用于热成型的可回收膜

文档序号:260834 发布日期:2021-11-16 浏览:22次 >En<

阅读说明:本技术 用于热成型的可回收膜 (Recyclable film for thermoforming ) 是由 M·D·普里斯卡尔 J·A·莱西 于 2020-04-03 设计创作,主要内容包括:具有以下的可回收膜可用于热成型包装部件:含有聚乙烯的第一层、含有高密度聚乙烯和烃树脂的第二层以及含有聚乙烯的第三层。该第一层和该第三层都具有在约0.92g/cm~(3)和0.97g/cm~(3)之间的总密度。该膜结构是有利的,因为它可以比传统的高密度聚乙烯膜更容易热成型,并且可以保持在热成型过程中形成的形状,表现出最小的翘曲或收缩。(Recyclable films having the following are useful for thermoforming packaging components: a first layer comprising polyethylene, a second layer comprising high density polyethylene and a hydrocarbon resin, and a third layer comprising polyethylene. The first layer and the third layer both have a thickness of about 0.92g/cm 3 And 0.97g/cm 3 The total density in between. The film structure is advantageous because it can be thermoformed more easily than conventional high density polyethylene films and can retain the shape formed during thermoforming, exhibiting minimal warpage or shrinkage.)

用于热成型的可回收膜

技术领域

本披露涉及膜结构,特别是适于热成型成包装部件的高性能可回收膜。

背景技术

高性能包装膜用于包装许多产品,如食品、药物、消费品或工业物品。对环境敏感的产品使用专门设计的包装,以帮助保护产品并将保质期延长到消费者可以使用产品的时间点。通常,这些包装由各种类型的聚合物和添加剂制成,这些聚合物和添加剂提供实现“高性能”所需的特性。选择用于包装的材料可以增强尤其阻隔特性、物理特性或美观性。通常,包装的设计包括多种材料,以实现若干特征。

将多种材料组合成单个包装材料在确定使用后如何处置包装时会造成困难。通常,只有当包装中的材料是相同的聚合物类型时回收是最有效的或者才有可能进行回收。尝试使用可回收包装材料,尤其是使用单一聚合物类型的那些,导致较低的性能和/或显著更高的成本。举几个例子,遇到的较低性能特征可能是视觉缺陷、较差的阻隔和较短的保质期、较慢的包装设备速度。

一种特别适于回收的聚合物类型是高密度聚乙烯。这种材料已经用于牛奶罐或其他瓶很多年了。这些瓶是100%高密度聚乙烯,并在厚壁的情况下提供合适的阻隔特性。在许多国家,目前存在适当地收集、分类和回收这些包装的工艺。

然而,使用高密度聚乙烯作为主要组分并没有转化为最具柔性的包装形式。除了注塑成型或吹塑成型之外,高密度聚乙烯具有使其使用效率低下的缺点。例如,在热成型柔性包装中,如托盘或杯子,已经发现高密度聚乙烯不像其他材料(如聚苯乙烯或PVC)那样容易或一致地成型。高密度聚乙烯的成型可能会较慢,并导致不良成型零件。此外,高密度聚乙烯的二次结晶可能导致成型零件在成型后的数小时和数天内翘曲和卷曲。由于这个原因,热成型包装通常使用其他材料,如具有材料组合的多层膜,以可接受的速度获得良好的零件。由于其中材料的多样性,这些膜是不可回收的。

发明内容

热成型基座部件的结构和材料组分被配置为提供湿气阻隔、优异的成型和热密封特征以及可回收性选择。形成基座的可热成型基膜具有高水平的聚乙烯,使得其容易回收。令人惊讶的是,本文所述的可热成型膜在热成型工艺中具有可接受的操作窗口。同样有利的是,最终的热成型基座部件保持原始的热成型形状,抵抗翘曲和收缩。

在本披露的不同实施例中,描述了一种可热成型基膜。该可热成型基膜具有:具有聚乙烯的第一层、具有高密度聚乙烯和烃树脂的第二层以及具有聚乙烯的第三层。该第二层位于该第一层与该第三层之间。该第一层和该第三层各自具有在约0.92g/cm3和0.97g/cm3之间的总密度,并且各自形成该可热成型基膜的表面。该第一层可以另外包含茂金属线性低密度聚乙烯。第二层可以另外包含成核剂。

另外,该膜可以具有位于该第一层和该第三层之间的第四层,该第四层具有高密度聚乙烯和无机颗粒。该无机颗粒可以是碳酸钙。该无机颗粒可以以5%(按重量计,相对于整个第四层)的水平存在。

该可热成型基膜的熔体流动速率可以比除了膜不含烃树脂之外相同的热成型基膜大至少20%。

该膜还可以具有各种其他层,包括但不限于包含乙烯乙烯醇共聚物的氧阻隔层或中心层。如果该膜具有中心层,则该中心层包含乙烯乙酸乙烯酯共聚物,并且该膜是回文式的。可以将该膜配制成具有适于回收的总组成。为了便于回收,该膜可以被配制成使得其基本上不含聚酯、乙烯乙烯醇共聚物和聚酰胺。该可热成型基膜具有至少6℃的热成型温度操作窗口。

当在0.5秒和30PSI的条件下热密封到乙烯乙酸乙烯酯材料时,可热成型基膜的第一层可具有大于2,000g/25.4mm的热密封强度。

该可热成型基座的具体实施例包括具有高密度聚乙烯和密度小于0.93g/cm3的聚乙烯的共混物的第一层。该可热成型基座的具体实施例包括具有中密度聚乙烯的第一层。

该第二层中的烃树脂可具有相对于该可热成型基膜的5重量%至10重量%的负载水平,该可热成型基膜的熔融指数可在1.7至2.3g/10min(190℃,2160g)之间。

该可热成型基膜的另一个实施例包括具有在约0.92g/cm3和0.97g/cm3之间的总密度的第一层,具有60重量%和90重量%之间的高密度聚乙烯和2.5重量%和30重量%之间的烃树脂的第二层,以及具有在约0.92g/cm3和0.97g/cm3之间的总密度的第三层。该第二层位于该第一层和该第三层之间,且其厚度为热成型基膜总厚度的25%至90%。该实施例可以基本上不含聚酯、乙烯乙烯醇共聚物和聚酰胺。

在任何实施例中,该可热成型基膜的总密度小于1.0g/cm3

在本披露的各个实施例中,描述了一种热成型基座。该热成型基座由该可热成型基膜形成,并且包括至少一个腔和围绕这些腔中的每个的凸缘(即,未成型区域)。对于本文所述的膜有利的是,该热成型基座保持在热成型工艺中形成的形状。

在本披露的各个实施例中,本文所述的热成型基座与产品和盖包装部件组合以建立经包装产品。该盖被气密地密封到该基座的该凸缘,并且该产品由此被封闭在这些腔中。该盖可能含有金属或纸。该盖可以可剥离地密封到该基座,使得该盖可以用手动力移除。该热成型基座与该盖包装部件之间的密封强度可以为至少2,000g/25.4mm。

在一些实施例中,该盖是“推入式”盖。换句话说,热成型基座的腔可以被手动压下,并且该产品可以被推动穿过该盖以进行分配。在该经包装产品的优选实施例中,该盖具有:具有高密度聚乙烯和无机颗粒的第一外层、具有基于聚乙烯的材料的第二外层以及具有高密度聚乙烯和任选地烃树脂的第一内层。在该经包装产品的一些实施例中,该基座和该盖部件两者都可在同一回收工艺中回收。

已经发现,如本文所述的具有至少第一层、第二层和第三层的可热成型基膜可用于生产具有优异结果的热成型基膜部件。这是令人惊讶的,因为该可热成型基膜含有大量的聚乙烯,先前已显示其不具有对于高性能热成型包装应用而言可接受的特性组合。本文所述的可热成型基膜提供了1)热成型容易性、2)高湿气阻隔性和3)可回收性的关键和先前未实现的组合。

附图说明

考虑以下结合附图对本披露的各个实施例的详细说明,可以更完全地理解本披露,在附图中:

图1是包括第一层、第二层和第三层的可热成型基膜的实施例的截面的示意图;

图2是包括第一层、分离的第二层、第三层和中心层的可热成型基膜的实施例的截面的示意图;

图3是包括第一层、第二层、第三层、中心层和氧阻隔层的可热成型基膜的实施例的截面的示意图;

图4是包括第一层、第二层、第三层和第四层的可热成型基膜的实施例的截面的示意图;

图5是包括10个腔的热成型基座部件的立体图;

图6是示出了12个腔和凸缘的热成型基座部件的俯视图;

图7是包括热成型基座部件、产品和盖部件的包装的截面的示意图;

图8是用于经包装产品的盖部件的实施例的截面的示意图;以及

图9是示出了根据USP 671(40℃,75%RH)每天每腔增重研究的数据的图。

附图示出了一些但不是全部的实施例。附图中描绘的元件是说明性的,并且不必须按比例绘制,并且在整个附图中,相同(或相似)的附图标记表示相同(或相似)的特征。

具体实施方式

本文描述了一种基于聚乙烯的、可热成型的基膜,其适于包装可能对氧和/或湿气敏感的产品。封盖膜可以被热密封到由该可热成型基膜制成的热成型基座包装部件,从而建立在高密度聚乙烯回收工艺或聚乙烯回收工艺中可接受的包装。高性能包装可适于产品,例如但不限于药物、营养食品、医疗产品、新鲜食品、冷藏食品、耐贮存食品、消费品、化妆品和化学品。

热成型基座部件的结构和材料组分被独特地配置为提供湿气阻隔性、良好透明性和可回收性选择。令人惊讶的是,本文所述的可热成型膜在热成型工艺中具有可接受的操作窗口,使得最终的热成型基座部件容易热成型。同样令人惊讶的是,在热成型时,本文所述的可热成型基座材料能够保持原始的热成型形状,抵抗翘曲和收缩。

本文所述的包装并入至少两个包装部件。首先是具有至少一个由基于聚乙烯的膜制成的热成型腔的热成型基座部件。热成型腔可以是深的或浅的,并且通常成型为将预期产品保持在其中。可热成型基膜应具有一定的厚度,以在热成型时提供所希望的刚度(即,劲度)、持久性和阻隔性。其次是盖包装部件。该盖由如下膜配置,该膜能够被气密地热密封到热成型基座部件,从而产生用于产品的保护性包装。

在该包装的一些实施例中,具有大量高密度聚乙烯组成的高性能盖部件可与热成型基座结合使用。热成型基座部件和盖包装部件的组合提供了优异的包装特征,同时保持了高度均匀的聚合物组成(基本上包括聚乙烯),以提供在单个流(例如高密度聚乙烯瓶流)中回收整个包装的机会。

本文所述的包装部件是独特的,因为它们是使用高水平的高密度聚乙烯生产的,又保留了要求苛刻的包装应用所需的高性能特征。气密密封包装提供卓越的产品保护(即湿气阻隔)、良好的外观、良好的成型精度和一致性、良好的耐热性和良好的密封强度。以前尚未使用可以在高密度回收流中容易回收的材料交付具有这些性能水平的包装。

基座包装部件

如图1所示,热成型基座包装部件由至少具有第一层20、第二层30和第三层40的可热成型基膜10形成,其中第二层位于第一层和第三层之间。第一层和第三层可具有类似或相同的组成,并且一起构成可热成型基膜的总厚度(或体积)的约10%至约35%。第二层构成可热成型基膜的约25%至约90%。在可热成型基膜的一些实施例中,第二层构成可热成型基膜的约50%至约90%。在可热成型基膜中也可以有额外的层。

如本文所用,术语“层”是指膜的结构单元,其是单一材料类型或材料的均匀共混物的结构。膜包含一个或多个彼此连接的层。层可含有单一聚合物、单一聚合物类型(即聚乙烯)内的材料的共混物或各种聚合物类型的共混物。层可以含有金属材料或其他非聚合物材料,并且可以具有添加剂。膜的层可以是连续的或可以是不连续的或相对于膜图案化。膜有两个彼此相对的表面。膜的表面的层没有在该表面处连接到该膜的另一层。

可热成型基膜的第一层和第三层均含有聚乙烯,并且总密度在约0.92g/cm3和0.97g/cm3之间。第一层和第三层可含有高密度聚乙烯、中密度聚乙烯或这些中之一与低密度聚乙烯的共混物。如贯穿本申请使用的,术语“高密度聚乙烯”或“HDPE”是指(a)密度为约0.960g/cm3至约0.970g/cm3的乙烯均聚物和(b)密度为约0.940g/cm3至约0.958g/cm3的乙烯和α-烯烃(通常为1-丁烯或1-己烯)的共聚物。高密度聚乙烯包括用Ziegler或Phillips型催化剂制成的聚合物和用单位点茂金属催化剂制成的聚合物。高密度聚乙烯可以是双峰的,并且可以用成核剂预成核。可以通过母料将成核剂添加到HDPE中。如贯穿本申请使用的,术语“中密度聚乙烯”是指密度为约0.926和0.940g/cm3的乙烯均聚物和共聚物。

如贯穿本申请使用的,术语“成核剂”是指在聚合物熔体中形成核以控制晶体生长的添加剂。成核剂可以是能够使高密度聚乙烯成核的任何类型,并且可以在高密度聚乙烯的聚合点或在稍后的时间点通过添加和熔融共混含有成核剂的母料的方式添加。成核添加剂的实例包括矿物质,如白垩、滑石、粘土、高岭土、硅酸盐等,以及有机试剂,如脂肪族或芳族羧酸的盐、芳族磷化合物的金属盐、喹吖啶酮和芳族酰胺。成核剂的其他实例包括甘油锌、甘油钙、六氢邻苯二甲酸钙、六氢邻苯二甲酸锌盐等及其混合物。成核剂可以以层的0重量%至约3.5重量%的水平存在于可热成型基膜的第一层和第三层中。

可能适于可热成型基膜的预成核高密度聚乙烯材料的实例是可从伊奎斯塔公司(Equistar)获得的等级M6020SB和可从诺瓦化学公司(Nova Chemicals)获得的HPS167AB。可能适于可热成型基膜的未成核高密度聚乙烯材料的实例是可从伊奎斯塔公司获得的等级M6020。适于可热成型基膜的成核剂母料材料的实例是可从美利肯公司(Milliken)获得的HPN成核剂。

第一层和第三层还可含有密度小于0.93g/cm3的聚乙烯。例如,第一层可含有密度为约0.92g/cm3的线性低密度聚乙烯、茂金属催化的线性低密度聚乙烯、基于乙烯的塑性体或低密度聚乙烯。密度小于0.93g/cm3的聚乙烯可以与高密度或中密度聚乙烯共混,并且可以以大于0.5重量%的量、大于5重量%的量、大于10重量%的量或者约30重量%或更多的量存在于层中。在第一层中可以使用密度小于0.93g/cm3的两种或更多种不同的聚乙烯材料。第一层和第三层可具有相同或不同的组成。

如本文所用,“密度小于0.93g/cm3的聚乙烯”是密度小于中密度聚乙烯的乙烯均聚物或共聚物,因此具有明显不同的物理特性。聚乙烯的密度理想地在0.88g/cm3和0.93g/cm3之间。密度小于0.93g/cm3的聚乙烯可以是基于乙烯的塑性体或茂金属催化的线性低密度聚乙烯。可用于可热成型基膜的密度小于0.93g/cm3的聚乙烯的实例包括ATTANETM 4701超低密度聚乙烯(密度0.913g/cm3,熔融指数1.0g/10min,维卡软化温度94.0℃,可购自陶氏化学公司(Dow Chemical));ExceedTM 1018茂金属催化的乙烯-己烯共聚物(密度0.918g/cm3,熔融指数1.0g/10min,熔融温度119℃,可购自埃克森美孚公司(ExxonMobil));AFFINITYTM PL1850基于乙烯的塑性体(密度0.902g/cm3,熔融指数3.0g/10min,密封起始温度94.0℃,可购自陶氏化学公司);ExactTM 3139基于乙烯的塑性体(密度0.900g/cm3,熔融指数7.5g/10min,维卡软化温度80.0℃,熔融温度95.0℃,可购自埃克森美孚公司);和DOWTMLDPE 608A低密度聚乙烯(密度0.023g/cm3,熔融指数2.6g/10min,维卡软化温度97.2℃,熔融温度113℃,可购自陶氏化学公司)。在第一层中密度小于0.93g/cm3的聚乙烯应具有允许在附接另一包装部件时以较低的温度热密封(即盖被热密封)的软化点。

关于聚乙烯的类型、成核剂的类型和存在、层的总密度和材料的共混比,第一层和第三层可以具有相同、相似或不同的组成。第一层和第三层可以具有相同、相似或不同的厚度。

可热成型基膜的第二层含有高密度聚乙烯和烃树脂。在一些实施例中,可热成型基膜的第二层含有成核剂。第二层可以被分成多个可被其他层隔开的“第二层”。单个或多个第二层必须在第一层和第三层之间。

高密度聚乙烯应以约60重量%至约90重量%的量存在于第二层中。高密度聚乙烯可以以大于80%的量或大于85%的量存在于第二层中。两种或更多种不同的高密度聚乙烯材料可以存在于第二层中。成核剂可以以层的约0.2重量%至约3.5重量%的水平存在于可热成型基膜的第二层中。

如本文所用,短语“烃树脂”是指由煤焦油、石油和松节油原料聚合生产的低分子量产物(分子量小于约10,000道尔顿)。烃树脂可包括2002年8月13日公布的美国专利号6,432,496或2008年11月20日公布的美国专利申请2008/0286547中披露的任何烃树脂,这两者都通过引用以其整体并入本申请。更具体地,作为非限制性实例,烃树脂可包括石油树脂、萜烯树脂、苯乙烯树脂、环戊二烯树脂、饱和脂环族树脂或这类树脂的混合物。另外,作为非限制性实例,烃树脂可包括源自于富含二环戊二烯(DCPD)的烯烃进料的聚合、源自于石油裂化过程中产生的烯烃进料(例如粗C9进料流)的聚合的烃树脂、源自于纯单体(如苯乙烯、α-甲基苯乙烯、4-甲基苯乙烯、乙烯基甲苯或者这些或类似的纯单体原料的任何组合)的聚合、源自于萜烯烯烃(如α-蒎烯、β-蒎烯或d-柠檬烯)的聚合或源自于这类的组合。烃树脂可以完全或部分氢化。烃树脂的具体实例包括但不限于可从伊士曼化学公司(Eastman Chemical Company)(金斯波特,田纳西州)获得的R1140烃树脂、可从阿康伊士曼化学公司(金斯波特,田纳西州)获得的T1140、可从荒川化学工业有限公司(Arakawa Chemical Industries,Limited)(日本大阪)的P-140和可从大力神公司(Hercules Incorporated)(威尔明顿,特拉华州)获得的S135聚萜烯树脂。

烃树脂可以以0重量%和50重量%之间的量存在于第二层中。使用的烃树脂的上限可以由加工问题(即,在挤出过程中熔体强度不足)或膜特性决定。例如,高水平的烃树脂可能会导致层间粘附问题或膜脆性。在第二层中使用的烃的量还将取决于所使用的烃树脂的类型和第二层的厚度。例如,较薄的第二层可能能够在遇到问题之前用较高水平的烃树脂进行加工。

在可热成型基膜的一些实施例中,烃树脂可以以相对于第二层高达30重量%的水平存在。烃树脂可以以2.5%和30%之间的水平装载到第二层中。可热成型膜的一些实施例将在第二层中具有在5%和20%之间的烃树脂水平。在示例性实施例中,烃树脂以约15重量%或约7.5重量%的量存在。可以调节烃树脂的水平以控制膜的湿气阻隔特性和热成型温度窗口。增加烃树脂水平增加了膜的湿气阻隔特性。增加烃树脂水平增加(即,扩大)了可热成型基膜的热成型温度窗口。

存在于可热成型基膜的第一层、第二层或第三层中或者存在于可热成型基膜的其他层中的任何额外材料对于聚乙烯回收工艺应是可接受的。为了分离的目的,可热成型基膜可具有小于1.0g/cm3的总密度。任何额外的非聚乙烯材料可以以较低的水平存在,使得它们不会破坏或以其他方式阻碍回收工艺。额外的材料可以是回收工艺可接受的类型,如其他类型的基于聚烯烃的材料。额外的材料可以与增容剂系统一起存在。

可热成型基膜中可以存在其他层,只要这些层不损害该膜的特性(即材料必须是聚乙烯回收工艺可接受的)。其他层可以存在于可热成型基膜的任何位置。

例如,可热成型基膜可以具有中心层。如本文所用,“中心”层是如下的层,其在给定膜的中心层的任一侧上具有相等数量的层。图2示出了可热成型基膜10的实施例,其具有形成可热成型基膜的表面的第一层20、形成可热成型基膜的相对表面的第三层40、被中心层60分离并隔开的两个第二层30。在该实例中,中心层在任一侧上具有两层,因此它在可热成型基膜的中心。中心层可具有如本文所述的任何组成,如具有氧阻隔材料或连接材料。

当通过“塌陷泡沫(collapsed bubble)”工艺生产可热成型基膜时,中心层60是特别有用的。在此工艺中,通过环形共挤出工艺生产多层膜,随后管塌陷在其自身上,将两侧组合成一个最终膜。该工艺产生回文式层结构,并且在中心的层含有在温热条件下会与自身粘合的材料,如乙烯乙酸乙烯酯共聚物。由该工艺制成的可热成型基膜必具有厚度和组成相同的第一层和第三层。由该工艺制成的可热成型基膜必具有中心层。由该工艺制成的可热成型基膜必具有至少两个第二层。

在一些可热成型基膜中,如图3所示的实施例,可以存在一个或多个氧阻隔层。氧阻隔层应在第一层和第三层之间。氧阻隔层含有已知限制氧通过膜传输的材料。氧阻隔材料的一种选择是EVOH。在一些情况下,EVOH可以与允许将EVOH掺入聚乙烯回收流中的增容剂一起存在。

如在此使用的,“EVOH”是指乙烯乙烯醇共聚物。EVOH另外被称为皂化或水解的乙烯乙酸乙烯酯共聚物,并且是指具有乙烯共聚单体的乙烯醇共聚物。EVOH通过乙烯-乙酸乙烯酯共聚物的水解(或皂化)来制备。EVOH可以以各种乙烯百分比的树脂形式商业获得。优选地,乙烯/乙烯醇共聚物包含从约27摩尔%-48摩尔%的乙烯、或甚至27摩尔%-38摩尔%的乙烯。

图3示出了具有包括以下的选择的组合的可热成型基膜10的实施例:第一层20、第三层40、四个第二层30、中心层60、两个氧阻隔层70和四个粘接层80。该实施例可以通过塌陷泡沫工艺生产,在这种情况下,膜是回文式的。可替代地,膜可以通过不同的工艺生产,并且膜则不一定是回文式的。在本实施例中使用粘接层80,并且可以将其引入可热成型基膜的任何其他实施例中。粘接层是用于粘合不同层的层,在这种情况下,是氧阻隔层和第二层。对粘接层的需求取决于相邻层中的材料。对于本文所述的可热成型基膜的实施例,基于聚乙烯共聚物的粘接层典型地是合适的。

如图4所示,可热成型基膜10可以具有第四层50,其具有含有无机颗粒如碳酸钙或滑石的高密度聚乙烯。添加一个或多个第四层可有助于实现热成型后的材料精确切割。一个或多个第四层50应位于可热成型基膜10的第一层20和第三层40之间。无机颗粒应以至少5重量%或者5重量%和30重量%之间的量存在于第四层中。在添加无机颗粒时,应注意可热成型基膜的总密度的明显增加。可热成型基座片材的总密度应保持在1.0g/cm3以下,因为这是在回收工艺期间在分离程序(即,通过浮动进行分选)中使用的关键特征。

在可热成型基膜的一些实施例中,第一层或第三层形成膜的表面。该表面可以成为盖部件被热密封到由可热成型基膜制成的热成型基座的表面。在这种布置中,盖被热密封到含有聚乙烯并且具有在约0.92g/cm3和0.97g/cm3之间的密度的第一层。

可热成型基膜可以完全共挤出,或者可以通过其他工艺(例如层压或涂覆)生产。

总的来说,可热成型基膜可具有约4mil(102微米)至约80mil(2,032微米)的厚度。一些包装应用将受益于具有约8mil(203微米)至约50mil(1,270微米)厚度的可热成型基膜。在一些实施例中,可热成型基膜具有约8mil(203微米)至约25mil(635微米)的厚度。

可热成型基膜应具有适于回收的总组成。可热成型基膜应具有在典型地接受基于聚乙烯的材料的工艺中适于回收的总组成。总组成可适于在接受高密度聚乙烯材料的工艺中回收。

本文所述的可热成型基膜可以在它们的初次使用完成之后回收。如本文所用,术语“适于回收”意指表示通过在聚烯烃回收流(即基于聚乙烯的回收流)中再加工,膜可以被转化为新的有用物品。除了许多其他步骤之外,再加工可能需要洗涤、分离、熔化和成型。典型地,当通过再加工而回收塑料包装时,材料被机械地切成小块,熔化,混合并且重新形成新产品。如果多种不相容的材料存在于包装中,则在再加工期间发生相互作用,导致凝胶、脆性材料、差的外观和通常不能使用的或差品质的产品。使用术语“可回收”表示这些缺点通常不存在。作为可回收材料的资格不受任何特定机构的管制,而是可以从特定组如塑料回收协会(Association of Plastic Recyclers)(APR)和How2RecycleTM获得。本文披露的可回收膜可适用于基于高密度聚乙烯的回收流。将可回收膜引入这些通过再加工进行回收的途径中的任一种中不应需要额外的相容剂。

通过将可热成型基膜的总组成中的聚乙烯的总量保持在高水平,可以实现适于回收。使用的任何添加剂都应保持在最低限度。存在的任何非基于聚乙烯的聚合物应最少化,或者可以伴随有增容剂,以实现适于回收的组成。可热成型基膜的总密度应保持在1.0g/cm3以下。

为了进一步努力实现适于回收的总组成,可热成型基膜的一些实施例不含聚酯材料。归因于热成型的容易性、刚度和透明性,典型地在膜中使用聚酯材料。但是,聚酯的存在可能会极大地阻碍膜的可回收性。

为了进一步努力实现适于回收的总组成,可热成型基膜的一些实施例不含EVOH材料。EVOH因为是可热成型氧阻隔材料而典型地在膜中使用。但是,EVOH的存在可能会极大地阻碍膜的可回收性。

为了进一步努力实现适于回收的总组成,可热成型基膜的一些实施例不含聚酰胺材料。归因于热成型的容易性、持久性和刚度,典型地使用聚酰胺材料。但是,聚酰胺的存在可能会极大地阻碍膜的可回收性。

可热成型基膜可以不含聚酯、EVOH和聚酰胺。可热成型基膜可以不含基于纤维的材料。

已经发现,如本文所述的具有至少第一层、第二层和第三层的可热成型基膜可用于生产具有优异结果的热成型基膜部件。这是令人惊讶的,因为该可热成型基膜含有大量的聚乙烯,先前已显示其不具有对于高性能热成型包装应用而言可接受的特性组合。本文所述的可热成型基膜提供了1)热成型容易性、2)高湿气阻隔性和3)可回收性的关键和先前未实现的组合。

最令人惊讶的是本文所述的可热成型基膜的热成型特征。热成型是如下的工艺,通过该工艺,将膜加热到最低温度以上,以将聚合物软化到可以将其物理成型为所希望的形状的程度,并将膜加热到低于最高温度,在该最高温度下,膜正在熔化并且不能进行网络加工。众所周知,对于热成型,含有高密度聚乙烯材料的膜或片材结构具有非常窄的温度窗口(最小和最大加工温度之间的增量(delta))。相对于在第二层中不含烃树脂的膜,含有使用如本文所述的烃树脂的第二层的可热成型基膜可以将热成型温度窗口增加多达100%或甚至200%。归因于更宽容的成型温度范围,在可热成型膜的第二层中的甚至少量的烃树脂(即2.5%)也会对膜可热成型的难易程度产生显著影响。

同样令人惊讶的是,本文所述的可热成型基膜虽然具有高水平的聚乙烯,但保持了在热成型过程中形成的形状。换句话说,由可热成型基膜生产的热成型基座可以进行热成型而不经历热成型后翘曲或卷曲。此外,热成型后可能发生的任何收缩也会大大减少或被消除。该结果与含有高密度聚乙烯的先前热成型的膜相反。

有利地,可热成型基膜具有优异的湿气阻隔性。湿气阻隔特性取决于层组成。增加湿气阻隔性的一种方法是增加第二层中的烃树脂或成核剂的量。增加湿气阻隔性的另一种方法是使用双峰高密度聚乙烯。可热成型基膜的湿气阻隔性能很重要,因为它允许这种材料代替可能不容易回收的其他用于包装对湿气敏感的产品的标准成型膜(如PVC)。

经包装产品

可热成型基膜可以成型为包装部件(热成型基座),并与其他包装部件(例如盖)结合使用以生产包装。可以通过使用热和压力(机械和/或真空)的热成型工艺由可热成型基膜生产热成型基座。该热成型基座可以是高度刚性和非柔性的,或者该热成型基座可以是柔性的,同时仍保持该热成型形状。本文所述的热成型基座具有至少一个用于保持产品的腔和围绕这些腔中每个的凸缘。凸缘通常是膜的未成型区域,并且用作将热成型基座与其他包装部件(可能是盖)、另一个热成型基座部件或一些其他包装部件连接的位置。

图5-7中示出了热成型基座的实例。在这些实施例中,热成型基座100具有多个(10个或12个)被凸缘120围绕的小腔110。诸如此类的腔的尺寸可以专门设计为保持单个药物片剂或胶囊。可替代地,热成型基座的腔可以较大,并保持多个产品件。本申请预期所有数量、尺寸和形状的空腔。

如图7的经包装产品实施例中所示,存在的每个腔110被凸缘120围绕。热成型基座100的凸缘120应不弯曲的区域,用于附接到另一个包装部件,如盖包装部件200。每个腔中都封闭有产品1100。在该实施例中,盖部件被气密地密封到围绕热成型基座的每个腔的区域中的凸缘。可替代地,封盖可以在包括围绕所有腔(并且不在各腔之间)的整个周边的区域中的凸缘处连接到热成型基座。

热成型基座可以通过密封件、优选地气密密封件的方式附接到另一个包装部件。以这种方式,包装内部的产品被完全封闭在腔中,并通过热成型基座和其他包装部件受到保护。气体、液体、微生物或其他材料的交换仅限于能够穿过包装部件的那些,因为气密密封不允许在部件之间的空间中穿过。

在热成型基座的腔中含有的产品不受限制。包装可能含有对环境敏感的产品,如药物或食品。产品可能需要物理保护,如精巧的医疗设备。为了保护消费者,可能需要含有的产品如药品或清洁剂应在儿童防护包装中。产品可适于容易的分配,如口香糖或糖果。

如果在经包装产品中包括盖包装部件,则盖可以具有适于应用的任何组成。盖应具有可热密封的外层,该可热密封的外层被配制成使得其能够通过热密封容易地附接到热成型基座。盖包装部件和热成型基座之间的密封可以是可剥离的(即,易于手动分离,剥离强度小于约2,500g/25.4mm)或熔合的。

如果盖被熔合密封到热成型基座,则盖可以被配制和/或设计成使得产品可以被推动穿过盖以进行分配。特别地,对于包含药物片剂、胶块等的经包装产品的应用,热成型基座的腔可具有足够柔性,使得消费者可以手动压下该腔,迫使产品通过盖部件来分配。该热成型基座与该盖包装部件之间的密封强度可以为至少2,000g/25.4mm。

盖包装部件应具有性能与热成型基座相似的湿气和/或氧阻隔性。通常用于高性能封盖的材料包括但不限于金属层或纸层。该金属层和/或纸层可以层压或以其他方式连接到包括热密封层的聚合物层。可以针对特定特性对盖进行印刷、刻痕或以其他方式改良。

图8示出了可以密封到热成型基座以提供经包装产品的盖部件的一个实例。盖200可以具有第一外层210,其含有高密度聚乙烯和无机颗粒如滑石或碳酸钙。这种类型的外层在将盖部件密封到热成型基座部件以封闭产品的工艺期间提供高耐热性。盖可具有含基于聚乙烯的材料的第二外层220,其被配制成在相对低的温度下热密封到热成型基座。盖可以具有第一内层230,其被配制成具有优异的湿气阻隔性。可以很好地用作湿气阻隔层的材料的共混物的实例是高密度聚乙烯和烃树脂。该共混物类似于可热成型基座部件的第二层。如图8所示的盖的一个优点是,与本文所述的可热成型基膜相比,其具有类似的可回收性,使得整个包装可以一起回收而不分离。在一些实施例中,包括热成型基座和封盖部件的整个包装可以在高密度聚乙烯回收工艺或另一聚乙烯回收工艺中一起回收。

实例和数据

热成型温度窗口的改进

与先前已知的基于聚乙烯的膜相比,本文讨论的结构在容易热成型方面具有明显的优点。由本文披露的基座包装膜形成的基座包装部件保持其成型的形状,而不会由于聚合物的结晶而翘曲。热成型零件在热成型后的数分钟、数小时、数天和数周内保持相同的尺寸和形状。此外,材料的热成型更容易,因为具有更宽的成型操作窗口(即温度)。

通常,最好在将膜加热到聚合物的软化温度和熔融温度之间的温度时进行热成型工艺。在高密度聚乙烯的情况下,对于热成型,该温度窗口通常相当小——几度。这使得热成型标准高密度聚乙烯膜的工艺非常难以控制。已经发现,本文所述的基座包装膜具有宽得多的热成型温度操作窗口,能够在较低的温度下软化并且不会显示出熔垂。如本文所用,“热成型温度操作窗口”可以由以下所述的成型工艺中的最小加热温度和最大加热温度之间的差来定义。

此外,已知基于高密度聚乙烯的膜显示出二次结晶,在热成型后数分钟、数小时或数天的时间跨度内引起明显的零件收缩和翘曲。本文所述的可热成型基座包装膜不会遭受这种二次结晶现象,因此允许在关键零件如包装泡罩的热成型中使用这些材料。

可热成型基座膜实例1、实例2和对比实例1使用标准吹塑膜共挤出工艺制造,泡沫塌陷成单个回文式膜。这些膜的细节示于表1中,并且结构示于图2中。实例1包括具有高密度聚乙烯和成核剂的第一层,含有高密度聚乙烯、烃树脂和成核剂的第二层,以及含有高密度聚乙烯和成核剂的第三层。由于用以制造膜的塌陷泡沫工艺,第二层被分成两层,由含有乙烯乙酸乙烯酯共聚物的中心层隔开。同样,第一层和第三层必须具有相同的组成。对实例2和对比实例1进行类似的加工。对比实例1的第二层不含有烃树脂,实例1的第二层含有约7.5重量%的烃树脂(18.75%装载40%母料),并且实例2的第二层含有约15重量%的烃树脂(37.5%装载40%母料)。

在Uhlmann泡罩机B 1240上作为成型网络运行可热成型基座膜实例1、实例2和对比实例1。Uhlmann用于热成型可热成型基膜中的十个腔(如图5所示)。使用的工具建立了设计为适配尺寸为零(0)的胶囊的尺寸的腔。材料以35个循环/分钟的速率通过热成型工艺循环。在成型之前,Uhlmann在三个指数中使用了顶部和底部接触加热。

为了评估用于形成适当腔的温度窗口,缓慢提高接触加热温度,并在每个温度下评估形成的囊。发现对于对比实例1,实现完全成型的囊所需的最低加热温度为112℃。当有证据表明腔表面上有真空口时,测试人员认为腔已完全成型。对于对比实例1,当材料开始熔化、变形和具有不良美观性时,确定115℃为最高加热温度。因此,该材料对于热成型良好的腔具有约3℃的温度窗口。

以与对比实例1相同的方法测试实例1可热成型基座。发现最低温度为109℃,并且最高温度为115℃。这是6℃的温度操作窗口,相对于对比实例1可热成型基座有100%改进。以与对比实例1相同的方法测试实例2可热成型基座。发现最低温度为106℃,并且最高温度为115℃。这是9℃的温度操作窗口,相对于对比实例1可热成型基座有200%改进。

表1:可热成型基膜细节

HDPE1=高密度聚乙烯,熔融指数=2.0g/10min(190C,2160g),密度=0.96g/cc

HDPE3=高密度聚乙烯,熔融指数=1.2g/10min(190C,2160g),密度=0.967g/cc

HC MB=含有40%烃和60%高密度聚乙烯的烃母料

Nuc MB=含有4%成核剂和低密度聚乙烯的成核剂母料

EVA1=乙烯乙酸乙烯酯共聚物,乙酸乙烯酯含量=12%,密度0.93g/cc

EVA2=乙烯乙酸乙烯酯共聚物,乙酸乙烯酯含量=26%,密度0.95g/cc

2MVTR测试条件:ASTM 1249,100°F和90%Rh的条件

使用ASTMD1238-10和190℃和2,160g的条件测量可热成型基膜的熔融指数。每种膜测试五次,并报告五次测试的平均值。对比实例1的熔体流动速率为约1.55g/10min。发现实例1的熔体流动速率为约1.9g/10min。这比除了膜不含烃树脂之外相同的热成型基膜(对比实例1)大至少20%。发现与实例1类似的厚度为10mil且总烃树脂负载为可热成型基膜的10重量%的第三可热成型基膜的熔体流动速率为约2.28g/10min。理想地,可热成型基膜具有使可热成型基膜的熔体流动速率增加至少20%或者20%和50%之间的烃树脂负载。

高氧阻隔版本

可热成型基膜实例3使用标准吹塑膜共挤出工艺制造,泡沫塌陷成单个回文式膜。这些膜的细节示于表2中,并且结构示于图3中。实例3包括具有高密度聚乙烯和成核剂的第一层,含有高密度聚乙烯、烃树脂和成核剂的第二层,含有高密度聚乙烯和成核剂的第三层,含有EVOH和粘接层的氧阻隔层。第二层分成四个不同的由其他层隔开的层。氧阻隔层被分成两个不同的由其他层隔开的层。第一层和第三层具有相同的组成。

表2:可热成型基膜细节

HDPE1=高密度聚乙烯,熔融指数=2.0g/10min(190C,2160g),密度=0.96g/cc

HDPE3=高密度聚乙烯,熔融指数=1.2g/10min(190C,2160g),密度=0.967g/cc

HC MB=含有40%烃和60%高密度聚乙烯的烃母料

Nuc MB=含有4%成核剂和低密度聚乙烯的成核剂母料

EVA1=乙烯乙酸乙烯酯共聚物,乙酸乙烯酯含量=12%,密度0.93g/cc

EVA2=乙烯乙酸乙烯酯共聚物,乙酸乙烯酯含量=26%,密度0.95g/cc

MAgPE=马来酸酐接枝聚乙烯

EVOH=乙烯乙烯醇共聚物,38mol%乙烯

1OTR测试条件:ASTM F1927,73°F和0%Rh的条件

增重研究

根据ASTM D7709-12的方法B进行增重研究,得到包括根据本披露的热成型基座以及其他泡罩包装工业标准材料的包装的每腔增重的比较。泡罩卡含有十个成型为尺寸为零的泡罩的腔。使用具有五个吸塑卡的测试单元来计算增重。将泡罩用干燥剂(先前储存在真空包装箔包装中)填充,并在上述Uhlman B1240包装设备上密封。使用的储存条件为40℃和75%RH。

增重研究包括来自两种不同的可热成型基膜的热成型基座。第一种是在上文的表1中描述的实例2。第二种是在表3中进一步描述的实例4,其为10mil的白色可热成型基膜。

表3:可热成型基膜细节

HDPE1=高密度聚乙烯,熔融指数=2.0g/10min(190C,2160g),密度=0.96g/cc

HDPE3=高密度聚乙烯,熔融指数=1.2g/10min(190C,2160g),密度=0.967g/cc

HC MB=含有40%烃和60%高密度聚乙烯的烃母料

Nuc MB=含有4%成核剂和低密度聚乙烯的成核剂母料

CaCO3 MB=含具有大于30%无机含量的聚乙烯的碳酸钙母料白色MB=含有聚乙烯和二氧化钛的白色母料

EVA1=乙烯乙酸乙烯酯共聚物,乙酸乙烯酯含量=12%,密度0.93g/cc

EVA2=乙烯乙酸乙烯酯共聚物,乙酸乙烯酯含量=26%,密度0.95g/cc

成型为泡罩的两种热成型基座都充满干燥剂,并用盖A密封。盖A具有含高密度聚乙烯和无机颗粒(碳酸钙)的耐热外层、具有高密度聚乙烯和成核剂的内层、以及含有基于聚乙烯的塑性体的热封外层。

增重研究的结果可以在图9中看到。实例2基座和盖A的组合导致约0.34mg/腔.天的单腔传输。实例4基座和盖A的组合导致约0.45mg/腔.天的单腔传输。相比之下,使用10mil PVC/90gsm PVDC/1mil PE的成型膜与1mil软回火箔盖进行的类似测试导致传输速率为约0.54mg/腔.天,并且7.5mil PVC/2mil Aclar的成型膜与1mil软回火箔盖导致约0.16mg/腔.天的传输率。本文所述的热成型基座提供适于药物包装的湿气传输速率,同时实现单流可回收性。

切割的改进

在Uhlman B1240包装设备上建立包装的同时,还可以评估可热成型基膜的切割性能。密封包装后,将吸塑卡从网络上切下。观察到,与不含有具有无机颗粒(碳酸钙)的层的其他可热成型基膜相比,实例4的可热成型膜切割得更精确,而不会磨损泡罩卡的边缘。

热密封研究

使第一层的总密度变化,研究了热密封强度。将在第一层中具有各种共混物的可热成型基座材料的扁平样品热密封到封盖材料(上文的增重研究中描述的盖A)上,并测量密封强度。伴随30PSI压力和0.5秒停留条件使用扁平密封条形成热密封件。改变温度以了解在给定的密封温度下第一层共混物如何改变密封强度。通过将一英寸(25.4mm)的热密封膜条装载到拉伸测试单元上,以180度的角度和12in/min的速度拉开热密封件来测试密封强度。在73°F和50%湿度下完成测试。下表中的每个数据点是三个测试的平均值,记录峰值力。

当封盖保持粘合并且膜的拉伸强度开始弱于粘合强度时,热密封件在除130℃外的所有密封条件下都剥开。

发现当第一层中存在较高负载的低密度材料时,可以获得更强的密封件(更高的热密封强度)。在第一层中可以使用高达约50重量%的密度小于0.93g/cm3的聚乙烯,而没有其他副作用,如粘附到加热板或热成型问题。

表4:热密封强度数据

热密封强度的进一步研究提供了表5中的数据。如上所述进行测试,不同之处在于伴随40PSI压力和1.0秒停留条件使用扁平密封条形成热密封件。

表5:热密封强度数据

实施例

可热成型基膜实施例:

A.一种可热成型基膜,其包括:

包含至少一种聚乙烯并且具有在约0.92g/cm3和0.97g/cm3之间的总密度的第一层,

包含高密度聚乙烯和烃树脂的第二层,以及

包含至少一种聚乙烯并且具有在约0.92g/cm3和0.97g/cm3之间的总密度的第三层,

其中该第二层位于该第一层和该第三层之间,并且其中在热成型之后,该可热成型基膜保持在热成型过程中形成的形状。

B.根据任何其他实施例所述的可热成型基膜,其还包括包含高密度聚乙烯和无机颗粒的第四层,其中该无机颗粒以至少5重量%的水平存在于该第四层中,并且其中该第四层在该第一层和该第三层之间。

C.根据实施例B所述的可热成型基膜,其中该无机颗粒是碳酸钙。

D.根据任何其他实施例所述的可热成型基膜,其中该第一层是高密度聚乙烯和密度小于0.93g/cm3的聚乙烯的共混物。

E.根据任何其他实施例所述的可热成型基膜,其中该第一层的至少一种聚乙烯是中密度聚乙烯。

F.根据任何其他实施例所述的可热成型基膜,其还包括包含乙烯乙烯醇共聚物的氧阻隔层,其中该氧阻隔层位于该第一层和该第三层之间。

G.根据任何其他实施例所述的可热成型基膜,其中该第一层和该第三层各自形成该可热成型基膜的表面。

H.根据任何其他实施例所述的可热成型基膜,其中该可热成型基膜具有至少6℃的热成型温度操作窗口。

I.根据任何其他实施例所述的可热成型基膜,其中该烃树脂相对于该可热成型基膜以5重量%至10重量%存在,并且其中该可热成型基膜的熔融指数在1.7和2.3g/10min(190℃,2160g)之间。

J.一种可热成型基膜,其包括:

包含高密度聚乙烯和密度小于0.92g/cm3的聚乙烯的第一层,

包含60重量%至90重量%的高密度聚乙烯和2.5重量%至30重量%的烃树脂的第二层,以及

包含至少一种聚乙烯并且具有在约0.92g/cm3和0.97g/cm3之间的总密度的第三层,

其中该第二层位于该第一层和该第三层之间,其中该第二层的厚度为该可热成型基膜的总厚度的25%至90%。

K.根据任何其他实施例所述的可热成型基膜,其中该热成型基膜的总密度小于1.0g/cm3

L.根据任何其他实施例所述的可热成型基膜,其中该热成型基膜基本上不含聚酯、乙烯乙烯醇共聚物和聚酰胺。

热成型基座实施例:

M.一种热成型基座,其包括

根据任一实施例A-L所述的可热成型基膜,

至少一个腔,以及

围绕这些腔中每个的凸缘。

N.根据实施例M所述的热成型基座,其中该热成型基座保持在热成型过程中形成的形状。

经包装产品实施例:

O.一种经包装产品,其包括:

根据实施例M或N所述的热成型基座,

盖包装部件,以及

产品,

其中该盖包装部件被气密地密封到该热成型基座的该凸缘,并且该产品被封闭在该热成型基座的该至少一个腔中。

P.根据实施例O所述的经包装产品,其中该盖包装部件包括热密封层以及包含金属或纸中至少一种的层。

Q.根据任何其他实施例所述的经包装产品,其中该盖包装部件可剥离地密封到该热成型基座的凸缘。

R.根据实施例O、Q、S或T所述的经包装产品,其中该热成型基座和该盖包装部件两者都可在同一回收工艺中回收。

S.根据任何其他实施例所述的经包装产品,其中该热成型基座的至少一个腔可以被手动压下,并且该产品可以被推动穿过该盖包装部件以进行产品分配。

T.根据实施例O、Q、R或S所述的经包装产品,其中该盖包装部件包括

包含高密度聚乙烯和无机颗粒的第一外层,

包含高密度聚乙烯和任选地烃树脂的第一内层,以及

包含基于聚乙烯的材料的第二外层。

24页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有雷击保护能力的可渗透材料及其在树脂灌注加工中的用途

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类