曲线中明显不同(双丙酮丙烯酰胺共聚比例越高的共聚物失重率越大),这也证明了此阶段包含双丙酮丙烯酰胺共聚单元中酮基分解;387℃左右主要为共聚物主链断裂。共聚物P(AM-co-AH)的热降解存在三个阶段(图2b):83℃左右主要为吸附水的挥发;191℃左右主要为羧基的脱羧和脱水反应及酰肼基脱除氨分子;387℃左右主要为共聚物主链断裂。

通过SEC-MALS系统对共聚物的数均分子量、重均分子量和分子量分布指数进行了测试,测试结果如表2所示。酮类共聚物P(AM-co-DAAM)是由丙烯酰胺和双丙酮丙烯酰胺等两种丙烯酰胺类的单体经自由基聚合得到,两种单体聚合活性相似,因此得到的共聚物具有较高的分子量和较低的分子量分布指数。酰肼共聚物P(AM-co-AH)是由丙烯酰胺和丙烯酸甲酯聚合后发生肼解反应得到,两种单体聚合活性有一定的差别,因此得到的共聚物具有较低的分子量和较高的分子量分布指数。即使分子量最高的共聚物P(AM-co-DAAM)-10%其重均分子量也在4×106mol/L以内,即此聚合物在溶解配注过程中不存在超高分子量聚丙烯酰胺存在的溶解速度慢、所需配注设备体积大等问题。

表2共聚物的分子量及分子量分布指数

实施例2、深部调驱凝胶的制备以及性能测试

流变测试仪器为HAAKE MARS 60流变仪,采用C35 1°/Ti锥板和CC27 DG/Ti双狭缝转子在25℃下进行测试。线性粘弹区扫描参数为:频率f为1Hz,应力τ扫描范围为0.001~100Pa;根据所有样品的线性粘弹区测试结果将频率扫描参数设定为:应力τ为0.5Pa,频率扫描范围为0.01~100Hz。

1、深部调驱凝胶的凝胶状态

首先在反应瓶中对反应活性前驱体通过动态酰腙键交联后形成的深部调驱凝胶状态进行了考察。

图3为浓度分别为1.0g/L的两种前驱体(酮类共聚物P(AM-co-DAAM)、酰肼共聚物P(AM-co-AH))在矿化水中交联后体系的状态。通过肉眼观察,具有2%和5%反应活性基团比例的前驱体交联后形成的凝胶具有较好的整体性和流动性,倾倒时有“吐舌”现象,而具有10%和20%反应活性基团比例的前驱体交联后形成的凝胶由于具有较高的交联比例而发生絮凝,使得体系呈现非均相。

2、深部调驱凝胶的粘弹性

弹性模量(又称储能模量,G’)和粘性模量(又称损耗模量,G”)是描述凝胶动态力学性能的重要指标。图4为具有不同反应活性基团比例的前驱体在矿化水中交联后体系的弹性模量及粘性模量随频率变化图,深部调驱凝胶的粘性模量和弹性模量都表现出了随着浓度的增加而增加的现象。而随着前驱体中功能单体含量的增加,体系的模量也逐渐升高,但具有更高交联比例的DCG-10%和DCG-20%已发生絮凝现象,表现出了肉眼可观察到的非均相性(图3所示),由于絮凝物的实际浓度远超其混合时的溶液浓度,因此具有极高的弹性模量和粘性模量(如图4c和4d所示),表现出了很强的粘弹性。

实施例3、深部调驱凝胶在岩心中的渗流特性及调剖能力

以1.0mL/min的注入速度将2.0g/L的DCG-5%、DCG-10%、DCG-20%三种深部调驱凝胶溶液(溶液中两反应活性前驱体的浓度分别为1.0g/L)分别注入尺寸为4.5cm×4.5cm×30cm,渗透率为2000×10-3μm2的岩心,注入1PV左右后反应三天,再进行后续水驱,注入过程中注入压力与PV数的关系如图5所示。岩心的水测渗透率、阻力系数、残余阻力系数及封堵率如表3所示。对比三种深部调驱凝胶溶液注入过程的压力变化发现,DCG-20%在注入过程中压力始终很低,而DCG-5%与DCG-10%注入过程中压力则高很多,这是由于前驱体P(AM-co-DAAM)-5%与P(AM-co-AH)-5%、P(AM-co-DAAM)-10%与P(AM-co-AH)-10%溶解混合配制DCG-5%与DCG-10%过程中溶液中有颗粒较小的不溶物,溶液未经过滤注入岩心导致注入过程中压力始终很高。其中DCG-10%的注入压力最高,这也与混合溶液的初始粘度的大小规律(三种混合溶液的初始粘度分别为6.2、16.3、4.6mPa·s)相吻合。反应三天后后续水驱阶段,DCG-5%和DCG-10%注入压力较注样阶段明显降低,DCG-20%在后续水驱阶段压力较注样阶段明显上升。从阻力系数和残余阻力系数上也能看出明显的差异:DCG-5%和DCG-10%的残余阻力系数明显比阻力系数小,而DCG-20%的残余阻力系数是阻力系数的7.2倍。这证明了DCG-20%在多孔介质中具有良好的注入能力和调剖能力。

表3三种深部调剖凝胶的调剖效果评价。

在9m岩心中进行原位反应生成DCG实验时,为避免溶液中有颗粒较小的不溶物堵塞注入端面,同时为模拟活性前驱体在溶解、注入及流经近井地带时的剪切,P(AM-co-DAAM)-20%与P(AM-co-AH)-20%溶液在注入岩心前先分别通过尺寸为渗透率为3000×10-3μm2的岩心快速过滤。反应活性前驱体混合溶液粘度为4.6mPa·s,过滤后混合溶液粘度为4.4mPa·s,溶液初始粘度较低,因此剪切对粘度影响较小。为避免反应活性前驱体混合后在中间容器中发生反应对实验结果造成干扰,因此将2.0g/L的P(AM-co-DAAM)-20%与P(AM-co-AH)-20%溶液通过两个泵以0.5mL/min的注入速度分别注入,两溶液在管线中混合后进入岩心。注入0.89PV左右后反应三天,再进行后续水驱,注入过程中注入压力与PV数的关系如图6所示,各区间段阻力系数、残余阻力系数和封堵率见表4所示。注样阶段,随着PV数的增加,各测压点压力逐渐增加,且沿程各测压点压力逐渐降低,注样结束时注入点压力为0.22MPa,计算得到阻力系数为4.40。由于样品初始粘度低,分子间交联程度低,因此注样阶段注入压力升幅较低,注入性较好。反应3天后,在后续水驱阶段,各测压点压力逐渐上升,注入点压力升至7.54MPa,计算得到残余阻力系数为150.80,远大于阻力系数,总体封堵率为99.34%。沿程各测压点压力逐渐下降,各区间段封堵率较高,表明混合溶液在岩心深部反应生成了DCG,且达到较好的深部调驱效果。由此可见,DCG-20%不仅抗剪切,注入能力较强,而且在多孔介质中封堵效果也较好,即满足了深部调剖剂所要求的容易注入地层,并且在地层深部对高渗大孔道形成封堵的要求。

表4各区间段阻力系数、残余阻力系数和封堵率。

本发明首次将动态酰腙键引入深部调驱体系中,通过简单的自由基聚合及肼解反应合成了含不同功能基团比例的酮类聚合物P(AM-co-DAAM)和酰肼类聚合物P(AM-co-AH);反应活性前驱体在矿化水中交联后形成的凝胶具有较好的整体性和流动性,倾倒时有“吐舌”现象。在9m岩心中的调剖能力测试时,反应活性前驱体中功能单体含量为20%的深部调驱凝胶DCG-20%的注入压力一直较低(0~0.22MPa),阻力系数为4.40。但在岩心中反应三天后的后续水驱阶段注入压力逐渐升高(0.22~7.54MPa),残余阻力系数为150.80,总体封堵率为99.34%。即通过酮类和酰肼类反应活性前驱体形成的深部调驱凝胶体系满足了深部调剖剂所要求的容易注入地层,并且在地层深部对高渗大孔道形成封堵的要求。

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种变色凝胶材料、其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!