一种液晶微透镜阵列及其制备方法

文档序号:1951607 发布日期:2021-12-10 浏览:21次 >En<

阅读说明:本技术 一种液晶微透镜阵列及其制备方法 (Liquid crystal micro-lens array and preparation method thereof ) 是由 袁冬 薛其爱 谢丽娟 叶华朋 周国富 于 2021-08-19 设计创作,主要内容包括:本发明属于显示技术领域,公开了一种液晶微透镜阵列及其制备方法。该制备方法为:在透明基板上设置叉指电极并涂覆光取向剂;在另一块透明基板上涂覆光取向剂;该光取向剂为平行光取向剂和垂直光取向剂的组合;将两块透明基板组合形成液晶盒;在设置有黑色和白色条纹的掩模板上对液晶盒进行光控取向制得光取向层;将液晶混合物的温度升至清亮点以上并填充于液晶盒中;降温,在光取向层作用下,经聚合得到胆甾相液晶聚合物薄膜;取出带有胆甾相液晶聚合物薄膜和叉指电极的透明基板,施加电压,形成液晶微透镜阵列。该制备方法简便易行,所制得的液晶微透镜阵列可形成交替收缩和膨胀的周期性形貌,并具有可逆形变和焦距可调的特点。(The invention belongs to the technical field of display, and discloses a liquid crystal micro-lens array and a preparation method thereof. The preparation method comprises the following steps: providing an interdigital electrode on a transparent substrate and coating a photo-alignment agent; coating a photo-alignment agent on another transparent substrate; the photo-alignment agent is a combination of a parallel photo-alignment agent and a perpendicular photo-alignment agent; combining the two transparent substrates to form a liquid crystal box; performing photo-alignment on the liquid crystal box on a mask plate provided with black and white stripes to obtain a photo-alignment layer; raising the temperature of the liquid crystal mixture to be above a clear point and filling the liquid crystal mixture into a liquid crystal box; cooling, and polymerizing under the action of the photo-alignment layer to obtain a cholesteric liquid crystal polymer film; and taking out the transparent substrate with the cholesteric liquid crystal polymer film and the interdigital electrodes, and applying voltage to form the liquid crystal micro-lens array. The preparation method is simple and easy to implement, and the prepared liquid crystal micro-lens array can form a periodic morphology with alternate shrinkage and expansion and has the characteristics of reversible deformation and adjustable focal length.)

一种液晶微透镜阵列及其制备方法

技术领域

本发明属于显示技术领域,尤其涉及一种液晶微透镜阵列及其制备方法。

背景技术

液晶透镜是一种重要的光学器件,它具有重量轻、成本低、体积小、功耗低、无需移动机械部件等优点,越来越受到人们的重视并有望取代传统的玻璃透镜。与传统的机械透镜系统相比,液晶微透镜阵列因其特有的光电特性而备受关注。

在现有液晶透镜制作方法中,要么是通过复合电介质层使液晶分子指向矢偏转形成具有梯度折射率的液晶微透镜,但是采用复合电介质技术制造透镜阵列的方法比较复杂,实际应用性较差;要么是通过加电驱动液晶分子指向矢形成具有梯度折射率的液晶微透镜,之后利用紫外光进行固化得到一个具有固定焦距的液晶微透镜,此方法得到的液晶微透镜不可逆。

因此,本发明希望提出一种可用于制造液晶微透镜阵列且更为简便的新方法,并能使液晶微透镜阵列具有可逆形变和焦距可调的特点。

发明内容

本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种液晶微透镜阵列及其制备方法,该液晶微透镜阵列的制备方法简便易行,所制得的液晶微透镜阵列可形成交替收缩和膨胀的周期性形貌,并具有可逆形变和焦距可调的特点。

本发明提供了一种液晶微透镜阵列的制备方法,包括以下步骤:

(1)在透明基板的一侧设置叉指电极并涂覆光取向剂;取另一块透明基板,在其一侧涂覆光取向剂;所述光取向剂包括平行光取向剂和垂直光取向剂;

(2)将两块所述透明基板涂覆有光取向剂的一侧朝内进行相对设置,形成液晶盒;

(3)在设置有相间排列的遮光和透光条纹的掩模板上对所述液晶盒进行光控取向,制得光取向层;

(4)将液晶单体和光引发剂混合,得到液晶混合物,并使温度升至清亮点以上;往所述液晶盒中填充所述液晶混合物;降温,并在所述光取向层作用下,形成躺倒(当液晶分子长轴垂直于基板排列其螺旋轴平行于取向基板时,分子为躺倒的螺旋态)的螺旋胆甾相液晶结构;再经紫外聚合、热聚合,形成胆甾相液晶聚合物薄膜;取出带有所述胆甾相液晶聚合物薄膜和所述叉指电极的透明基板,施加电压,形成液晶微透镜阵列。

本发明通过以平行光取向剂和垂直光取向剂混合作为光取向材料,再使用带有周期性遮光、透光条纹的掩模板进行光控取向。由于在混合光取向剂中,垂直取向剂占比较大,因此在基板上倾向于垂直取向,所以在遮光区为垂直取向;而利用偏振紫外光照射后,会倾向于使液晶指向矢垂直于光偏振方向得到的平行取向,从而制得具有周期性平行、垂直取向交错的光取向层(透光区形成平行取向区域,遮光区形成垂直取向区域);当降低温度至液晶混合物处在向列相时,该取向层可诱导液晶混合物形成均匀躺倒螺旋状态的胆甾相液晶聚合物,再经紫外聚合和光聚合,即可得到胆甾相液晶聚合物薄膜。

通过在叉指电极上施加电压(交流电)可使胆甾相液晶聚合物薄膜中的液晶分子有序度改变,有序度的变化引起各向异性应力导致变形(在平行取向区域发生突起,在垂直取向区域发生凹陷),得到交替收缩和膨胀的周期性、类透镜的凸起形貌,形貌变形的幅度主要由施加电压的大小决定,从而实现透镜焦距的调节;在撤销电压后,胆甾相液晶聚合物薄膜恢复至平坦薄膜状态。由此可见,所述液晶微透镜阵列具有可逆形变和焦距可调的特点。

优选的,所述叉指电极的电极宽度为2-5μm,相邻电极之间相隔5-10μm。

优选的,步骤(1)中采用旋涂进行所述涂覆。

优选的,按体积百分数计,所述光取向剂含有以下组分:5%-20%平行光取向剂和80%-95%垂直取向剂。

优选的,步骤(3)中采用偏振紫外光进行所述光控取向。

优选的,以所述液晶聚合物的液晶螺距设为p,所述掩模板上相邻黑色条纹和白色条纹的宽度之和L=p/2。

更优选的,所述液晶螺距p=200-800nm。

优选的,所述液晶盒内还包含有间隔子,用于调节液晶盒的厚度。液晶盒的厚度通过由间隔子的粒径大小所决定。

更优选的,所述液晶盒的厚度为1-10μm。

本发明还提供了一种液晶微透镜阵列,由上述制备方法所制得。

相对于现有技术,本发明的有益效果如下:

本发明提供了一种简便易行的液晶微透镜阵列的制备方法,采用均匀分布的遮光和透光条纹所组成的掩膜版进行光控取向,制得具有周期性平行、垂直取向交错的光取向层,再进行液晶分子取向,得到均匀躺倒螺旋状态的胆甾相液晶,经聚合形成胆甾相液晶薄膜;在带有叉指电极的透明基板上施加电场诱导胆甾相液晶聚合物薄膜的分子有序度改变,有序度的变化引起各向异性应力导致变形(在平行取向区域发生突起,在垂直取向区域发生凹陷),得到交替收缩和膨胀的周期性形貌变化的微透镜结构;在撤销电场后,胆甾相液晶聚合物薄膜恢复至平坦薄膜状态,实现微透镜的可逆变形。根据施加电压的大小可得到具有不同幅度形貌变形的液晶微透镜阵列,从而获得具有不同焦距的微透镜阵列。

附图说明

图1为本发明实施例中液晶盒的主视图;其中透明基板1,叉指电极2,间隔子3,光取向层4;

图2为图1中叉指电极2的示意图;

图3为本发明实施例中所用掩模板的示意图;

图4为在光取向层作用下所形成的胆甾相液晶聚合物结构的俯视图(左)和主视图(右);其中曝光区域为平行取向6,不曝光区域为垂直取向7;

图5为在紫外光源8条件下所制得胆甾相液晶聚合物薄膜9的示意图;

图6为未通电时胆甾相液晶聚合物薄膜的截面示意图;

图7为本发明实施例所制得液晶微透镜阵列通电时的截面图;

图8为本发明实施例所制得液晶微透镜阵列通电时的俯视图。

具体实施方式

为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例仅为本发明的优选实施例,对本发明要求的保护范围不构成限制作用,任何未违背本发明的精神实质和原理下所做出的修改、替代、组合,均包含在本发明的保护范围内。

以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。

根据本发明实施例所提供的液晶微透镜阵列,其制备方法包括以下步骤:

(1)采用光刻的方法在透明基板的一侧设置叉指电极,电极宽度为2-5μm,相邻电极之间相隔5-10μm,并在设置有叉指电极的一侧采用旋涂的方式涂覆光取向剂;取另一块透明基板,在其一侧采用旋涂的方式涂覆光取向剂;按体积百分数计,上述光取向剂中包括5%-20%平行光取向剂和80%-95%垂直光取向剂;

(2)将上述两块透明基板涂覆有光取向剂的一侧朝内进行相对设置,并在两块透明基板之间加入间隔子,形成厚度为1-10μm的液晶盒;

(3)在设置有相间排列的遮光条纹和透光条纹的掩模板上使用偏振紫外光对上述液晶盒进行光控取向,其中透光条纹区域在偏振紫外光的作用下形成平行取向,遮光条纹区域在紫外光作用下形成垂直取向,即曝光区域形成平行取向,不曝光区域为垂直取向,得到周期性平行、垂直交替的光取向层;

(4)将液晶单体和光引发剂混合,得到液晶混合物(按质量百分数计,液晶单体:19%-25%HCM-009、19%-25%HCM-020、48%-57%HCM-021、0.1%-1%HCM-006,光引发剂:2%-3%光引发剂651),并使温度升至清亮点以上使液晶混合物处于向列相;往液晶盒中填充液晶混合物;降温至约50℃,并在光取向层作用下,形成均匀躺倒螺旋的胆甾相液晶聚合物结构,再经紫外聚合、热聚合,形成胆甾相液晶聚合物薄膜;

取出带有胆甾相液晶聚合物薄膜和叉指电极的透明基板,对叉指电极通电形成电场;在电场的作用下,胆甾相液晶聚合物薄膜中的液晶分子有序度会发生改变,诱导平整的胆甾相液晶聚合物薄膜形成类透镜的凸起,即得到周期性的交替收缩和膨胀形貌变化的微透镜结构;在撤销电场后,胆甾相液晶聚合物薄膜恢复至平坦薄膜状态,实现微透镜的可逆变形。根据施加电压的大小可得到具有不同幅度形貌变形的液晶微透镜阵列,从而获得具有不同焦距的微透镜阵列。

该掩模板上相邻遮光条纹和透光条纹的宽度之和L=p/2,宽度L主要由液晶聚合物的液晶螺距p决定,液晶螺距p的取值为200-800nm。

其中HCM-009的分子结构式为:

HCM-020的分子结构式为:

HCM-021的分子结构式为:

HCM-006的分子结构式为:

光引发剂651的分子结构式为:

图1所示为步骤(2)中所制得液晶盒的结构示意图,包括有透明基板1,设置在透明基板1表面的叉指电极2,用于控制液晶盒的厚度的间隔子3,以及光取向层4;

图2所示为图1中叉指电极2的示意图;

图3所示为步骤(3)中所用掩模板的示意图,白色条纹为透光区,黑色条纹为遮光区;

图4所示为步骤(4)中在光取向层作用下所形成的胆甾相液晶聚合物结构的俯视图(左)和主视图(右);其中曝光区域为平行取向6,不曝光区域为垂直取向7;

图5所示为步骤(4)中在紫外光源8条件下所制得胆甾相液晶聚合物薄膜9的示意图;

图6所示为未通电时平整的胆甾相液晶聚合物薄膜的示意图,其中交流电源10;

图7所示为液晶微透镜阵列在通电时的截面图,在施加交流电10后,电场可诱导液晶分子的有序度发生改变,导致平整的液晶薄膜形成类透镜的凸起,得到液晶微透镜阵列11。

图8所示为液晶微透镜阵列通电时的俯视图,在施加交流电后,电场可诱导液晶分子的有序度发生改变,导致平整的液晶薄膜形成类透镜的凸起,得到周期性收缩和膨胀的液晶微透镜阵列12。

上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:电响应调光器件及其制备方法和应用

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!