一种污泥重金属污染生态风险评价方法

文档序号:1919812 发布日期:2021-12-03 浏览:4次 >En<

阅读说明:本技术 一种污泥重金属污染生态风险评价方法 (Sludge heavy metal pollution ecological risk evaluation method ) 是由 陈磊 武克亮 关晓琳 王怀林 于 2021-09-09 设计创作,主要内容包括:本发明公开了一种污泥重金属污染生态风险评价方法,包括污泥预处理、污泥单项重金属总含量测定、污泥重金属组分测定、污泥单项重金属的污染指数的计算、污泥单项重金属的有效毒性系数的计算、污泥单项重金属的潜在环境生态风险因子的计算,以及污泥重金属的潜在环境生态风险指数的计算等步骤,并根据技术结果结合现有PERI法对污泥进行全面的重金属污染生态风险评价。本发明的污泥重金属污染生态风险评价方法能够综合全面地对污泥重金属污染生态风险进行评价,为污泥的处置及资源化利用提供重金属生态风险评价指导。(The invention discloses a sludge heavy metal pollution ecological risk evaluation method which comprises the steps of sludge pretreatment, sludge single heavy metal total content measurement, sludge heavy metal component measurement, sludge single heavy metal pollution index calculation, sludge single heavy metal effective toxicity coefficient calculation, sludge single heavy metal potential environmental ecological risk factor calculation, sludge heavy metal potential environmental ecological risk index calculation and the like, and the sludge is subjected to comprehensive heavy metal pollution ecological risk evaluation by combining the conventional PERI method according to technical results. The ecological risk evaluation method for the heavy metal pollution of the sludge can comprehensively and comprehensively evaluate the ecological risk of the heavy metal pollution of the sludge, and provides ecological risk evaluation guidance for the heavy metal for the disposal and resource utilization of the sludge.)

一种污泥重金属污染生态风险评价方法

技术领域

本发明涉及生态风险评价技术领域,具体涉及一种污泥重金属污染生态风险评价方法。

背景技术

污水处理过程中产生大量的污泥,据统计我国2018年污泥产量超过5660万吨(含水率为 80%),其中50%以上的污泥进行了卫生填埋,而近15%的污泥采用了土地利用方式进行处置。全球化与经济政策研究中心预计,到2021年,我国的污泥总产量将达到6424万吨,预计未来三年年复合增长率为4%左右。污泥中含有大量的细菌以及Pb、Cr、Cd、Zn、Cu等重金属有毒有害物质,通常被视为一种典型的污染源。同时,由于其有机物、氮、磷含量高,也可以将其视为潜在的生物资源。因此污泥在进行资源化利用或最终处置前应仔细评估和验证重金属的生态环境风险。

目前已有多种定量评价方法用于评估重金属的生态环境风险,其中包括地质累积指数 (Geo-accumulation Index,Igeo)、潜在生态风险指数(Potential Ecological RiskIndex, PERI)和风险评估代码(Risk Assessment Code,RAC)等。

上述现有重金属的生态环境风险评价方法多用于土壤和道路扬尘评价,并且其评价方法也各有其优缺点。如地质累积指数评价法只能给出各采样点某种重金属的污染指数,无法对元素间或区域间环境质量进行比较分析。风险评估代码评价方法仅考虑酸可溶/可交换态组分的占比来评估重金属的环境毒性,缺乏对样品重金属总量的考量,评价标准单一,未充分考虑地区差异及地理空间差异的特点。

潜在生态风险指数(PERI)是瑞典科学家提出,根据重金属性质及其在环境中迁移转化沉积等行为特定,从沉积学的角度对土壤或者沉积物中的重金属进行评价。该方法首先要测得土壤中重金属的含量,通过与土壤中重金属元素背景值的比值得到单项污染指数,然后引入重金属毒性响应系数,得到潜在生态危害单项系数,最后加权得到此区域土壤中重金属的潜在生态危害指数。如中国专利CN111552924A公开了一种乡镇尺度的土壤重金属污染特征及潜在生态风险评价方法,通过结合重金属的种类与数目对单项及综合潜在生态风险指数的评估域进行调整,并结合ArcGIS技术实现可视化区域污染状况。该专利方法虽然对潜在生态风险评估进行了一定的改进与调整,但由于重金属的形态对于重金属的毒性变化具有非常大的影响,而潜在生态风险指数未能将重金属进行形态划分,无法对不同样品中重金属的有效毒性组分进一步评价,仅考虑样品整体重金属含量,导致评价偏高,不利于后续的资源化利用。

因此,如何在现有评价方法上改进得出一种适用于污泥的重金属生态风险评价方法对污泥的处置及资源化利用有重要意义。

发明内容

本发明的目的在于提供一种污泥重金属污染生态风险评价方法,能够综合全面地对污泥重金属污染生态风险进行评价,为污泥的处置及资源化利用提供重金属生态风险评价指导。

本发明采用的技术方案是:

一种污泥重金属污染生态风险评价方法,包括以下步骤:

步骤1:污泥预处理,将污泥样品依次经均质、过滤、干燥、磨碎得到污泥分析样品;

步骤2:测定步骤1所得污泥分析样品的单项重金属总含量;

步骤3:采用BCR分级法分析步骤1所得污泥分析样品的酸可溶/可交换态单项重金属含量、可还原态单项重金属含量和可氧化态单项重金属含量;

步骤4:基于步骤2和步骤3的分析结果,计算单项重金属的酸可溶/可交换态组分、可还原态组分及可氧化态组分占比;

步骤5:基于污泥所在地的土壤背景值和步骤2的计算结果,计算单项重金属的污染指数;

步骤6:基于现有重金属的毒性系数及步骤4的计算结果,计算单项重金属的有效毒性系数;

步骤7:基于步骤5和步骤6的计算结果,计算单项重金属的潜在环境生态风险因子;

步骤8:基于步骤7的计算结果,计算污泥分析样品的重金属的潜在环境生态风险指数,并根据现有PERI法对污泥进行全面的重金属污染生态风险评价。

进一步地,步骤1中,取部分待评价污泥置于烧杯中搅拌混匀后,真空过滤得到污泥饼,将污泥饼烘干至重量不变后移入研磨器,研磨磨碎得到污泥分析样品。

进一步地,步骤2中,用微波消解仪将污泥分析样品溶解于混合酸液中,待消解溶液冷却后过0.2μm~0.45μm滤膜,用电感耦合等离子体发射光谱仪测试溶液中单项重金属含量。

进一步地,步骤2中,混合酸液以HNO3、HF、HCl中两种或三种酸液采用一定比例混合,消解条件为:微波400~1600W、温度120~190℃、消解时间为3~30min。

进一步地,步骤4中,污泥重金属三种形态占比的计算公式如下:

其中分别步骤3所得酸可溶/可交换态单项重金属含量、可还原态单项重金属含量和可氧化态单项重金属含量;为步骤2所得污泥分析样品中的单项重金属总含量。

进一步地,步骤5中,单项重金属污染指数的计算公式如下:

其中,为步骤2所得污泥分析样品中的单项重金属总含量,为污泥所在地的单项重金属背景浓度值。

进一步地,,步骤6中,单项重金属的有效毒性系数的计算公式如下:

其中,为现有单项重金属的毒性系数,为步骤4所得单项重金属三种形态占比。

进一步地,步骤7中,单项重金属的潜在环境生态风险因子的计算公式如下:

其中,为步骤6所得单项重金属的有效毒性系数,为步骤5所得单项重金属的污染指数。

进一步地,步骤8中,重金属的潜在环境生态风险指数EERI的计算公式如下:

其中,为单项重金属的潜在环境生态风险因子。

本发明的有益效果:本发明的污泥重金属污染生态风险评价方法基于潜在生态风险指数 (PERI),建立改进的潜在环境生态风险指数EERI,充分考虑了污泥特征、环境背景值、人为污染因素、重金属总量、重金属有效毒性、重金属形态及迁移释放能力等因素,方法中引入了重金属有效毒性系数的概念,能够更加直观的体现重金属的毒性效应。本发明的评价结果更加直接可靠,可为污泥的处置及资源化利用提供重金属生态风险评价指导,有利于污泥的资源化利用。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合一种优选的实施方式对本发明的技术方案进行清楚、完整地描述。

实施例1

实施例所用污泥取自湖北省武汉市沙湖污水处理厂,该污水处理厂采用厌氧-缺氧-好氧 (A-A-O)处理工艺,每天处理污水量为150000m3,污泥(含水率80%)产生量为70t。采用X射线荧光分析仪(HD Rocksand,XOS,US)测定了污泥的主要无机氧化物含量,如表 1所示。

表1污泥的主要氧化物分析

本实施例以重金属铅(Pb)、铬(Cr)、镉(Cd)、锌(Zn)、铜(Cu)为例,对上述污泥进行污泥重金属污染生态风险评价,评价方法包括以下步骤:

步骤一、污泥预处理。

将待评价的污泥样品放在一个单独的烧杯中,用机械搅拌器在室温下以300rpm的转速下搅拌45min,经真空过滤分离为固体产物(污泥饼)和液体产物(滤液),污泥饼在105℃下干燥,然后磨碎得到污泥分析样品。

污泥预处理的目的为:

1、使污泥均质。重金属测定更具代表性,因为取得的原泥成分复杂,取样后若不进行搅拌均质化,会导致检测误差加大。

2、对污泥进行干化。污泥含水率一般为95%,较为稀释,只有进行烘干剔除水分,才能方便后续重金属含量的测量。

步骤二、测定污泥分析样品的单项重金属总含量

用微波消解仪(XT-9900A)将0.2g的污泥分析样品溶解于10ml的混合酸液 (HNO3:HF:HCl=6:2:2)中。消解条件为:微波1600W、温度120℃消解5min后升温至140℃消解15min。待消解溶液冷却后过0.45μm滤膜,并用电感耦合等离子体发射光谱仪(ICP-OES)(Optima 4300DV,USA)测试溶液中重金属含量其中i代表重金属种类。测试结果见表2。

表2污泥分析样品中的单项重金属总含量(mg/kg)

限值a为农用地土壤污染风险管控标准GB15618-2018中表1取值。

步骤三、分析留存的污泥分析样品中酸可溶/可交换态(F1)、可还原态(F2)和可氧化态(F3)的各重金属含量。

采用BCR分级法对留存污泥分析样品依次进行酸可溶/可交换态(F1)、可还原态(F2) 和可氧化态(F3)3种化学形态重金属的提取,高速离心后过0.45μm滤膜,并用电感耦合等离子体发射光谱仪(ICP-OES)分别测试F1、F2和F3态中单项重金属的含量结果如表3所示。BCR分级法为现有标准操作方法,其原理及操作步骤这里不做赘述。

表3污泥中不同化学形态的单项重金属含量(mg/kg)

步骤四、计算重金属的酸可溶/可交换态组分(F1)、可还原态组分(F2)及可氧化态组分(F3)占比,计算结果见表4。

根据表2及表3,计算污泥重金属三种形态占比污泥重金属三种形态占比计算公式如下:

其中分别为F1、F2和F3态中单项重金属的含量,为污泥分析样品中的单项重金属总含量。

表4污泥样品的F1、F2、F3形态占比(%)

步骤五、计算污泥中单项重金属的污染指数计算结果见下表5所示。

单项重金属污染指数的计算公式如下:

其中,为污泥分析样品中的单项重金属总含量,为本地土壤的单项重金属背景浓度值。

表5武汉市土壤重金属背景值(mg/kg)与污泥分析样品的重金属的污染指数

重金属在土壤环境中通常以四种形态存在,其稳定性通常依次为:残渣态(F4)>可氧化态 (F3)>可还原态(F2)>可交换态(F1)。其中,可交换态易迁移,生物毒性大,对生态环境的危害最大;可氧化态以及可还原态相对稳定,在一定酸性或氧化还原剂存在条件下会释放出来对生态环境造成危害;而残渣态能够稳定存在,不易迁移,对生态环境的危害最小。因此区分重金属的组分对评价重金属的有效毒性具有重要作用。

步骤六、计算单项重金属的有效毒性系数计算结果见下表6所示。

其中,为单项重金属的毒性系数,为单项重金属三种形态占比。

重金属的毒性系数是通过已经经过证明的文献查阅的方式得来,例如参考文献:L. Hakanson.AN ECOLOGICAL RISK INDEX FOR AQUATIC POLLUTION-CONTROL-ASEDIMENTOLOGICAL APPROACH[J].Water Research,1980,14(8):975-1001。

表6重金属毒性系数与污泥样品的重金属有效毒性系数

步骤七、计算单项重金属的潜在环境生态风险因子计算结果如表7所示。

环境生态风险因子的计算公式如下:

其中,为单项重金属的有效毒性系数,为单项重金属的污染指数。

表7污泥样品单项重金属的潜在环境生态风险因子

步骤八、计算污泥重金属的环境生态风险指数EERI,计算公式如下:

其中,为单项重金属的潜在环境生态风险因子。

根据式5,计算得出实施例1的污泥样品的重金属EERI值为305.4,参考下表8可知该污泥潜在重金属污染处于中重度风险区域,需要进行进一步的处理与处置,其中Cd金属污染对重金属污染占有较大影响,需特别关注。

表8基于EERI评价方法的重金属污染分级

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种全血中纤维蛋白原浓度快速检测装置及其检测方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!