一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法

文档序号:1949468 发布日期:2021-12-10 浏览:10次 >En<

阅读说明:本技术 一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法 (Drill bit design method for tracking global equality of rock strength of rock breaking well bottom of drill bit ) 是由 董广建 陈平 付建红 杨迎新 苏堪华 侯学军 于 2021-11-09 设计创作,主要内容包括:本发明公开了一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法,该方法包括,建立岩石强度与载荷动态加载应变率之间的关系;根据钻齿破岩过程载荷动态加载应变率计算方法,调整布齿参数;建立各主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系;调整每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值;将钻头上的每个主切削齿对应的钻齿水平切削力、合力矢量加和;根据不同破碎模式下钻头设计目标控制条件完成钻头设计;此方法调整切削齿与岩石动态接触强度完成钻头设计,减少传统钻头各主切削齿所受强度不同导致钻头局部损坏、破岩效率下降,提高钻头井底受力均匀性、延长钻头寿命,具有广阔应用前景。(The invention discloses a drill bit design method for tracking the rock breaking bottom hole rock strength global equality of a drill bit, which comprises the steps of establishing the relationship between the rock strength and the load dynamic loading strain rate; adjusting tooth distribution parameters according to a load dynamic loading strain rate calculation method in the process of drilling teeth and breaking rocks; establishing a relation between a bottom hole rock strength change factor corresponding to each main cutting tooth and a bit tooth distribution parameter; adjusting the difference between different types of bottom hole rock strength change factors corresponding to each pair of adjacent main cutting teeth; adding the horizontal cutting force and resultant force vector of each drill tooth corresponding to each main cutting tooth on the drill bit; completing the design of the drill bit according to the control conditions of the design target of the drill bit under different crushing modes; the method adjusts the dynamic contact strength of the cutting teeth and the rock to complete the design of the drill bit, reduces the local damage of the drill bit and the reduction of the rock breaking efficiency caused by different strengths of the main cutting teeth of the traditional drill bit, improves the bottom hole stress uniformity of the drill bit, prolongs the service life of the drill bit and has wide application prospect.)

一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法

技术领域

本发明涉及钻头设计优化方法领域,特别是一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法。

背景技术

随着油气田勘探开发工作的不断深入,油气开发的重点逐渐转向深部地层的油气资源,因而所钻遇的地层越来越复杂,钻井难度越来越大,井眼轨迹越来越复杂,包括深井、超深井和复杂结构井等。深层油气资源埋藏条件复杂(包括高温、高压、高含硫和低渗透等),具有埋藏深、岩石致密、地层岩性变化大、钻遇岩石强度高、硬度大、可钻性差、研磨性强、非均质性强等特点,常规钻头在这类地层中钻进时,单只钻头的寿命低、进尺小,平均机械钻速很低、周期长、成本高。

综上所述,无论是主动施加振动,还是被动发生的振动,在岩石动态破碎过程井底复杂岩石动态强度都是无法简单忽略的。在实际钻井过程中,由于钻柱的运动导致钻柱不可避免的与井壁发生碰撞,钻头与井底动态接触破碎岩石使得井下振动环境更加复杂。碰撞、旋转、动态破岩、主动施加动载荷等等多种因素耦合作用,造成井下的振动的测量及研究动态破岩干扰等问题变得更加复杂。总结了多年来人们对井下动态破岩过程发生振动的认识。根据振动方向可以将井下振动表现分为三种基本形式,包括轴向(纵向)、横向、周向(扭转),而具体表现形式有粘滑振动、钻头跳动、钻头涡动、BHA涡动、横向冲击、扭转谐振、参数谐振、钻头躁动、涡激振动、耦合振动。其中粘滑、涡动、跳动及冲击损害比较大,是重点的研究对象。实际岩石破碎是在复杂的动态载荷作用下完成的,井下复杂振动环境诱因可以分成两个方面,一是主动施加工程措施造成的辅助振动破岩,二是钻柱或钻头运动不可避免的被动发生造成的。动态载荷产生原因有两方面:①主动施加工程措施(主动激励动载、转速动载、轴向冲击器、扭转冲击器、牙轮钻头、复合钻头、螺杆马达、涡轮马达、旋转导向系统、PDC/刮刀钻头)引起规律动载,最大频率超45Hz,最高振幅超30g,综合表现的最大动载应变率超100s-1;②钻头与地层接触被动发生轴向、横向、周向随机动载,最高频率超350Hz,最高振幅超100g,综合最大动载应变率超150s-1。热裂解钻井过程,岩石受到大温差交变热载荷,最高温度超过600℃。动态外载原因有两方面:①主动施加工程措施(主动激励动载、转速动载、轴向冲击器、扭转冲击器、牙轮钻头、复合钻头、螺杆马达、涡轮马达、旋转导向系统、PDC/刮刀钻头)引起规律动载,最大频率超45Hz,最高振幅超30g,综合表现的最大动载应变率超100s-1;②钻头与地层接触被动发生轴向、横向、周向随机动载,最高频率超350Hz,最高振幅超100g,综合最大动载应变率超150s-1。热裂解钻井过程,岩石受到大温差交变热载荷,最高温度超过600℃。综上所述,无论是主动施加振动,还是被动发生的振动,在岩石动态破碎过程井底复杂岩石动态强度都是无法简单忽略的。

传统的钻头设计方法,如专利CN201510484868.8发明了PDC钻头的设计方法、装置及PDC钻头,该专利从钻井平均钻速、钻头井下转速和钻头刀翼的个数等方面分析,获得钻头前排切削齿与后排切削齿之间的高度差。专利CN201010500274.9发明了金刚石钻头金刚石颗粒分布的分形设计方法,提出了一种对金刚石钻头的金刚石颗粒的尺寸、数量及分布的设计方法。传统的钻头设计方法只从钻井参数、金刚石颗粒和牙轮轮齿等某个单因素方面出发,来研究钻头的设计方法,忽略了地层岩石性质变化对钻头工作状态的影响,因而所设计的钻头性能很难有大的突破,且传统钻头在钻遇地层时,其钻头上的每个主切削齿所受强度均不同,无法进行有效调整,从而导致了钻头上的每个主切削齿磨损程度不同,钻头容易损坏,且破岩效率较低。

因此,考虑基于相等强度破岩原理,建立了一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法,该方法包括,现场取样,进行岩石强度实验,获取对应类型的强度实验及载荷动态加载应变率数据;建立动态岩石强度、静态岩石强度、载荷动态加载应变率之间的关系;根据钻齿破岩过程载荷动态加载应变率计算方法,调整钻头布齿参数,计算钻齿破碎岩石过程的载荷动态加载应变率;建立每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系;通过调整钻头布齿参数,调整每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值;将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和、钻头上的每个主切削齿对应的钻齿的合力矢量加和;根据不同破碎模式下钻头设计目标控制条件完成钻头设计。此种设计方法基于控制钻头破岩井底岩石强度全域相等的原理,通过调整切削齿与岩石动态接触强度完成钻头设计,减少传统钻头各个主切削齿所受强度不同导致的钻头局部损坏、破岩效率下降,提高钻头井底均匀受力均匀性、增强破岩效率和机械钻速,延长钻头寿命,具有广阔应用前景。

发明内容

本发明的目的在于克服现有技术的缺点,提供一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法,此种设计方法基于控制钻头破岩井底岩石强度全域相等的原理,通过调整切削齿与岩石动态接触强度完成钻头设计,减少传统钻头各个主切削齿所受强度不同导致的钻头局部损坏、破岩效率下降,提高钻头井底受力均匀性、增强破岩效率和机械钻速,延长钻头寿命,具有广阔应用前景。

为实现以上技术效果,采用如下技术方案:

一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法,包括以下步骤:

步骤S1:现场取样,进行静态岩石单轴压缩强度实验、静态岩石拉伸强度实验、静态岩石剪切强度实验、动态岩石单轴压缩强度实验、动态岩石拉伸强度实验、动态岩石剪切强度实验,并获取静态岩石单轴压缩强度、静态岩石拉伸强度、静态岩石剪切强度、动态岩石单轴压缩强度、动态岩石拉伸强度、动态岩石剪切强度数据及载荷动态加载应变率数据;

步骤S2:建立动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系;建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系;建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系;

步骤S3:根据钻齿破岩过程载荷动态加载应变率计算方法,调整钻头布齿参数,计算钻齿破碎岩石过程的载荷动态加载应变率;

步骤S4:利用步骤S2中获得动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系,动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系,动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系,结合步骤S3中获得的钻齿破碎岩石过程的载荷动态加载应变率,建立每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系;

步骤S5:通过调整钻头布齿参数,调整步骤S4中得到的每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值,并分别将不同类型的井底岩石强度变化因子之间的差值控制到25%以内,其中不同类型井底岩石强度变化因子包括压缩强度变化因子、拉伸强度变化因子、剪切强度变化因子;

步骤S6:通过钻齿水平切削力学计算方法计算每个主切削齿对应的钻齿水平切削力;通过钻齿垂直压入力学计算方法计算每个主切削齿对应的钻齿垂直压入力,并计算每个主切削齿对应的钻齿合力;将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和、钻头上的每个主切削齿对应的钻齿的合力矢量加和;通过调节钻头布齿参数,将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和控制到0,将钻头上的每个主切削齿对应的钻齿的合力矢量加和控制到0;

步骤S7:将步骤S5中不同破碎模式下不同类型的井底岩石强度变化因子之间的差值控制到25%以内、步骤S6中钻头上的每个主切削齿对应的钻齿水平切削力矢量加和控制到0、将钻头上的每个主切削齿对应的钻齿的合力矢量加和控制到0共同作为不同破碎模式下钻头设计目标控制条件,如果满足钻头设计目标控制条件即完成了钻头设计;如果不满足钻头设计目标控制条件时,则继续调整钻头布齿参数直到满足钻头设计目标控制条件后即完成钻头设计。

进一步的,所述步骤S1静态岩石单轴压缩强度实验、静态岩石拉伸强度实验、静态岩石剪切强度实验均在电液材料实验机上进行,且加载应变率小于等于10s-1;动态岩石单轴压缩强度实验、动态岩石拉伸强度实验、动态岩石剪切强度实验均在分离式霍普金森压杆岩石力学实验机上进行,且加载应变率大于10s-1

进一步的,所述步骤S2中建立动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系的具体方法为:通过分离式霍普金森压杆岩石力学实验机测得动态岩石单轴压缩强度,将动态岩石单轴压缩强度静态岩石单轴压缩强度比值与载荷动态加载应变率进行分段拟合处理,最终建立动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系,具体表达形式如下:

所述步骤S2中建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系的具体方法为:通过分离式霍普金森压杆岩石力学实验机测得动态岩石拉伸强度,将动态岩石拉伸强度静态岩石拉伸强度比值与载荷动态加载应变率进行分段拟合处理,最终建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系,具体表达形式如下:

所述步骤S2中建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系的具体方法为:通过分离式霍普金森压杆岩石力学实验机测得动态岩石剪切强度,将动态岩石剪切强度静态岩石剪切强度比值与载荷动态加载应变率进行分段拟合处理,最终建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系,具体表达形式如下:

式中,为拟合系数,无量纲;为静态岩石单轴压缩强度,MPa;为静态岩石拉伸强度,MPa;为静态岩石剪切强度,MPa;动态岩石单轴压缩强度,MPa;为动态岩石拉伸强度,MPa;为动态岩石剪切强度,MPa;为载荷动态加载应变率,s-1为载荷动态加载临界应变率,s-1

进一步的,所述步骤S3中所述钻齿破岩过程载荷动态加载应变率计算方法表达形式如下:

式中,为为载荷动态加载应变率,s-1为切削齿速度,mm/s;为切削深度,mm;为钻齿后倾角,rad;为成屑-压实过渡角,rad;

其中,第个主切削齿的切削速度的表达式为:

式中,为钻头上第个主切削齿所在位置到钻头轴心线的距离,m;为切削齿在钻头上的转速,r/min;为钻头上第个切削齿的切削速度,m/s。

进一步的,所述步骤S4中建立每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系的具体方法为:将步骤S3中获得的钻齿破岩过程载荷动态加载应变率对应到步骤S2中获得的动态岩石单轴压缩强度-静态岩石单轴压缩强度-载荷动态加载应变率之间的关系、动态岩石拉伸强度-静态岩石拉伸强度-载荷动态加载应变率之间的关系、动态岩石剪切强度-静态岩石剪切强度-载荷动态加载应变率之间的关系中,并通过分段拟合法获得每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系,具体表达式如下:

压缩强度变化因子与钻头布齿参数之间的拟合表达式关系如下:

剪切强度变化因子与钻头布齿参数之间的拟合表达式关系如下:

拉伸强度变化因子与钻头布齿参数之间的拟合表达式关系如下:

式中,为钻头上第个切削齿对应的强度变化因子表达式的拟合系数,无量纲;为钻头上第个切削齿动态破岩过程动态单轴压缩强度,MPa;为钻头上第个切削齿动态破岩过程动态单轴压缩强度与静态单轴压缩强度的比值,简称压缩强度变化因子,无量纲;为钻头上第个切削齿动态破岩过程动态剪切强度,MPa;为钻头上第个切削齿动态破岩过程动态剪切强度与静态剪切强度的比值,简称剪切强度变化因子,无量纲;为钻头上第个切削齿动态破岩过程动态拉伸强度,MPa;为钻头上第个切削齿动态破岩过程动态拉伸强度与静态拉伸强度的比值,简称拉伸强度变化因子,无量纲;为静态岩石单轴压缩强度,MPa;为静态岩石拉伸强度,MPa;为静态岩石剪切强度,MPa;为钻头上第个切削齿的切削速度,m/s;为切削深度,mm;为钻齿后倾角,rad;为成屑-压实过渡角,rad;为载荷动态加载临界应变率,s-1

进一步的,所述步骤S3、步骤S5及步骤S7中钻头布齿参数包括钻齿的数量、每个钻齿的直径、每个钻齿的倾角、每个主切削齿所在位置到钻头轴心线的距离、钻齿切削深度、切削齿在钻头上的转速。

进一步的,所述步骤S5的每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值,并分别将不同类型的井底岩石强度变化因子之间的差值控制到25%以内具体表达式如下:

式中,为每个主切削齿对应的井底岩石单轴压缩强度变化因子之间的差值,无量纲;为每个主切削齿对应的井底岩石剪切强度变化因子之间的差值,无量纲;为每个主切削齿对应的井底岩石拉伸强度变化因子之间的差值,无量纲;为钻头上第个切削齿动态破岩过程动态单轴压缩强度与静态单轴压缩强度的比值,简称压缩强度变化因子,无量纲;为钻头上第个切削齿动态破岩过程动态剪切强度与静态剪切强度的比值,简称剪切强度变化因子,无量纲;为钻头上第个切削齿动态破岩过程动态拉伸强度与静态拉伸强度的比值,简称拉伸强度变化因子,无量纲;为静态岩石单轴压缩强度,MPa;为静态岩石拉伸强度,MPa;为静态岩石剪切强度,MPa。

进一步的,所述步骤S6中将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和控制到0,将钻头上的每个主切削齿对应的钻齿的合力矢量加和控制到0,具体表达式如下:

=0;

式中,为钻头上的每个主切削齿对应的钻齿水平切削力矢量和,无量纲;为钻头上的每个主切削齿对应的钻齿的合力矢量和,无量纲;为第个主切削齿对应的钻齿水平切削力矢量;为第个主切削齿对应的钻齿合力矢量;i为第个主切削齿。

进一步的,所述步骤S7中不同破碎模式下钻头设计目标控制条件具体表达为:

当钻齿以压缩和剪切复合破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以剪切和拉伸复合破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以拉伸和压缩复合破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以压缩破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以剪切破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以拉伸破碎为主时,将同时满足条件作为钻头设计目标控制条件。

本发明的有益效果为:

本发明公开了一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法,该方法包括,现场取样,进行岩石强度实验,获取对应类型的强度实验及载荷动态加载应变率数据;建立动态岩石强度、静态岩石强度、载荷动态加载应变率之间的关系;根据钻齿破岩过程载荷动态加载应变率计算方法,调整钻头布齿参数,计算钻齿破碎岩石过程的载荷动态加载应变率;建立每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系;通过调整钻头布齿参数,调整每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值;将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和、钻头上的每个主切削齿对应的钻齿的合力矢量加和;根据不同破碎模式下钻头设计目标控制条件完成钻头设计。此种设计方法基于控制钻头破岩井底岩石强度全域相等的原理,通过调整切削齿与岩石动态接触强度完成钻头设计,减少传统钻头各个主切削齿所受强度不同导致的钻头局部损坏、破岩效率下降,提高钻头井底均匀受力均匀性、增强破岩效率和机械钻速,延长钻头寿命,具有广阔应用前景。

附图说明

图1为本申请实施例中钻头设计方法流程图。

具体实施方式

下面结合附图对本发明做进一步的描述,本发明的保护范围不局限于以下所述:

实施例1:

如图1所示,一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法,包括以下步骤:

步骤S1:现场取样,进行静态岩石单轴压缩强度实验、静态岩石拉伸强度实验、静态岩石剪切强度实验、动态岩石单轴压缩强度实验、动态岩石拉伸强度实验、动态岩石剪切强度实验,并获取并获取静态岩石单轴压缩强度、静态岩石拉伸强度、静态岩石剪切强度、动态岩石单轴压缩强度、动态岩石拉伸强度、动态岩石剪切强度数据及载荷动态加载应变率数据及载荷动态加载应变率数据;

步骤S2:建立动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系;建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系;建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系;

步骤S3:根据钻齿破岩过程载荷动态加载应变率计算方法,调整钻头布齿参数,计算钻齿破碎岩石过程的载荷动态加载应变率;

步骤S4:利用步骤S2中获得动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系,动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系,动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系,结合步骤S3中获得的钻齿破碎岩石过程的载荷动态加载应变率,建立每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系;

步骤S5:通过调整钻头布齿参数,调整步骤S4中得到的每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值,并分别将不同类型的井底岩石强度变化因子之间的差值控制到25%以内,其中不同类型井底岩石强度变化因子包括压缩强度变化因子、拉伸强度变化因子、剪切强度变化因子;

步骤S6:通过钻齿水平切削力学计算方法计算每个主切削齿对应的钻齿水平切削力;通过钻齿垂直压入力学计算方法计算每个主切削齿对应的钻齿垂直压入力,并计算每个主切削齿对应的钻齿合力;将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和、钻头上的每个主切削齿对应的钻齿的合力矢量加和;通过调节钻头布齿参数,将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和控制到0,将钻头上的每个主切削齿对应的钻齿的合力矢量加和控制到0;

步骤S7:将步骤S5中不同破碎模式下不同类型的井底岩石强度变化因子之间的差值控制到25%以内、步骤S6中钻头上的每个主切削齿对应的钻齿水平切削力矢量加和控制到0、将钻头上的每个主切削齿对应的钻齿的合力矢量加和控制到0共同作为不同破碎模式下钻头设计目标控制条件,如果满足钻头设计目标控制条件即完成了钻头设计;如果不满足钻头设计目标控制条件时,则继续调整钻头布齿参数直到满足钻头设计目标控制条件后即完成钻头设计。

下面根据情况详细阐述基于相等强度破岩原理的钻头设计方法,通过钻齿水平切削力学计算方法计算每个主切削齿对应的钻齿水平切削力;通过钻齿垂直压入力学计算方法计算每个主切削齿对应的钻齿垂直压入力只是本申请的一种举例,不能作为本申请的限制条件。

步骤S1:现场取样,进行静态岩石单轴压缩强度实验、静态岩石拉伸强度实验、静态岩石剪切强度实验、动态岩石单轴压缩强度实验、动态岩石拉伸强度实验、动态岩石剪切强度实验,并获取对应类型的强度实验数据及载荷动态加载应变率数据;

所述步骤S1静态岩石单轴压缩强度实验、静态岩石拉伸强度实验、静态岩石剪切强度实验均在电液材料实验机上进行,且加载应变率小于等于10s-1;动态岩石单轴压缩强度实验、动态岩石拉伸强度实验、动态岩石剪切强度实验均在分离式霍普金森压杆岩石力学实验机上进行,且加载应变率大于10s-1

步骤S2:建立动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系;建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系;建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系;

所述步骤S2中建立动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系的具体方法为:通过分离式霍普金森压杆岩石力学实验机测得动态岩石单轴压缩强度,将动态岩石单轴压缩强度静态岩石单轴压缩强度比值与载荷动态加载应变率进行分段拟合处理,最终建立动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系,具体表达形式如下:

所述步骤S2中建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系的具体方法为:通过分离式霍普金森压杆岩石力学实验机测得动态岩石拉伸强度,将动态岩石拉伸强度静态岩石拉伸强度比值与载荷动态加载应变率进行分段拟合处理,最终建立动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系,具体表达形式如下:

所述步骤S2中建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系的具体方法为:通过分离式霍普金森压杆岩石力学实验机测得动态岩石剪切强度,将动态岩石剪切强度静态岩石剪切强度比值与载荷动态加载应变率进行分段拟合处理,最终建立动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系,具体表达形式如下:

式中,为拟合系数,无量纲;为静态岩石单轴压缩强度,MPa;为静态岩石拉伸强度,MPa;为静态岩石剪切强度,MPa;动态岩石单轴压缩强度,MPa;为动态岩石拉伸强度,MPa;为动态岩石剪切强度,MPa;为载荷动态加载应变率,s-1为载荷动态加载临界应变率,s-1

、步骤S3:根据钻齿破岩过程载荷动态加载应变率计算方法,调整钻头布齿参数,计算钻齿破碎岩石过程的载荷动态加载应变率;

所述步骤S3中所述钻齿破岩过程载荷动态加载应变率计算方法表达形式如下:

式中,为为载荷动态加载应变率,s-1为切削齿速度,mm/s;为切削深度,mm;为钻齿后倾角,rad;为成屑-压实过渡角,rad。

其中,第个主切削齿的切削速度的表达式为:

式中,为钻头上第个主切削齿所在位置到钻头轴心线的距离,m;为切削齿在钻头上的转速,r/min;为钻头上第个切削齿的切削速度,m/s。

、步骤S4:利用步骤S2中获得动态岩石单轴压缩强度、静态岩石单轴压缩强度、载荷动态加载应变率之间的关系,动态岩石拉伸强度、静态岩石拉伸强度、载荷动态加载应变率之间的关系,动态岩石剪切强度、静态岩石剪切强度、载荷动态加载应变率之间的关系,结合步骤S3中获得的钻齿破碎岩石过程的载荷动态加载应变率,建立每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系;

所述步骤S4中建立每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系的具体方法为:将步骤S3中获得的钻齿破岩过程载荷动态加载应变率对应到步骤S2中获得的动态岩石单轴压缩强度-静态岩石单轴压缩强度-载荷动态加载应变率之间的关系、动态岩石拉伸强度-静态岩石拉伸强度-载荷动态加载应变率之间的关系、动态岩石剪切强度-静态岩石剪切强度-载荷动态加载应变率之间的关系中,并通过分段拟合法获得每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系,具体表达式如下:

压缩强度变化因子与钻头布齿参数之间的拟合表达式关系如下:

剪切强度变化因子与钻头布齿参数之间的拟合表达式关系如下:

拉伸强度变化因子与钻头布齿参数之间的拟合表达式关系如下:

式中,为钻头上第个切削齿对应的强度变化因子表达式的拟合系数,无量纲;为钻头上第个切削齿动态破岩过程动态单轴压缩强度,MPa;为钻头上第个切削齿动态破岩过程动态单轴压缩强度与静态单轴压缩强度的比值,简称压缩强度变化因子,无量纲;为钻头上第个切削齿动态破岩过程动态剪切强度,MPa;为钻头上第个切削齿动态破岩过程动态剪切强度与静态剪切强度的比值,简称剪切强度变化因子,无量纲;为钻头上第个切削齿动态破岩过程动态拉伸强度,MPa;为钻头上第个切削齿动态破岩过程动态拉伸强度与静态拉伸强度的比值,简称拉伸强度变化因子,无量纲;为静态岩石单轴压缩强度,MPa;为静态岩石拉伸强度,MPa;为静态岩石剪切强度,MPa;为钻头上第个切削齿的切削速度,m/s;为切削深度,mm;为钻齿后倾角,rad;为成屑-压实过渡角,rad;为载荷动态加载临界应变率,s-1

、步骤S5:通过调整钻头布齿参数,调整步骤S4中得到的每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值,并分别将不同类型的井底岩石强度变化因子之间的差值控制到25%以内,其中不同类型井底岩石强度变化因子包括压缩强度变化因子、拉伸强度变化因子、剪切强度变化因子;

所述步骤S5中的每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值,并分别将不同类型的井底岩石强度变化因子之间的差值控制到25%以内具体表达式如下:

式中,为每个主切削齿对应的井底岩石单轴压缩强度变化因子之间的差值,无量纲;为每个主切削齿对应的井底岩石剪切强度变化因子之间的差值,无量纲;为每个主切削齿对应的井底岩石拉伸强度变化因子之间的差值,无量纲;为钻头上第个切削齿动态破岩过程动态单轴压缩强度与静态单轴压缩强度的比值,简称压缩强度变化因子,无量纲;为钻头上第个切削齿动态破岩过程动态剪切强度与静态剪切强度的比值,简称剪切强度变化因子,无量纲;为钻头上第个切削齿动态破岩过程动态拉伸强度与静态拉伸强度的比值,简称拉伸强度变化因子,无量纲;为静态岩石单轴压缩强度,MPa;为静态岩石拉伸强度,MPa;为静态岩石剪切强度,MPa。

步骤S6:通过钻齿水平切削力学计算方法计算每个主切削齿对应的钻齿水平切削力;通过钻齿垂直压入力学计算方法计算每个主切削齿对应的钻齿垂直压入力,并计算每个主切削齿对应的钻齿合力;将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和、钻头上的每个主切削齿对应的钻齿的合力矢量加和;通过调节钻头布齿参数,将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和控制到0,将钻头上的每个主切削齿对应的钻齿的合力矢量加和控制到0;

通过钻齿水平切削力学计算方法计算每个主切削齿对应的钻齿水平切削力;通过钻齿垂直压入力学计算方法计算每个主切削齿对应的钻齿垂直压入力的一种方法为:

钻齿水平切削力学计算方法根据以下公式确定:

其中,

式中,为钻齿水平切削力,N;为动态岩石单轴压缩强度,MPa;为动态岩石拉伸强度,MPa;为动态岩石剪切强度,MPa;为钻齿后倾角,rad;为成屑-压实过渡角,rad;为钻齿和岩石接触面之间的平均摩擦角,rad;为岩石内摩擦角,为钻齿侵入等效宽度,mm;为钻齿侵入深度,mm。

钻齿垂直压入力学计算方法根据以下公式确定:

式中,为钻齿的垂直压入力,N;为钻齿后倾角,rad;为钻齿和岩石接触面之间的平均摩擦角,rad;为钻齿的垂直压入力,N。

钻齿的合力计算方法根据以下公式确定:

其中,

式中,为钻齿水平切削力,N;为动态岩石单轴压缩强度,MPa;为动态岩石拉伸强度,MPa;为动态岩石剪切强度,MPa;为钻齿后倾角,rad;为成屑-压实过渡角,rad;为钻齿和岩石接触面之间的平均摩擦角,rad;为岩石内摩擦角,为钻齿侵入等效宽度,mm;为钻齿侵入深度,mm;为钻齿的合力,N。

所述步骤S6中将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和、钻头上的每个主切削齿对应的钻齿的合力矢量加和;将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和控制到0,将钻头上的每个主切削齿对应的钻齿的合力矢量加和控制到0,具体表达式如下:

=0;

式中,为钻头上的每个主切削齿对应的钻齿水平切削力矢量和,无量纲;为钻头上的每个主切削齿对应的钻齿的合力矢量和,无量纲;为第个主切削齿对应的钻齿水平切削力矢量;为第个主切削齿对应的钻齿合力矢量;i为第个主切削齿。

、步骤S7:将步骤S5中不同破碎模式下不同类型的井底岩石强度变化因子之间的差值控制到25%以内、步骤S6中钻头上的每个主切削齿对应的钻齿水平切削力矢量加和控制到0、将钻头上的每个主切削齿对应的钻齿的合力矢量加和控制到0共同作为不同破碎模式下钻头设计目标控制条件,如果满足钻头设计目标控制条件即完成了钻头设计;如果不满足钻头设计目标控制条件时,则继续调整钻头布齿参数直到满足钻头设计目标控制条件后即完成钻头设计。

所述步骤S7中不同破碎模式下钻头设计目标控制条件具体表达为:

当钻齿以压缩和剪切复合破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以剪切和拉伸复合破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以拉伸和压缩复合破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以压缩破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以剪切破碎为主时,将同时满足条件作为钻头设计目标控制条件;

当钻齿以拉伸破碎为主时,将同时满足条件作为钻头设计目标控制条件。

其中,所述步骤S3、步骤S5及步骤S7中钻头布齿参数包括钻齿的数量、每个钻齿的直径、每个钻齿的倾角、每个主切削齿所在位置到钻头轴心线的距离、钻齿切削深度、切削齿在钻头上的转速。

本发明公开了一种追踪钻头破岩井底岩石强度全域相等的钻头设计方法,该方法包括,现场取样,进行岩石强度实验,获取对应类型的强度实验及载荷动态加载应变率数据;建立动态岩石强度、静态岩石强度、载荷动态加载应变率之间的关系;根据钻齿破岩过程载荷动态加载应变率计算方法,调整钻头布齿参数,计算钻齿破碎岩石过程的载荷动态加载应变率;建立每个主切削齿对应的井底岩石强度变化因子与钻头布齿参数之间的关系;通过调整钻头布齿参数,调整每对相邻主切削齿对应的不同类型井底岩石强度变化因子之间的差值;将钻头上的每个主切削齿对应的钻齿水平切削力矢量加和、钻头上的每个主切削齿对应的钻齿的合力矢量加和;根据不同破碎模式下钻头设计目标控制条件完成钻头设计。此种设计方法基于控制钻头破岩井底岩石强度全域相等的原理,通过调整切削齿与岩石动态接触强度完成钻头设计,减少传统钻头各个主切削齿所受强度不同导致的钻头局部损坏、破岩效率下降,提高钻头井底均匀受力均匀性、增强破岩效率和机械钻速,延长钻头寿命,具有广阔应用前景。

至此,本领域技术人员认识到,虽然本文已详尽展示和描述了本发明的实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导符合本发明原理的许多其他变形或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变形或修改。

21页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于泥灰岩勘探的可调口径的PDC钻头

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类